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Non-technical summary

Research Question

Monetary policy is often described by a simple interest rate reaction function, responding to

inflation and the output gap. While this approach is meant to represent the actual interest

rate setting behaviour of a central bank, the question arises to what extent the policy function

is optimal with respect to fulfilling given inflation and output gap targets.

Contribution

This paper contributes to the discussion by introducing a machine learning based approach

called reinforcement learning (RL) to compute optimal interest rate reaction functions. The

method allows to incorporate restrictions like the zero lower bound, nonlinear economy struc-

tures as well as uncertainty about these. In a first step, we use quarterly U.S. data from

1987-2007 to estimate model transition equations for inflation and the output gap, relying

either on a linear structural vector autoregressive (SVAR) model or on a nonlinear artificial

neural network (ANN) representation. In the second step, we apply RL to compute optimal

reaction functions that are also specified by (nonlinear) ANNs. In doing so, we assume that

the estimated model equations remain valid, irrespective of changes in the reaction function.

Results

Concerning the model equations, we find that the ANN specification is able to capture nonlin-

earities present in the data, improving the fit compared to the SVAR model. The results over

the sample from 1978-2007 show that all RL optimized reaction functions outperform other

common policy functions as well as the actual observed interest rate. In particular, the nonlin-

ear RL reaction functions stand out positively, as measured by the assumed central bank loss

function, penalizing deviations of inflation and the output gap from their targets. A model

comparison exercise further indicates robustness of the linear RL reaction functions.



Nichttechnische Zusammenfassung

Fragestellung

Geldpolitik wird oft durch eine einfache Reaktionsfunktion des Zinses auf Inflation und Produk-

tionslücke dargestellt. Während es dabei um eine Beschreibung der tatsächlichen Zinssetzung

einer Zentralbank geht, stellt sich die Frage nach der Optimalität: Welche Reaktionsfunktion

ist am besten geeignet, um gegebene Ziele für Inflation und Produktionslücke zu erreichen?

Beitrag

Wir stellen einen neuen Ansatz aus dem Bereich des maschinellen Lernens zur Berechnung

optimaler Zinsreaktionsfunktionen vor. Die Methode des sogenannten
”
verstärkenden Lernens“

(reinforcement learning - RL) erlaubt es, Restriktionen wie eine Zinsuntergrenze, nichtlineare

ökonomische Zusammenhänge sowie Unsicherheit über diese Zusammenhänge einzubeziehen.

Anhand vierteljährlicher US-Daten von 1978-2007 schätzen wir im ersten Schritt Modellglei-

chungen für Inflation und Produktionslücke. Dazu verwenden wir entweder ein lineares struk-

turelles vektorautoregressives (SVAR) Modell oder nichtlineare künstliche neuronale Netze (ar-

tificial neural networks - ANN). Im zweiten Schritt ermitteln wir anhand von RL optimale

Reaktionsfunktionen, die ebenfalls die Form eines (nichtlinearen) ANN haben. Dabei nehmen

wir an, dass die zuvor geschätzten Modellgleichungen auch bei Änderungen der Reaktionsfunk-

tion ihre Gültigkeit behalten.

Ergebnisse

Die Ergebnisse zeigen, dass ANN vorhandene Nichtlinearitäten und somit die Daten besser ab-

bilden können als das lineare SVAR Modell. Im Schätzzeitraum von 1978-2007 schneiden alle

RL optimierten Reaktionsfunktionen besser ab als übliche Reaktionsfunktionen, und auch als

die tatsächlich beobachteten Zinsen. Gemessen an der für die Zentralbank angenommenen Ver-

lustfunktion, die Abweichungen von den Zielwerten für Inflation und Produktionslücke bestraft,

stechen insbesondere die nichtlinearen RL Reaktionsfunktionen positiv heraus. Ein Modellver-

gleich deutet zudem auf Robustheit der linearen RL Reaktionsfunktionen hin.
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Abstract

This paper introduces a reinforcement learning based approach to compute optimal
interest rate reaction functions in terms of fulfilling inflation and output gap targets. The
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1 Introduction

A simple linear rule can describe actual monetary policy decisions quite well, as shown by

Taylor (1993). The evaluation of such rule-based policies in terms of optimality and robustness

has become a central topic in the literature (see e.g. Taylor and Williams (2010)). This paper

contributes a machine learning based approach for optimal monetary policy. Specifically, in

the first step, we estimate macroeconomic transition equations by artificial neural networks

(ANNs), which allows to capture non-specified nonlinearities due to their universal approxima-

tor property. In the second step, we model monetary policy as a reinforcement learning (RL)

problem, where the central bank learns its optimal reaction function for the nominal interest

rate by interacting with the economic environment, which evolves according to the transition

equations. While the central bank observes the current state of the economy, it does not know

these transition equations.

Such an approach has three advantages. First, due to its highly flexible form, RL can be used to

address monetary policy optimization problems under various settings and restrictions. In par-

ticular, it allows to take nonlinearities like the zero lower bound (ZLB), convex Phillips curves

or asymmetric preferences of the central bank into account. Second, the employed algorithm

is model-free, i.e. it does not require complete knowledge of the model equations. Rather,

learning occurs from past experiences and through exploration, thereby mitigating the problem

of model uncertainty. Third, deep RL, i.e. the combination with multiple layers of artificial

neural networks, does not suffer from the curse of dimensionality. It is generally possible to

include many state or control variables in the analysis, which might be interesting if one thinks

of a larger information set or a larger scope of control variables of the central bank.

Using quarterly U.S. data from 1987:Q3-2007:Q2, we first estimate transition equations for

inflation and the output gap, that serve as constraints of the monetary policy optimization

problem. We distinguish two cases: a linear economy, estimated by a structural vector autore-

gression (SVAR), and a nonlinear economy, approximated by artificial neural networks (ANNs).

As it turns out, the latter can capture nonlinearities present in the data, improving the data

fit by 35 % compared to the SVAR representation.

In the second step, these estimated relations are assumed to be given. The central bank is then

provided with a reward function reflecting the dual mandate, which is maximized using RL.

The generated policy function is represented by either a linear or a nonlinear ANN, suggesting

an optimal interest rate in response to the observed economic stance.
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By means of a historical counterfactual setup, we find that the optimized policy rules yield in-

flation and output gap series much closer to the targets compared to the actual and prescribed

paths of common policy rules from the literature and the Fed’s monetary policy report (MPR).

Relying on the nonlinear model transition equations, a nonlinear reaction function performs

best in the counterfactual. While the optimized linear rules reduce the central bank’s loss, by

over 35 %, the nonlinear reaction functions even boosts the improvement to over 43 %. These

quantitative results depend of course on the estimated model equations, which are assumed to

be given. Allowing for agents with rational expectations could alter the results since changes

in the reaction function would also imply changes in the transition equations’ parameters as

pointed out by Lucas (1976).

Hence, in order to analyze the sensitivity of the RL optimized linear reaction functions with re-

spect to model uncertainty, we conduct a model comparison exercise using 11 dynamic stochas-

tic general equilibrium (DSGE) models. The results indicate that the RL optimized policy

rules are also robust, generally providing greater stability measured by unconditional variances

compared to the common policy rules. Moreover, we find that policy rules including lags of the

input variables stabilize inflation and output better than the ones without lags in the DSGE

context.

Our paper is related to different streams of the literature. In general, it adds to the litera-

ture on optimal monetary policy reaction functions. We would like to emphasize at this point

that by optimal, we mean optimal with respect to a given central bank mandate in contrast

to Ramsey optimality (see e.g. Debortoli et al. (2019) for the link between both.) Svensson

(1997) and Woodford (2001) discuss the standard approach in which the central bank faces a

linear-quadratic (L-Q) optimization problem, i.e. it has a quadratic loss function and linear

constraints. Specifically, our paper is closely connected to papers that deviate from the L-Q

framework by assuming asymmetric preferences, a nonlinear aggregate supply curve or consider-

ing the ZLB (e.g. Orphanides and Wieland (2000), Schaling (2004), Dolado et al. (2004, 2005),

Adam and Billi (2006)). We also relate to the expanding literature on monetary policy rules

vs. discretion following Taylor (1993) (see also Nikolsko-Rzhevskyy et al. (2018) and Cochrane

et al. (2019) for more recent results). The issue of model and parameter uncertainty in the con-

text of optimal monetary policy has been tackled by many authors using Bayesian and robust

control related methods along the lines of Hansen and Sargent (2001) (see e.g. Wieland (2000),

Tetlow and Von zur Muehlen (2001), Levin et al. (2003)). Concerning robustness analyses using
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a comparative DSGE model approach, we further rely on Wieland et al. (2012, 2016).

The one commonality of essentially all papers on optimal monetary policy rules is that the

underlying methods are rooted in optimal control theory.1 It dates back to the 1950s and

generally describes a problem of designing a controller in a dynamical system over time such

that an objective function is optimized. The key concepts of Dynamic Programming (DP),

like the Bellman equation based on Bellman (1957a,b), value function and policy iteration (see

Howard (1960)) also constitute the basis of RL theory and algorithms. Instead of going into

detail here, we refer the reader to Sutton and Barto (2018) for elaborations on the history of

RL and the connection to DP. While not being selective in general, one difference between

RL and DP is that the former does not require complete knowledge of the dynamical system.

