Serie: Documentos de Trabajo. 2310.
Autor: Andrés Alonso-Robisco, José Manuel Carbó y José Manuel Marqués.
Publicado en: Journal of Sustainable Finance and Investment, June 2024
Documento completo
Resumen
Evitar la materialización del cambio climático es uno de los principales retos de nuestro tiempo. En esta tarea, el sector financiero desempeña un papel fundamental, motivando a economistas académicos a desarrollar un nuevo campo de investigación, las finanzas climáticas. A la vez, el uso de tecnologías de aprendizaje automático (ML, por sus siglas en inglés) se ha popularizado para analizar problemas relacionados con las finanzas climáticas, debido principalmente a la necesidad de gestionar un volumen elevado de datos relacionados con el clima, y para modelizar relaciones no lineales entre variables climáticas y económicas. De esta manera, proponemos una revisión de la literatura académica para explorar cómo esta tecnología está posibilitando el crecimiento de las finanzas climáticas. Para ello, primero realizamos una búsqueda sistemática de estudios en esta materia en tres bases de datos científicas. Luego, usando un modelo de identificación automática de temas (Latent Dirichlet Allocation), identificamos estadísticamente siete áreas del conocimiento donde el ML está desempeñando un papel relevante: catástrofes naturales, biodiversidad, riesgo agrícola, mercados de carbono, energía, inversión responsable y datos climáticos. Para finalizar, hacemos un análisis de las principales tendencias de publicación, así como una clasificación de los modelos estadísticos utilizados en función del área de estudio. La principal contribución de este artículo es la provisión de una estructura de temas o problemas solventados gracias al uso del ML en finanzas climáticas, lo cual esperamos que facilite a expertos en esta tecnología la comprensión de las principales fortalezas y limitaciones de dicha tecnología aplicada en este campo de investigación.