Further, while traditional DP suffers from the curse of dimensionality since the computational

requirement increases exponentially with the number of state variables, the impact of dimen-

sionality can be reduced with RL methods that approximate the value function by ANNs. This

combination of ANNs and DP dates back to Bertsekas and Tsitsiklis (1996). The particular

algorithm of this category that we apply is called deep deterministic policy gradient (DDPG)

and was developed by Lillicrap et al. (2015). See also Botvinick et al. (2019) for a survey on

the development and general applications of deep RL. There are several papers considering

RL in the areas of operations research, game theory and (public) finance (see also Charpentier

et al. (2021) for a recent survey). For example, Castro et al. (2021) use RL to approximate

banks’ optimal liquidity provision in a given payment system, while Zheng et al. (2020) rely on

RL to compute optimal tax policies that trade off equality and productivity. Moreover, Chen

et al. (2021) consider RL also as a method for replacing the assumption of rational expecta-

tions within a monetary model. They allow households to learn their optimal policies over

time using deep RL and show that the model is solvable this way. However, to the best of our

knowledge, this is the first paper applying (deep) RL in the context of optimal monetary policy.

The remainder of the paper is organized as follows. Section 2 describes the reinforcement

learning methodology and the data we use. In Section 3, we present historical counterfactuals

under different policy rules and evaluate the results of the RL optimized rules. It also includes

the DSGE model comparison exercise and a discussion. Section 4 concludes.

1See also Hawkins et al. (2015) on the relationship between monetary policy rules and industrial proportional-
integral-derivative (PID) controllers.
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2 Reinforcement Learning and Data

In this section, we describe the methodology of our machine learning based approach to compute

optimal monetary policy, as well as the data we use. Specifically, we employ a branch of machine

learning called reinforcement learning (RL).2

RL refers to learning from the explorative interaction with an environment. There is no need

to provide pairs of input and correct output variables, as learning happens through a reward

function. The goal of reinforcement learning is to find an optimal policy function that describes

a reaction of an agent given observations.

2.1 Structure

The general idea of RL is shown in Figure 1. The agent (central bank) interacts with an

unknown environment E, receiving a vector of observations xt (containing inflation πt and

output gap yt and possibly lags thereof), takes an action it (nominal interest rate setting) and

receives a reward signal rt, depending on the deviation of observations from targeted values.

Given observations and reward, the agent evaluates past behaviour and adapts its action. Via

this iterative process over multiple discrete time steps T , an optimal policy (monetary policy

reaction function) given environment and reward signal is learned. In the following, all elements

of the RL scheme are described in more detail.

2.1.1 The Environment

As shown in Figure 1, RL requires the provision of an environment E, that determines the next

observations in response to the agent’s actions. In our application, the environment represents

the economy excluding the central banking part. We approximate this part of the economy by

a two equation system including the variables inflation, πt, and the output gap, yt. Concerning

the variable choice for the whole economy, we think of the basic three equation New Keynesian

model (NKM) of Rotemberg and Woodford (1997). The NKM consists of an aggregate demand

equation (dynamic investment-saving (IS) curve), an aggregate supply equation (NK Phillips

curve) and a central bank reaction function. Since the task of the environment is to provide

2The other two branches are unsupervised and supervised learning, which are used to find a hidden structure in
unlabeled data or to approximate an unknown functional relationship in order to make predictions, respectively.
We also make use of the latter when estimating the economy representation by an ANN.
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Figure 1: Reinforcement Learning Scheme

the next period’s states based on the current economic state and current policy behavior, it

can also be interpreted as a forecasting setup.

The general form of the economy transition equations is given by

yt = f̂ y(yt−1, yt−2, πt, πt−1, πt−2, it, it−1, it−2) + eyt (1)

πt = f̂π(yt, yt−1, yt−2, πt−1, πt−2, it, it−1, it−2) + eπt , (2)

where the output gap, yt, and inflation, πt, depend on lagged and contemporaneous values

of themselves as well as on the nominal interest rate, it, and lags thereof. With respect to

the specific functional form of the equations, we consider two scenarios. First, we assume a

standard linear model structure, i.e. Equation (1) and (2) collapse to the well-known reduced

form representation of a vector autoregression (VAR). Second, we use artificial neural networks

to approximate the economy, which allows for nonlinear relationships among variables while

being agnostic about the specific functional forms.

Linear Economy When estimating the linear economy, we make use of the general form

given above, with f̂m representing a simple linear function of the respective inputs collected in

vector smt

f̂m = Cm + αm
′
smt , (3)
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where Cm and αm, m ∈ {π, y}, represent the constant and the vector of coefficients, respec-

tively. In order to be able to conduct the historical counterfactual analysis later on, we further

need to transform the reduced form to its structural (SVAR) representation. Usually, the first

step would be to estimate the reduced form VAR, followed by a shock identification procedure

through a Cholesky decomposition. Instead, following e.g Rotemberg and Woodford (1997), we

directly estimate the recursive SVAR equation-by-equation using OLS, assuming that demand

pressures affect inflation contemporaneously as in e.g. Orphanides (2003) or Orphanides and

Wieland (2000). This recursive structure implies that the output gap reacts to inflation only

with a lag of one period, while inflation depends on the current level of the output gap. More-

over, while there is no direct effect of the nominal interest rate upon inflation and the output

gap, the central bank reacts to the current levels of both as will be shown in the following

section on the policy function. We start with an SVAR(2) specification and drop all second

lags that are insignificant at the 10 % significance level, which yields the following input vectors:

syt = (yt−1, πt−1, it−1, it−2) (4)

sπt = (yt, yt−1, yt−2, πt−1, πt−2, it−1). (5)

By restricting our SVAR in that way, we aim for a parsimonious model structure driven by

statistical evidence. The information criteria (BIC and AIC) favor the restricted version given

in Equations (6) and (7) over the SVAR(2) specification:

yt = Cy + ayy,1 yt−1 + ayπ,1 πt−1 + ayi,1 it−1 + ayi,2 it−2 + εyt (6)

πt = Cπ + aπy,0 yt + aπy,1 yt−1 + aπy,2 yt−2 + aππ,1 πt−1 + aππ,2 πt−2 + aπi,1 it−1 + επt . (7)

Nonlinear Economy There is a growing literature on possible nonlinear relationships within

the economy and the consequent policy implications. While some consider a convex Phillips or

IS curve and the effect on optimal monetary policy (see e.g. Schaling (2004), Dolado et al. (2004,

2005) and Tambakis (2009)), recent studies try to explain a flattening of the Phillips curve after

the global financial crisis (see e.g. Watson (2014), Coibion and Gorodnichenko (2015), Ball and

Mazumder (2019)). Hence, we also consider a nonlinear economy but are agnostic about its

specific functional forms. In order to do so, we estimate the transition equations by using

ANNs in a supervised manner - i.e. given actual values from the data, a training algorithm

learns the respective relationship between the variables by periodically updating the network’s
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parameters.

The ANN representation for f̂m, m ∈ {y, π} is given by

f̂m = bm0 +
h∑
j=1

νmj G (ωm
′

j smt + bmj ), (8)

which applies a nonlinear transformation to the input state smt . The parameters collected in the

vectors ωj, νj, j = 1, ..., h and bi, i = 0, . . . , h, are so-called weights and biases to be estimated.

We keep the previous recursive structure fixed and assume that yt and πt are unknown functions

of the same variables as in the linear economy to ensure a fair comparison.

As shown by Hornik et al. (1989), ANNs have the property of being universal approximators,

i.e. they can approximate any function to an arbitrary degree. We use Matlab’s nonlinear

autoregressive neural network with exogenous inputs (NARX), which is a so-called single-

hidden-layer neural network.3 The structure of the ANN corresponding to (8) is illustrated in

Figure 2 for m = y. Each network consists of an input layer for the explanatory variables. The

hidden layer comprises hidden units (also called nodes or neurons), which represent activation

functions.4 The weighted inputs ωm
′

j smt are summed up, a bias term is added and the sum is

transferred by the activation function (G). We employ hyperbolic tangent sigmoid functions

tanh(x) =
ex − e−x

ex + e−x
, which map on the interval [−1, 1].5 The sum of weighted outputs of each

neuron plus another constant bias term finally yields the output of the last (linear) layer, which

is the dependent variable of the left hand-side in equations (4). The structure of (5) looks

analogously.

The number of hidden units h represents a hyperparameter that we determine by dividing

the sample into a training and validation set6, where we use the last 15 % of observations for

validation, i.e. they are not used during training. We then loop over one to ten hidden units

using 30 different random initial weights each and choose the number of hidden units with

the lowest mean squared error in the validation set averaged over the 30 trials.7 It turns out

3We use Matlab2019b version for all analyses.
4To simplify the figure, only 2 nodes are included here, which does not reflect the actual chosen number.
5This activation function is usually used because of faster convergence rates (see e.g. LeCun et al. (2012)).
6Note, that the validation set is also used to prevent the algorithm from overfitting the training data by introduc-
ing an early stopping mechanism. Thereby, training is stopped when the mean squared error of the validation
set fails to improve or remains the same for six consecutive epochs.

7This model selection strategy is similar to the one of Aras and Kocakoç (2016). The ANNs are initialized using
the Nguyen-Widrow method.
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Figure 2: Structure of a Single-hidden-layer Artificial Neural Network with Two
Hidden Nodes

that the optimal number of hidden units of the ANN representing the output gap and inflation

are 3 and 4, respectively. After fixing the optimal number of hidden units, we take the set of

initial weights and biases that produces the lowest overall mean squared error. The networks

are trained using the Levenberg-Marquardt algorithm (see Levenberg (1944) and Marquardt

(1963)).

We wish to make clear at the outset that during our RL setup, the estimated transition equations

are taken as given, i.e. changes in the reaction function do not affect parameters of the transition

equations as it would be the case with models including rational expectations. Orphanides and

Wieland (2000), for example, follow a similar approach when analyzing optimal monetary policy

under inflation zone targeting without the explicit modelling of expectations. Given that only

the parameters of the policy function are optimized during RL, while the overall target remains

the same, the effects on the transition equations’ parameters should be less critical.8 While

expectations certainly play a role, the degree of rationality is uncertain and the estimated

transition equations can still serve as a useful benchmark environment to introduce the RL

concept.

8One could also think of private agents adapting expectations only very slowly over time.
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2.1.2 The Agent

The RL policy function is a mapping of observed economic states into actions. In RL nomen-

clature, we set up a critic, which is equivalent to an approximate value function representing

the expected long-term reward of the present policy and thus drives the policy parameter up-

dating. Further, we define an actor, representing the central bank policy function, describing

the nominal interest rate setting behaviour in response to observations from the environment.

Concerning the critic, we use nonlinear neural networks in order to approximate the value

function. The actor is given by a simple linear or nonlinear neural network depending on the

structure of the economy. Through the training process, the functional parameters are updated

in order to maximize the expected long-term reward (minimize the long-term loss).

The Policy Defining the policy representation includes delimiting the observation and action

spaces. While the details of the economic structure, i.e. parameters and functional forms of

(6)-(7) or (4)-(5), are unknown during training, the agent observes certain state variables, that

serve as inputs to the policy function. We consider two different specifications concerning the

dimension of the observation space. The first setup shown below in equation (9) is supposed

to mirror the standard Taylor (1993) type monetary policy inputs, while the second setup (10)

additionally contains one lag of each variable. By using these specifications, on one side, we

aim for a fair comparison to standard Taylor type rules. On the other side, lags of inflation and

output gap in the policy function are shown to produce robust stabilizing behavior (Hawkins

et al., 2015) and therefore constitute our second choice.

x1t = (yt, πt) (9)

x2t = (yt, yt−1, πt, πt−1) (10)

The action space is one dimensional and real-valued. We further add a zero lower bound (ZLB)

restriction on the nominal interest rate (i.e. it ∈ R+), which is easily implemented in a neural

network structure using a rectified linear unit output (ReLu) layer.9 It performs a threshold

operation such that every input of this layer less than zero is set to zero:

f(x) =

x, x > 0

0, x < 0

. (11)

9ReLu also often replaces tanh as an activation function, see e.g. Nair and Hinton (2010).
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This allows to take into account the nonlinear restriction through the ZLB during the learning

process. The ZLB might change the optimal parameters of the reaction function as shown by

e.g. Adam and Billi (2006). Apart from the ZLB restriction, we start our analysis employing

linear neural network policy structures. This approach allows for a direct comparison to other

common linear policy rules before turning to a more liberate, nonlinear functional form. The

structural form of the resulting policy function Pt is given by:

Pt = it = max{f(xzt ), 0}, where (12)

f(xzt ) = α0 +

q∑
j=1

δjG(β′jx
z
t + αj) (13)

with xzt , z ∈ {1, 2} being the vector of observations from (9) or (10), respectively, and G(·) being

a monotonically bounded increasing transfer function. Equation (13) is the representation of a

single-hidden-layer feed-forward neural network as we used it for approximating the economy in

(4) and (5).10 In the linear policy case, q = 1 = δj = 1 and G() collapses to the purelin transfer

function, that simply maps the input value onto itself (a = purelin(n) = n). The response

coefficients are then given by βlπ and βly, where l ∈ {0, 1} refers to contemporaneous and lagged

variables, respectively. For the nonlinear case, we use the hyperbolic tangent sigmoid function

as before. The parameters to be optimized by the RL algorithm are the weights βj and δj,

j = 1, ..., q and the biases αj, j = 0, ..., q, where q denotes the number of hidden units that has

to be determined in advance as explained in the following section.

The Objective In order to adjust the policy coefficients in an optimal way, one needs to

determine the respective action value function. It works as a measure of performance for policy

interventions and thus constitutes the basis for policy updates:

QP (xt, it) = E[Rt|xzt , it] (14)

with

Rt =
T∑
i=t

γi−trt(x
z
i , ii). (15)

10We do not consider multiple hidden layers for our rather simple application. However, it is possible to use such
deep neural networks within the RL framework in general.
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The function QP describes the expected return after taking action it, observing state xt, and

following policy Pt thereafter. This recursive relationship is based on the Bellman equation.

The return Rt itself, is defined as the sum of discounted future rewards with a typical discount

factor of γ = 0.99 (cf. e.g. Svensson (2020)). The critic approximates (14) with an ANN as

shown in Figure 3, where θQ comprises all connection weights and biases of the network that are

omitted in this graph for simplicity. Via the observation path, the set of observable variables

xzt (z = 1 in the Figure) enters the critic. Through the action path, the control variable it is

included. Both paths are concatenated to the common path and its output is the expected

long-term reward based on observed state and action, i.e. equation (14).

Figure 3: Structure of the Critic Neural Network Approximating the Value Func-
tion

We follow the Fed’s mandate when defining the objective of our agent. According to the

Federal Open Market Committee’s (FOMC) statement on longer-run goals and monetary policy

strategy11, an inflation rate of 2 % is “most consistent over the longer run with the Federal

Reserve’s statutory mandate”. Further, it tries to promote maximum employment, while its

specific level is allowed to vary over time. The two objectives are seen as complementary in

general. Hence, we rely on the standard quadratic reward function that is given by

rt(x
z
t , it) = −ωπ (πt+1 − π∗)2 − ωy y2t+1 (16)

with equal12 ωπ = ωy = 0.5 and π∗ = 2%.13 We would like to emphasize at this point, that

11see the FOMC’s Longer Run Goals and Monetary Policy Strategy document on https://www.federalreserve.

gov/monetarypolicy.htm
12Equal weights on inflation and the unemployment gap actually translates into a weight of 0.125 on the output

gap using Okun’s law. We still stick to 0.5, since Debortoli et al. (2019) show that an output gap weight similar
to the one of inflation improves social welfare in a DSGE model context.

13For computational reasons, the continuous reward function given by (16) is accompanied by a second part,
which punishes deviations from targets that exceed 2 percentage points: r

πp

t = 10 · rπt (if rπt > 4) and r
yp
t =

10 · ryt (if ryt > 4), where the subscript p stands for penalty and rπt and ryt denote the squared deviations from

11

https://www.federalreserve.gov/monetarypolicy.htm
https://www.federalreserve.gov/monetarypolicy.htm


it is generally possible to analyze optimal monetary policy under different loss functions using

RL, as well. Only recently, on August 27th 2020, the Fed actually switched to an average

inflation target of 2 %. Future research could consider alternative loss functions reflecting

average inflation targeting as stated in Svensson (2020).14

2.2 Training Algorithm and Hyperparameters

We employ a reinforcement learning algorithm first presented by Lillicrap et al. (2015), called

Deep Deterministic Policy Gradient (DDPG) algorithm, which is implemented in Matlab 2019a

(and later versions).15 It builds on the Deterministic Policy Gradient algorithm by Silver et al.

(2014) and combines the actor-critic approach with Deep Q Networks (see Mnih et al. (2013,

2015)). The result is a model-free, online, off-policy actor-critic algorithm using (deep) function

approximators.16 The goal of the learning algorithm is to find an optimal policy that maximizes

the expected long-term reward.

Table 1 provides an overview of the DDPG algorithm’s individual steps, while each part is

explained more formally in Appendix C.1. Before entering such a training cycle, we have to

decide about the critic network structure. To find the best layer structure in the end, we run

the training cycle several times, looping over the number of hidden nodes (one to ten), holding

the number constant across the hidden layers of the observation and action path for simplicity.

For the linear actor version, there is no further choice involved.17 But when we optimize the

nonlinear policy version in (13), we also need to determine the number of hidden units of the

actor. In this case, we loop over these actor nodes also from one to ten, while fixing the critic

nodes.

One training cycle consists of different steps. It starts with an initialization phase and each

targets. The penalty rewards are added to (16). This kind of mixed reward signal drives the system away from
bad states while simultaneously promoting convergence.

14Note, that the Fed does not specify an explicit averaging period. The goal is only stated as an average inflation
of 2 % over time.

15There exist many different RL algorithms. Among other things, the specific choice depends on the observation
and action spaces, i.e. whether they are discrete or continuous, if it is based on a value or an action-value
function, and how the actor is modeled. We decided for the DDPG since it is capable to handle continuous
observation and action spaces and, in contrast to other algorithms, it returns one value for the action instead
of probabilities of taking each action in the action space. Hence, the term deterministic in DDPG refers to the
final policy function which is not stochastic.

16The term model-free relates to the fact that the environment is not known to the actor. Only a set of observable
variables combined with the reward signals influence the action taken. An online algorithm interacts with the
environment while learning (trial and error principle). Off-policy means that the policy function is updated
relying on sampled experiences from previous policy functions in the iteration process. In contrast, on-policy
learning means that it only uses experiences generated by the latest learned policy (behavioural policy).

17Remember, that the linear version of (13) includes setting q = 1.
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cycle consists of M = 500 episodes in total.18 Steps f) to m) are repeated until the agent

either fulfills our defined stopping criteria, which is 1.7 < πt+1 < 2.3 and −0.3 < yt+1 < 0.3,

i.e. 0.3 p.p. absolute deviations from target values, or the episode stops automatically after a

maximum of T = 50 quarters.19

Table 1: DDPG Algorithm

Initialization a) Randomly initialize critic network Q(x, i|θQ) and actor P (x|θP )

with weights θQ and θP

b) Initialize the target network Q′ and P ′ with weights θQ
′ ← θQ and θP

′ ← θP

c) Initialize experience replay buffer B

for m = 1 : M

d) Initialize a random process N for action exploration

e) Receive initial observation state xz0, (z = 1 or 2)

for t = 1 : T

f) Select action it = P (xt|θP ) +Nt according to the current policy

and exploration noise

g) Execute action it, observe reward rt and observe new state xt+1

h) Store transition (xt, it, rt, xt+1) in B

i) Sample a random minibatch of N transitions (xj , ij , rj , xj+1) from B

j) Set hj = r(xj , ij) + γQ′(xj+1, P
′(xj+1|θP

′
)|θQ′

)

k) Update critic by minimizing the loss:

L =
1

N

∑
j(hj −Q(xj , ij |θQ))2

l) Update the actor policy using the sampled policy gradient:

5θP J ≈
1

N

∑
j [5iQ(x, i|θQ)|x=xj ,i=P (xj) 5θP P (i|θP )|xj

]

m) Update the target networks:

θQ
′ ← τθQ + (1− τ)θQ

′

end for θP
′ ← τθP + (1− τ)θP

′

end for

Note: This scheme leans on Lillicrap et al. (2015) and is adapted to our variable and parameter specification.
It describes a training cycle of the Deep Deterministic Policy Gradient algorithm. See Appendix for details.

As indicated in g), the reward rt is calculated according to our designed reward function (16)

in each step t. To get a measure of performance of one training episode, the episode reward

is calculated as the sum over the rewards per step (ERm =
∑

t rt). We save all agents during

training that fulfill the following criteria. First of all, the episode reward (ERm) divided by

the episode steps (ESm) has to be larger than -4, i.e. ERm/ESm > −4. According to our

reward definition in (16), this is equivalent to an average (per step) inflation and output gap

deviation from target of two percentage points and corresponds to the inner part of the reward

18This means that per critic and actor configuration, the algorithm runs 500 episodes, where each episode repre-
sents a different policy function (a different agent) and only one has to be chosen.

19We also experimented with smaller bands around the target values, but it produced inferior results.
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function that is not further punished. We choose this criteria to be rather loose as we do not

want to discriminate agents that start from worse initial states, i.e. from states further away

from the targets. Moreover, we require 1 < ESm < 50 to avoid, on one hand, choosing an

agent that reached the target coincidentally after one step because of a close to target initial

state. On the other hand, the episode shall be terminated, i.e. the episode stopping criteria is

reached, before the maximum number of steps per episode is reached. Afterwards, we calculate

the steady state of each saved agent, which represent the long-term equilibrium of the economy

and derive the respective steady state reward according to (16). We then select the agent with

the best steady state reward per set of critic nodes. Out of these ten results, we choose the

optimal number of critic nodes (and hence the final optimal policy function) according to the

same criteria.

Table 2 summarizes the chosen numbers of hidden nodes for the six different cases under

investigation. Except for the version with the linear economy combined with policy inputs x2t ,

two nodes in the critic network yields the best results. Hence, in order to determine the number

of nodes for the nonlinear policy case, we fix the number of nodes in the critic at two, loop over

one to ten nodes in the actor and choose the best one according to the steady state reward as

above. It turns out that with observation inputs x1t and x2t , ten and eight nodes in the policy

function produce the best results, respectively.20

Table 2: Chosen Numbers of Hidden Nodes

Economy Policy Structure Policy Inputs Critic Nodes Actor Nodes

SVAR Linear (yt, πt) 2 1
SVAR Linear (yt, yt−1, πt, πt−1) 1 1
ANN Linear (yt, πt) 2 1
ANN Linear (yt, yt−1, πt, πt−1) 2 1
ANN Nonlinear (yt, πt) 2 10
ANN Nonlinear (yt, yt−1, πt, πt−1) 2 8

Note: This table summarizes the chosen number of neurons for the neural networks representing
the critic and the policy function. The decision rules for the optimal numbers are described in
the main text.

20Since the former case touches the upper bound of the pre-defined loop, we also experimented with more than
10 nodes, which did not improve the results.
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2.3 Data

In our benchmark analysis, we use quarterly U.S. data from 1987:Q3 to 2007:Q2. The period’s

starting point coincides with the appointment of Alan Greenspan as the Fed’s chairman, while

it stops before the financial crisis. We chose this time span since inflation (and unemployment)

targeting was implicitly practiced (see Goodfriend (2004)). Periods following the financial

crisis are excluded since these are characterized by unconventional monetary policy measures

like large-scale asset purchases. While we do account for a ZLB constraint of the nominal

interest rate, which was binding during the crisis, we do not consider additional instruments

of the central bank nor their possible combinations. Hence, our optimized policy rules rather

correspond to “normal” times taking into account the lower bound restriction. However, in

Appendix C.2.3, we also show static interest rate prescriptions of the considered policy rules

for the periods after the great financial crisis.

Inflation πt is measured by the GDP implicit price deflator as the percentage change from one

year ago.21 The output gap yt is computed as the percentage deviation of actual GDP from its

potential. For the latter, we use estimates of the U.S. Congressional Budget Office. Whenever

we plot the actual behavior of the central bank, we mean the effective federal funds rate.22

We are aware of the difficulties arising from using ex post revised instead of real-time data in

a central bank’s reaction function as mentioned by e.g. Orphanides (2001). However, we only

use the complete data set to estimate the transition equations for inflation and output gap

(see 2.1.1). The reaction function itself is not estimated but optimized. Hence, actual values

only enter the reaction function in the RL algorithm through the initial observation state of an

episode (see step e) of Table 1). During the following learning steps, inflation and output gap

data is simulated by our estimated economy, drawing random shocks. The central bank only

observes the values of π and y, but does not know the nature of the shock.

3 Results

In this section, we start with presenting the fit of the estimated economy representations.

Afterwards, we compare parameters of our RL based optimal monetary policy functions to

21The Fed actually targets inflation measured by the personal consumption expenditure (PCE) index. However,
the GDP deflator is closer to the inflation in macroeconomic models that we employ for analysing the robustness
of the optimized rules. For the same reason, we use the output gap instead of the targeted unemployment rate.

22All time series were downloaded from the FRED website. We performed Augmented Dickey Fuller (Dickey and
Fuller (1979)) and KPSS tests (Kwiatkowski et al. (1992)) that indicated stationarity of the three series.
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those of other common reaction functions, before we turn to historical counterfactual analyses.

In addition, we show robustness of our optimized policy rules with respect to model uncertainty

by means of a DSGE model comparison exercise.

3.1 Economy Representations

Before we present our results on RL based optimal monetary policy, we illustrate the differences

between our linear SVAR ((6)-(7)) and nonlinear ((4)-(5)) economy representations. Table 9

in the Appendix summarizes the estimation results for the SVAR representation. The Durbin-

Watson as well as the Lagrange Multiplier statistics indicate that the error terms (representing

the structural shocks) are serially uncorrelated. The drawback of ANNs is that estimated

parameters are more difficult to interpret. The SVAR representation, however, is restricted by

its predetermined linear form and might consequently miss certain dynamics of the actual time

series data.

Figures 4 and 5 compare the fit of the linear economy model (in red) and the ANN economy (in

blue) for inflation and output gap, respectively. Specifically, we compute the differences between

the fitted and the actual time series and plot the squared errors. Larger values directly can

be interpreted as a worse fit. While considering the output gap, the difference between SVAR

and ANN model is less pronounced, the nonlinear model clearly yields a better fit for inflation.

Concerning the timing, the results indicate that the ANN outperforms its linear opponent

especially during crisis periods. For the recession in the early 1990s after the stock market

crash in 1989 and the recession in the early 2000s, the ANN yields lower squared errors. The

superior performance gets even clearer when comparing the mean squared errors (MSE) of Table

3. Using the ANN to approximate the economy, the overall fit of the output gap and inflation

variables can be improved by 22 % and 48 %, respectively. Regarding the total economy, i.e.

averaging over the MSE for the output gap and inflation, the ANN outperforms the SVAR by

25 %. Since we use a validation set (see 2.1.1) to prevent the ANN from overfitting, the result

indicates the presence of nonlinearities that cannot be captured by the SVAR model.23

Visualizing these nonlinearities is not an easy task. The marginal relationship between input

and output variables in an ANN are not constant as in the linear case, but depend on the

levels of the input variables. Since inflation and output gap are functions of six and four

23The ANN also outperforms the SVAR by a similar magnitude when focusing on the validation set only. Hence,
the superiority of the ANN should not be due to an overfitting of the training sample.
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Figure 4: Output Gap Fit: Squared Errors
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Note: This figure shows the squared errors between the actual output gap time series (1987:Q3 to
2007:Q2) and the fitted values of the SVAR and ANN model.

Figure 5: Inflation Fit: Squared Errors
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Note: This figure shows the squared errors between the inflation time series (1987:Q3 to 2007:Q2) and
the fitted values of the SVAR and ANN model.
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Table 3: Economy Fit: Mean Squared Errors

Representation MSE Output Gap MSE Inflation MSE Total

SVAR 0.211 0.033 0.122
ANN 0.165 0.017 0.091

Note: This table summarizes the mean squared errors of the linear SVAR ((6)-(7))
and ANN ((4)-(5) economy representations for the variables output gap, inflation
and the overall economy.

explanatory variables, respectively (cf. (4)-(5)), all functional dependencies cannot be plotted.

Still, we can visualize parts of it by using partial dependence (PD) plots. These plot output

predictions against a single or a pair of input variables by marginalizing out the effects of the

(potential) remaining variables.24 Figures 6 and 7 represent PD surface plots for inflation and

output gap, respectively. For positive output gaps, the relations concerning inflation are as

expected: inflation decreases with the nominal interest rate, and increases with the output gap.

Surprisingly, this turns around for negative output gaps. There, inflation increases with the

nominal interest rate, and decreases when the output gap increases. This somehow symmetric

response of inflation with respect to the output gap might be explained by our sample period.

While inflation and output gap move in the same direction at the beginning and the end of

our sample, during the 1990s, we see a closing of the output gap (starting from a value of

-4 following the stock market crash), while inflation decreases, among other things due to a

cheaper supply of computer technology. Remember that following a demand shock, inflation

and output gap move in the same direction, while they move in opposite directions after a supply

shock. We have to keep in mind that the ANN represents an estimated relationship, driven by

our sample observations, that may change over time. Still, it is an interesting outcome of our

ANN economy, that a simple linear representation with a constant partial derivative could not

produce.

Turning to the PD surface plot of the output gap, we observe less nonlinearities, corresponding

to the smaller improvement in fit (see Table 3). As expected, the output gap decreases with the

nominal interest rate, independent of the level of inflation. The relationship between inflation

and the output gap, however, depends on the level of inflation. As long as inflation is below

its target, output gap increases with inflation, while it decreases with inflation above the 2 %

target.

24 In order to produce these plots, we build a grid for inflation, output gap and interest rate from 0:6, -5:3 and
0:5, respectively, and compute the corresponding outputs of the ANN. We then assume constant values across
lags and marginalize over respective remaining variables to reduce the dimensions for the surface plot.
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Figure 6: Partial Dependence Surface Plot - ANN Economy, Inflation

Note: This figure shows the partial dependence of inflation, πt, on last period’s
nominal interest rate (FFR), it−1, and on the output gap, assuming yt =
yt−1 = yt−2 and marginalizing over πt−1 = πt−2.

Figure 7: Partial Dependence Surface Plot - ANN Economy, Output Gap

Note: This figure shows the partial dependence of the output gap, yt, on last
period’s inflation, πt−1, and nominal interest rate (FFR), assuming it−1 = it−2
and marginalizing over yt−1.
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3.2 Optimized Policy Parameters

In total, we compute six optimal monetary policy rules: two linear ones within the SVAR

economy framework and four (two linear and two nonlinear ones) within the ANN economy.25

We denote the policies based on our approach by RL, where the subindex specifies if it is

based on the linear (SVAR) or the nonlinear economy (ANN), which input structure and which

functional form (linear vs. nonlinear) is used. No lag means observations x1t serve as inputs,

whereas one lag corresponds to x2t (see (9)-(10)).

Linear Policies Table 4 summarizes the optimized coefficients of the linear policy rules. For

the sake of comparability, we also show the coefficients of the original Taylor (1993) rule (TR93)

and the so-called Balanced-approach (BA), which are both included in the Fed’s MPR.26 Fur-

ther, we consider the so-called inflation tilting rule brought up by Nikolsko-Rzhevskyy et al.

(2018) (NPP). The general form of these rules is given by it = r∗+β0
π (πt−π∗)+β0

y yt, where r∗

and π∗ denote the long-run equilibrium real interest rate and the inflation target, respectively.

In our SVAR economy, the best simple structured agent RLSV AR, no lag , i.e. using (9) as inputs,

has an inflation coefficient of 2.54 and is thus best comparable to the NPP rule. RLSV AR, no lag

consequently responds more aggressively to deviations of inflation from its target value com-

pared to TR93 and BA. In contrast, the output gap coefficient β0
y is slightly smaller with 0.42

than all three common policy rules and shows a smaller compensating tendency of GDP de-

viations from potential. We find, that the constant term α0 is quite similar across TR93, BA

and RLSV AR, no lag. Using the intercept relation α0 = r∗− (βπ − 1)π∗, one can back out a value

for the inflation target π∗ or the equilibrium real interest rate r∗ by holding one of the two

constant. Assuming π∗ = 2, the RL implied r∗ = 4.2 % is considerably larger than the assumed

value of 2 % by Taylor (1993) and also larger than the ones implied by BA and NPP.

Within the linear economy framework, we further optimize a second policy rule with lagged

inputs as given in (10), RLSV AR, one lag. With βπ = β0
π + β1

π = 2.99, its sensibility to inflation

deviations is even larger than with RLSV AR, no lag. This rule also reacts stronger to output gap

25Note, that linear and nonlinear here refers to the area outside the ZLB. Strictly speaking, all rules are nonlinear
due to the ZLB constraint.

26The rules in the MPR actually contain the deviation of unemployment from its natural rate instead of the
output gap by using the Okun’s law relationship yt = 2 (ut − u∗t ). However, we stick to the version with the
output gap. Moreover, we abstract from a time-varying r∗t and assume a constant value of 2 % that enters the
intercept. We also do not consider the price level targeting and the first-difference rules of the MPR. While the
former reflects a different monetary policy strategy in general, the latter is not unambiguously defined since it
translates previous deviations from the rule into a permanent part.
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Table 4: Linear Policy Parameters

Policy α0 β0
π β1

π β0
y β1

y

TR 93 1 1.5 - 0.5 -
NPP 0 2.0 - 0.5 -
BA 1 1.5 - 1
RLSV AR, no lag 1.14 2.54 - 0.42 -
RLSV AR, one lag 0.25 2.30 0.69 1.75 -1.14
RLANN,no lag 0.86 1.35 - 0.78 -
RLANN, one lag 0.24 0.66 1.05 0.15 0.79

Note: As introduced in the general policy function structure
in equation (13), α0 is the constant term, with α0 = r∗− (βπ−
1), π∗ and r∗ denoting the long-run equilibrium real interest
rate and π∗ representing the inflation target of 2 %. βlπ is the
inflation and βly the output gap coefficient with l = 0 indicating
the contemporaneous period and l = 1 the first lag.

deviations than the aforementioned rules (β0
y + β1

y = 0.6). The much smaller constant of 0.25

compared to our simple policy version combined with the larger inflation response coefficient

yields the same estimate of r∗ = 4.2 % as before.

The subsequent policy rules are optimized based on the environment represented by the ANNs of

(8). We again start with the simple structure containing no lagged input variables (RLANN,no lag).

While β0
π = 1.35 comprises a more subtle reaction to inflation variations, which is even smaller

than in TR93 and BA, the output gap is strongly reacted to (β0
y = 0.78). A constant of 0.86

translates into r∗ = 1.56 % which is much smaller than the one found under the linear economy.

The best agent after adding lags to the policy rule (RLANN, one lag) yields inflation response co-

efficients that are much more moderate than under RLSV AR, one lag. They sum up to 1.71, which

falls in-between TR93/ BA and NPP. However, the sensibility to the output gap is increased,

which is mainly driven by the coefficient on lagged output gap. With 0.94 in sum, RLANN,no lag

shows the strongest reaction to GDP deviations from potential. The implied equilibrium real

interest rate amounts to 1.6 % in this case. We do not want to dig deeper into the r∗ discussion

at this point as our focus is on the performance of the rules optimized through RL. However, it

is remarkable that changing the environment from linear to nonlinear leads to a much smaller

implied equilibrium real interest rate. Figures 13 and 14 in the Appendix further show for

which inflation and output gap combinations the ZLB binds according to our RL optimized

rules.
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Nonlinear Policies As a last step, we allow the policy function to be of a nonlinear form

as shown in (13) with G(·) being the hyperbolic tangent transfer function. The optimal agents

with and without lags are denoted by RLANN, one lag, nonlin and RLANN,no lag, nonlin, respectively.

The coefficients of ANNs are no longer directly interpretable. However, we can still investigate

the relationship between the input variables and the nominal interest rate implied by the ANN

by PD plots.

Figure 8 represents a PD surface plot for RLANN,no lag, nonlin. This optimized rule has only

two inputs, πt and yt. Hence, the inputs’ influence on the output variable can be illustrated

by a three-dimensional surface plot without the need for marginalizing over other variables.

For comparison, we add the optimized linear policy RLANN,no lag to the plot. It shows that

RLANN,no lag, nonlin prescribes a zero nominal interest rate as long as inflation falls below zero,

irrespective of the output gap. Given the output gap is closed, i.e. actual GDP equals potential

such that yt = 0, the federal funds rate (FFR) increases with inflation reaching a value of 3.9

at πt = π∗ = 2. As expected, the implied interest rate declines when the output gap falls

into negative territory. Surprisingly, however, the FFR under RLANN,no lag, nonlin is also smaller

for positive output gaps combined with inflation values above its target.27 Figure 15 in the

Appendix shows PD line plots for inflation and output gap each by averaging over the respective

remaining variable. Graphically, these lines represent average cross sections of the nonlinear

policy in Figure 8. It underlines the almost symmetric relationship between prescribed FFR

and the output gap around zero. Contrary, under the optimized linear policy RLANN,no lag (the

transparent plain) the FFR is less responsive to inflation at lower inflation values, and more

responsive for larger inflation values compared to the nonlinear rule.

Figure 9 illustrates how it relates to πt and yt under RLANN, one lag, nonlin by holding values

constant over the lags of inflation and output gap.28 As before, we plot this rule against

its linear counterpart. The FFR under RLANN, one lag, nonlin generally increases with inflation

(except for very negative output gap values) and output gap, reaching a plateau with FFR

values of around 5.5 for positive output gaps combined with inflation values around 4. Figure

16 in the Appendix further shows the PD line plots for inflation and output gap individually,

which also illustrates the irresponsiveness of the rule with respect to the output gap for yt > 2.

The comparison with the respective linear optimized policy RLANN, one lag reveals that the FFR

27This might be influenced by the fact that inflation and output gap have maximum values of 4.2 and 2.4 in our
data sample, respectively, and the optimization algorithm may have never encountered such value combinations.

28Note that since inflation and the output gap are (auto)correlated, the true partial relationship can only be
approximated. The PD plots further rely on the assumption that each input combination is equally likely.
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Figure 8: Partial Dependence Surface Plot - RLANN,no lag, nonlin vs. RLANN,no lag

Note: This figure shows the partial dependence of the nominal
interest rate, it, (FFR) on inflation, πt, and on the output gap,
yt, under RLANN,no lag, nonlin. The transparent plain repre-
sents the corresponding linear counterpart RLANN,no lag.

is held at zero for similar values of inflation and output gap. Compared to the linear rule,

at output gap values around zero, the nonlinear rule prescribes a sharper increase of FFR for

inflation values between 0 and 3, whereas the response is less pronounced for larger inflation

values. The plateau at high inflation and output gap values can per definition not be captured

by the linear rule.

Overall, results for both nonlinear rules suggest that it is optimal not to increase the interest

rate when the output gap increases if the output gap is sufficiently positive large. Given a closed

output gap, both nonlinear rules prescribe larger FFR values for inflation values between 0 and

3 and lower ones for πt > 3 compared to their linear counterparts. Still, it might also be the

case that the optimized rules stabilize the economy in a successful way, such that these large

deviations from targets are not encountered (during simulation) at all.

3.3 Historical Counterfactuals

In order to evaluate our RL based reaction functions, we need to compare their performance

with the actual interest rate setting behaviour of the Fed and alternative rules. Often, different

policy rules are compared by using a static setup, which means that data on inflation and the

output gap is simply plugged into each rule without considering any feedback mechanisms.
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Figure 9: Partial Dependence Surface Plot - RLANN, one lag, nonlin vs. RLANN, one lag

Note: This figure shows the partial dependence of the nom-
inal interest rate, it, (FFR) on inflation, πt, and on the
output gap, yt, assuming πt = πt−1 and yt = yt−1, under
RLANN, one lag, nonlin. The transparent plain represents the
corresponding linear counterpart RLANN, one lag

Results of this exercise can be found in the Appendix for the sake of completeness. However,

one cannot draw a conclusion on which policy is best suited to reach target values from such

an analysis.

Therefore, we conduct counterfactual analyses that take the dynamics of inflation, output gap

and interest rate as well as feedback effects into account. Similar to Primiceri (2005), we use

our estimated SVAR (6)-(7) and the structural shocks thereof εit, i = 1, 2 to simulate the econ-

omy under different reaction functions. Specifically, we exchange the third equation of the

dynamical system by the respective (optimized) policy rules, while keeping (6)-(7) unchanged.

Equivalently, we compute counterfactuals using the ANN economy (8). The dynamic counter-

factual simulation period lasts from 1987:Q3 to 2007:Q2. Since we have to take the estimated

structural parameters of the economy in (6)-(7) and (8) as given and unchanged, the Lucas

(1976) critique applies, i.e. the behaviour of rational and forward-looking private agents might

be different when they take the change of policy into account. However, we are convinced

that the effects of the Lucas critique are rather small, since we do not compare policies from

totally different regimes. In contrast, we only change the policy within a period, where inflation

targeting was already practiced, using the same technique as in the e.g. Primiceri (2005) and
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Sims and Zha (2006). Hence, possible behaviour modifications of the private agents should be

minor.29 Certainly, future research should experiment with the economy framework, possibly

incorporating a role for rational expectations. Nevertheless, this section’s exercise can still be

interpreted as a proof of work of the RL approach.

SVAR Economy & Linear Policy We start with the economy in linear form ((6)- (7)).30

Figure 10, shows the simulated counterfactual time series for the interest rate, inflation and the

output gap, respectively, under the different reaction functions.

First, it is remarkable that the interest rate level (top panel) with both optimized rules is

on average larger than the actual federal funds rate and interest rate prescriptions by other

rules. This, presumably, is caused by the combination of a relatively large constant term and

larger coefficients on the input variables (see Table 4). Further, RLSV AR, no lag yields a smoother

interest rate series than RLSV AR, one lag, which might be explained by coefficients with different

signs on the output gap (β0
y and β1

y) of the latter. At the beginning of the sample, TR93,

NPP and BA produce interest rates slightly below, while our rules lie above the actual one.

In relative terms, all rules share the drop in the interest rate after 1989, which mirrors the

recession following the stock market crash. Between 1993 and 1999, the actual interest rate

increases and draws closely to our optimized policies. Subsequently, the dot com bubble crisis

causes the interest rate to drop and produces similar reductions across all rules. After that,

the common rules change from running below to above actual. With respect to magnitude

and time, however, they lag behind the optimized policies’ interest rate increase. By explicitly

including a ZLB during RL, it seems as if the policy rules increase the scope of monetary policy

action by raising interest rates before the financial crisis. Through this behavior, our optimized

policies support and affirm the too low for too long-argument claimed for example by Taylor

(2007).

What is actually more of interest to us are the counterfactual inflation and output gap series,

because by these we can evaluate the performance of the RL reaction function. Concerning

inflation, paths under RLSV AR, no lag and RLSV AR, one lag are very similar and both produce values

smaller than in the data. Between 1987 and 1991 and after 2003, the induced inflation is closer

to the target of 2 %, while from 1995 to 2000, the actual Fed behavior produced better inflation

29Alternatively, one could also state that we implicitly assume that private agents adapt their expectations much
more slowly than the central bank.

30Please note that SVAR economy in the following denotes the recursively estimated system given in (6)- (7).
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Figure 10: Actual and Counterfactual Series (SVAR Economy)
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Note: Starting with 1987:Q3, this figure shows FFR, inflation and output gap series from a dynamic
counterfactual analysis of common rules (TR93 : red, NPP : yellow, BA: green) and optimized linear rules
(RLSV AR, no lag: blue, RLSV AR, one lag: purple) within the SVAR economy. Actual refers to the historic
time series (black).
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values. We find similar results for the output gap. The values induced by the optimized policies

lie above the common rules and the data. In most of the times, this yields values closer to the

target of zero.

In order to draw a final conclusion about the performance of the RL policy functions, we look at

the squared deviations of the counterfactual series from the respective targets and the resulting

overall central bank loss, i.e. the reward defined in (16) multiplied by (-1). Table 5 summarizes

the results.

Table 5: Actual and Counterfactual Target Deviation and Loss (SVAR Economy)

Policy ∆2(π∗, πt) ∆2(y∗, yt) Loss

Actual 0.84 2.98 1.91
TR93 0.91 3.01 1.96
NPP 0.83 3.03 1.93
BA 1.04 3.37 2.21
RLSV AR, no lag 0.66 2.95 1.80
RLSV AR, one lag 0.63 3.11 1.87

Note: ∆2 denotes the mean squared deviation of the re-
spective variable from its target value (π∗ = 2 and y∗ = 0).
The loss is calculated averaging over both: Loss = 0.5 ·
∆2(π∗, πt) + 0.5 ·∆2(y∗, yt).

We find that the optimized RL rules yields smaller squared deviations from target than these

observed in the data. The other rules perform worse than the actual course, only the NPP

rule yields a slightly lower squared deviation of inflation from target. Concerning the output

gap, the RLSV AR, no lag rule slightly decreases the volatility around the target. The other rules

perform worse. Calculating the loss, i.e. averaging over the squared deviations from target

values, allows us to rank policy functions. Within the SVAR economy framework, the simple

optimized rule RLSV AR, no lag performs best with a loss of 1.80, followed by RLSV AR, one lag. Both

rules yield an improvement compared to the actual monetary policy (Loss = 1.91). All other

common policy rules are inferior.

ANN Economy & Linear Policy For the same dynamic counterfactual analysis based on

the nonlinear ANN economy, the results are summarized in Figure 11.

Focusing on the common policy rules, we find nominal interest rate series differing significantly

from those of the SVAR economy (Fig. 10). The interest rate path prescribed by TR93 is

rather constant, which leads to (and is a result of) diverging inflation and output gap values

in opposite directions. Comparing the different paths under TR93 and BA, and having the
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Figure 11: Actual and Counterfactual Series (ANN Economy, Linear Policies)
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nonlinear economy structures in mind, helps to explain this rather counterintuitive result. Both

rules only differ in the response to the output gap, with BA having a twice as large coefficient

compared to TR93 (cf. Table 4). The interest rates paths start to differ in 1990, where inflation

amounts to around 3 and the output gap is at -2 under both rules. The BA therefore prescribes

a lower value than the TR93 due to the larger output gap coefficient. Figures 17 and 18 in

the Appendix try to illustrate the following dynamics of inflation and output gap, respectively,

induced by the different interest rate values. Due to the nonlinearities present in the estimated

inflation equation (cf. Figure 6), inflation increases with larger interest rates when the output

gap is negative. In the following period, the output gap decreases due to larger inflation above

target (cf. Figure 7). Taken together, the larger interest rate under TR93 leads to a jump on an

upwards path of inflation in Figure 17 and a declining negative output gap (Fig. 18). Instead,

under the lower interest rate prescribed by BA, inflation moves to a more stable plateau, since

also the output gap closes over time.

The inflation tilting rule (NPP) interest rate dynamics look a bit more similar to the actual

FFR data, especially during the peak in 1989 and the trough in 2003. Compared to TR93,

it produces an improved inflation performance, but still ranks below the other rules. Output

gap values are fine between 1987 and 1990 and also after 2003, but in-between NPP performs

even worse than TR93. Overall, the results of TR93 and NPP indicate that their output gap

coefficients are too small, leading to inferior dynamics of both output gap and inflation within

the ANN economy.31

Contrary, BA seems to be more robust with respect to different economies. It prescribes

an interest rate pattern very similar to both policy rules optimized in the ANN economy

(RLANN,no lag and RLANN, one lag). Before 1991, all three policies show lower interest rates,

which stem from lower inflation values during this time. Between 1991 and 2003, interest

rate paths are pretty close, before BA, RLANN,no lag and RLANN, one lag precede and exceed

the data after 2003. In terms of inflation, all three policies closer to the target until 1991,

the opposite happening between 1991-1997 and 1999-2003. After 2003, our policies produce a

similar inflation series shape, but our policies lag behind the actual data, falling closer to the

target. The induced output gap time series of BA and our policies follow a similar pattern,

as well. While it lies mostly above actual until 1994, it falls below until 2003 and exceeds the

31Since the results of the counterfactual exercise also depend on the time span and the particular starting point,
we also evaluated the different rules using different subsets. We find that the diverging behaviour under TR93
is less pronounced when we start after 1990. However, it still leads to inferior results and the overall ranking of
the policy rules stays unchanged. The respective detailed results are available upon request.
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data again thereafter, implying less deviations from target. There is a large difference between

the actual output gap and the implied one by the rules between 1997 and 2000, where actual

output gap rises, while the counterfactuals decrease.

Table 6: Actual and Counterfactual Target Deviation and Loss (ANN Economy)

Policy ∆2(π∗, πt) ∆2(y∗, yt) Loss

Actual 0.84 2.98 1.91
TR93 4.07 10.66 7.36
NPP 1.50 7.33 4.41
BA 0.69 1.89 1.29
RLANN,no lag 0.68 1.69 1.18
RLANN, one lag 0.75 1.74 1.24
RLANN,no lag, nonlin 0.74 1.35 1.04
RLANN, one lag, nonlin 0.81 1.35 1.08

Note: ∆2 denotes the mean squared deviation of the respective
variable from its target value (π∗ = 2 and y∗ = 0). The loss is
calculated averaging over both: Loss = 0.5 · ∆2(π∗, πt) + 0.5 ·
∆2(y∗, yt).

Adding numbers to the descriptive analysis, Table 6 shows that RLANN,no lag (RLANN, one lag)

reduces the squared deviations of inflation from its target by 19 % (10.7 %) compared to actual

values. Even more remarkable is the reduction of output gap deviations from its target. Sticking

to the linear optimized ruleRLANN, one lag, the mean squared deviation amounts to 1.74, a 41.6 %

relative to actual data. With RLANN,no lag, this outstanding result can even be improved to

43.3 %. This transfers to the loss, where the RL optimized policy with only two inputs yields

the best result among the linear rules, shortly followed by the 4-inputs RL policy. Among the

common policy rules, BA shows by far the best results, also outperforming the data but still

ranking behind our RL rules.

ANN Economy & Nonlinear Policy In Figure 12, we contrast the differences between

linear and nonlinear RL optimized policies within the ANN economy, conducting the same

dynamic counterfactual.

First of all, RLANN, one lag, nonlin yields the largest fluctuations in the interest rate, even hitting

the ZLB between 2002 and 2003. The counterfactual inflation paths look quite similar across

rules, except for the period between 2003 and 2005. While inflation under the nonlinear RL

rules lies above the actual series, the linear RL yields values lower and closer to the target

during that time. However, the nonlinear rules yield counterfactual output gap series closer
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Figure 12: Actual and Counterfactual Series (ANN Economy, RL Policies)
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to the target in contrast to their linear counterparts and the actual series during the mid and

end of the 1990s and at the very end of the sample. Table 6 summarizes the results. We see

that both nonlinear RL rules provide slightly worse inflation stabilization than our optimized

linear policy RLANN,no lag and the BA. Contrary, the nonlinear rules are much better in output

gap stabilization. Here, both reach a value of 1.35 which corresponds to an improvement with

respect to the data of 54.7 %. Overall, RLANN,no lag, nonlin wins the race with a loss of 1.04,

which is equivalent to a 45.5 % improvement with respect to the loss implied by the actual data

(RLANN, one lag, nonlin produces a loss reduced by 43.5 %). Compared to the best performing

optimized linear policy RLANN,no lag, the best nonlinear policy lowers the loss by further 11 %.

3.4 Model Comparison

Optimal monetary policy is always related to an environment, which is close to real-world

interrelations in the best case. So far, we provided a linear SVAR environment and an ANN

environment, with the latter producing the superior data fit. Hence, we postulate the optimized

policy rules based on the ANN economy to be the more suited choice. Nevertheless, our ANN

environment is just one economic model, and an optimal policy rule is required to be robust with

respect to model uncertainty. We therefore conduct a model comparison analysis, evaluating

each policy rule’s performance over 11 macroeconomic DSGE models.32 The DSGE framework

also allows for a true counterfactual analysis as the Lucas (1976) critique does not apply here.

3.4.1 The Models

We want our set of models to be manifold with respect to size and specific features like financial

frictions. Therefore, we include models developed prior and post the financial crisis. For this

analysis we make use of the Macroeconomic Model Data Base (MMB) by Wieland et al. (2012,

2016).

Pre-crisis Models First, we use a simple linear Keynesian model with backward-looking

dynamics (Rudebusch and Svensson (1999)), which is compatible with our empirical setup. As

the authors show, this estimated model explains U.S. data on inflation and GDP quite well.

We refer to this model as RS99. Next, we consider a small forward-looking New Keynesian

32We would like to stress at this point that optimal in our case does not refer to an optimal policy of a social
planner that maximizes welfare. Rather the focus is on fulfilling pre-determined target values and providing
stability. Results therefore crucially depend on the given loss function.
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model (Levin et al. (2003)) and call it LWW03. Given their structure with three equations and

the same variables as in our setup, they are well comparable to our economy-specification. We

further include the medium-scale DSGE model by Smets and Wouters (2007) (SW07) with a

larger number of equations, variables and shocks. It can therefore better explain variation in

key macroeconomic variables and data dynamics.

Post-crisis Models Finally, we also add several medium and large-scale DSGE models, that

were developed after the financial crisis and which are more complex including e.g. financial

frictions. In total, we test out policy rules in 8 post-crisis models. The post-financial-crisis

model by Cúrdia and Woodford (2009) (CW09) contains financial frictions and allows for a

spread between savers and borrowers. The second large DSGE model by Iacoviello and Neri

(2010) (IN10) focuses on the housing market and its spillovers to the rest of the economy. IN10

contains financial frictions in the household sector and multiple shocks. The model by Cogan

et al. (2010) (CCTW10) includes rule-of-thumb consumers and the fiscal sector allows for the

analysis of fiscal multipliers. Gertler and Karadi (2011) (GK11 ) introduce a detailed banking

sector with financial intermediaries facing endogenously determined balance sheet constraints.

GK11 further contains unconventional monetary policy measures such as governmental asset

purchases by the central bank (quantitative easing). Next, we include the model by Christiano

et al. (2014) (CMR14 ), which builds on SW07 and adds a financial accelerator mechanism as in

Bernanke et al. (1999). There is idiosyncratic uncertainty in the return on capital of individual

entrepreneurs. CMR14 identifies capital risk shocks to be the main driver of business cycles.

Del Negro et al. (2015) (DNGS15 ) also build on SW07, adding financial frictions as in Bernanke

et al. (1999) and a time-varying inflation target.33 We add another model emphasizing fiscal

policy by Fernández-Villaverde et al. (2015) (FGKR15 ), which includes government expenditure

and various taxes as instruments. Finally, we include a large multi-country model, which is

used by the International Monetary Fund (Carabenciov et al., 2013). IMF13 consists of six

small country models integrated into a single global market. Special features are for example an

unemployment sector, different exchange rates and varying lending options. Financial spillovers

between regions are also considered. A more detailed description of all considered models can

be found on the MMB web page.34

33The time-varying inflation target vanishes for our analysis as we exchange the monetary policy rule with our
rules.

34See http://www.macromodelbase.com
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3.4.2 The Policy Rules

Common & Optimized Rules The general form of the policy function added to the models

looks as follows:

ît = β0
π π̂t + β1

π π̂t−1 + β0
y ŷt + β1

y ŷt−1. (17)

Note, that this is a log-linearized version of the original policy function, i.e. the variables

represent now log-deviations from their steady states (denoted by hats). Obviously, the constant

term in this equation vanishes through the log-linearization around the steady state. We

consider the same common policy rules as in the previous analyses: TR93, NPP and BA.

Additionally, we evaluate the RL optimized linear policy versions in the model context.35 The

respective coefficients for (17) are given in Table 4.

Optimal Simple Rules In addition to the aforementioned policy rules, we also calculate

optimal simple rules (OSR) for each model used in the comparison.36 We consider two structural

forms which lean on the structure of our RL optimized policy rules (a standard Taylor type

rule and one including lags):

ît = ϕ0
π π̂t + ϕ0

y ŷt (18)

ît = ϕ0
π π̂t + ϕ1

π π̂t−1 + ϕ0
y ŷt + ϕ1

y ŷt−1. (19)

By solving

min
ϕ

V ar(π̂t) + V ar(ŷt) + V ar(∆ît) (20)

subject to (18) or (19), we find the optimal response coefficients ϕ for each model.37 The

resulting coefficients are given in Tables 10 and 11 in the Appendix. We also compute the mean

and the median over the models’ OSR coefficients. Since some models require extraordinary

large coefficient values, we consider the median to be the better summary statistic over the

35Unfortunately, although producing the best results in the dynamic counterfactual, our nonlinear policy rules
cannot be evaluated in the DSGE model context. Due to their nonlinear structure, they would require nonlinear
model equations and higher order approximation. Hence, we exclude the nonlinear policy functions from the
model comparison exercise. For the same reason, we exclude the ZLB restriction of our rules.

36Except for RS99 and CMR14 since it is not possible for these.
37As coefficients on inflation and output gap become unreasonably large otherwise, we include the variance of

interest rate changes in the objective. Moreover, we consider equal weights on each variance.
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models. Comparing these to the common rules, the weight on the output gap is quite large

in OSRno lag (corresponding to (18)) with 1.99, while the inflation coefficient is comparable to

the NPP rule. Also OSRone lag (referring to (19)) has pretty large weights, which are closest to

RLANN, one lag.

3.4.3 Performance across Models

Following the principle of model comparison, common variables are consistently defined and

related to model-specific variables. The annualized quarterly interest rate is denoted by it, πt

corresponds to the year-on-year inflation rate and yt is equivalent to the quarterly output gap,

defined as the deviation of actual output from the level of output that would have been realized

under flexible prices. Further, the models’ specific monetary policy rules are exchanged by the

rules mentioned before, one at a time. We assume the absence of monetary policy shocks. By

computing the stationary rational expectations solution of each model, we get the unconditional

distribution of the endogenous variables and hence also the unconditional second moments (see

also e.g. Levin et al. (2003) and Taylor and Wieland (2012) following the same approach).

The result is driven by the model parameters, the covariance matrix of the structural shocks

of that model and, most importantly, the policy rule. The size of model-specific shocks has a

significant impact on the unconditional variance. Differences stemming from this fact are not

of interest to us. Hence, following Cochrane et al. (2019), we compare the relative performance

with respect to TR93.38 The smaller the unconditional variances, the more stability does the

respective policy rule provide.

A robust policy rule is supposed to perform well across all models, which are considered relevant

for policy evaluation. Figure 22 in the Appendix shows the relative (to TR93) unconditional

variances of it (FFR), πt (Infl) and yt (GDP) for each model in detail. Averaging over the results

per model enables us to evaluate the overall performance. Table 7 summarizes the results. On

the one hand, we take an average over all models. On the other hand, we distinguish between

models created before the financial crisis and models established after 2008. We do so, as post-

crisis models seem to be more realistic as they incorporate financial frictions, more details in

the banking sector, housing markets and other aspects which gained importance through the

financial crisis.

From a central banking perspective, the joint unconditional variances reflect the loss. Thus,

38An unconditional variance value larger than one indicates worse performance than TR93, while a value smaller
than one means better performance.
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we also average over V ar(̂it), V ar(π̂t) and V ar(ŷt), which constitutes our performance measure

including interest rate variations (Lπ,y,i). Additionally, we compute Lπ,y, which reflects the

average over V ar(π̂t) and V ar(ŷt) only. Since the reward function in our RL algorithm also

focuses on inflation and output gap deviations, this measure is closer to the RL objective.

The first two rows in Table 7 show the results for the optimal simple rules.39 As expected,

both versions perform better than TR93, where OSRone lag yields a smaller loss than the simple

2-inputs version OSRno lag. Both, the unconditional variance of output gap and inflation are

reduced substantially by adding lags to the policy. As expected, the inflation tilting rule (NPP)

achieves better results than TR93 with respect to V ar(π̂t). Contrary, BA tilts towards output

gap stabilization, with a twice as large response coefficient on yt compared to TR93 (see Table

4). This translates into a relative unconditional output gap variance of 0.59. Considering now

the RL optimized policy versions with two inputs, we find that RLSV AR, no lag yields even more

inflation stability than NPP. RLANN,no lag performs worst concerning inflation stabilization,

which can be explained by an inflation coefficient that is even smaller than the one of BA.

Its weight on the output gap is larger than in the reference policy, producing the second best

relative output gap variance of 0.68. Analyzing the RL optimized 4-input policies, we find that

RLSV ARone lag yields the lowest inflation variance, which is due to the large cumulative inflation

coefficient of about three. Also the output gap coefficients are in sum larger than with TR93,

but the negative coefficient on the lagged input seems to worsen output gap stability relative

to TR93. RLANN, one lag with cumulative inflation and output gap coefficients of 1.71 and 0.94

yields relative variances of 0.86 and 0.76, respectively. Besides the OSR that are not feasible

in practice, it is the only rule that beats TR93 in both, inflation and output gap stabilization.

Considering all models and focusing on the variances of πt and yt, RLSV ARone lag produces

the loss closest to the optimal simple rules with Lπ,y = 0.79. Taking interest rate variations

into account, RLANN, one lag performs best. It also yields the second best performance with

respect to Lπ,y. Due to the increased complexity of the post-crisis models, we assume that

results might differ when we look at the two subgroups of models. Within the pre-crisis mod-

els, RLSV ARone lag still constitutes the best stabilizer for inflation and output gap. However,

the NPP rule achieves very similar results and outperforms our rule taking also interest rate

volatility into account. Focusing on post-crisis models, RLANN, one lag shows the best stabilizing

properties with remarkable relative losses of Lπ,y = 0.74 and Lπ,y,i = 0.76.

39Note, that OSRno lag OSRone lag comprise different rules each since each model has its own optimal simple rule.
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Table 7: Unconditional Variances Relative to TR93

All Models Pre-crisis M. Post-crisis M.

Policy V ar(̂it) V ar(π̂t) V ar(ŷt) Lπ,y,i Lπ,y Lπ,y,i Lπ,y Lπ,y,i Lπ,y

OSRno lag 0.89 0.61 0.72 0.74 0.66 1.00 0.90 0.69 0.63
OSRone lag 0.80 0.54 0.57 0.64 0.55 0.79 0.67 0.56 0.49

NPP 0.90 0.60 1.11 0.87 0.85 0.90 0.91 0.86 0.83
BA 1.36 1.34 0.59 1.10 0.96 1.23 1.07 1.05 0.93
RLSV AR, no lag 0.95 0.43 1.34 0.91 0.88 0.97 1.01 0.88 0.84
RLSV AR, one lag 1.32 0.39 1.20 0.97 0.79 1.12 0.91 0.91 0.75
RLANN,no lag 1.38 1.54 0.68 1.20 1.11 1.32 1.19 1.16 1.08
RLANN, one lag 0.94 0.86 0.76 0.85 0.81 1.10 1.00 0.76 0.74

Note: We calculate the unconditional variances for the nominal interest rate, inflation and output gap in each
model, divide these values by the TR93 values in the respective model and then average over all models. These
results are given in columns 1 to 3 (V ar(̂it), V ar(π̂t), V ar(ŷt)). Lπ,y,i denotes the relative loss as an average
over all three relative unconditional variances, while Lπ,y only averages over inflation and output gap variances.
Columns 6-9 report the relative losses for pre- and post-crisis models separately.

3.5 Discussion

Taking one step back, we would like to analyze the differences between the results of the

conducted exercises, also laying out key assumptions on which our findings depend.

Starting with the representation of the economy, we have seen that ANNs can serve as a

beneficial modeling tool. It allows to capture nonlinearities while being agnostic about the

specific functional form, bringing the model closer to the data compared to a standard SVAR,

that is restricted to its linear structure. The nonlinear relationships between inflation and

output gap can influence the effects of monetary policy and should therefore be taken into

account when computing optimal interest rate reaction functions.

We wish to emphasize that the RL optimized policies of course depend on the assumed loss

function and the underlying transition equations as these are fixed during learning. The in-

teraction between policy design and expectation formation is certainly important in practice

and may alter our results. In the historical counterfactual exercise, we also take the estimated

economy representations as given. Different models lead to different counterfactual paths and

quantitative results depend on the model chosen as well as the respective data used to estimate

it. We do not claim that the ANN economy is the true model, nor do we want to criticize the

Fed’s monetary policy. Rather, our aim is to provide a proof of work of the RL algorithm and

to contrast the policy rules in varying settings.

Relying on our estimated linear SVAR economy, reinforcement learning finds policies performing

well in such a world. They outperform common rules and the actual Fed behavior, which also
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produce solid results (Table 5). Applying the common rules in the ANN economy, however,

produces inferior loss values. Only the BA seems to be able to stabilize both economies quite

well (Table 6). Nevertheless, BA performs worse compared to both of our optimized rules

RLANN,no lag and RLANN, one lag.

In our DSGE model comparison exercise, which is conducted in linear (or linearized) economic

models, most rules perform quite well. The balanced approach (BA), which seems to be robust

over our linear and ANN economy does (on average) not transfer this stability to the DSGE

model comparison. It performs only slightly better than TR93 but is inferior to most other

rules. While in the historical counterfactual generally no lag versions achieve the better results,

including lagged values of inflation and output gap seems to help reducing undesired variability

in the DSGE model comparison. Given the assumed loss function with equal weights on inflation

and output gap stabilization, our optimized policy RLANN, one lag withstands best the model

variations. Concerning the worse behavior of TR93 and NPP in our ANN economy, it seems as

if these common policies perform fine in linear economy structures, while they rather fail when

nonlinearities are present. Having the remarkable data fit of our ANN economy in mind, we

would suggest also considering rules like the RLANN, onelag that perform well in such a nonlinear

environment.

Concerning linear versus nonlinear policy rules, the loss resulting from the historical counterfac-

tual suggests that nonlinear optimized policies are even better economic stabilizers (Table 6).

We do not challenge this result within a DSGE model comparison exercise due to the increased

complexity. The robustness analysis of nonlinear policies’ in the form of neural networks with

respect to model uncertainty is left for future research. Still, the results from the dynamic

counterfactual are promising and central banks could consider nonlinear policies in the form

of ANNs, as well. We have to admit, however, that these policies are more difficult to com-

municate due to their more complex structure. Since credibility is essential for a central bank,

certainly a trade-off between policy improvement and transparency exists with these kind of

rules. We show how partial dependence plots can address this black-box critique.

4 Conclusion

This paper provides a new machine learning based approach to finding optimal monetary policy

reaction functions given preferences of a central bank. In the first step, we show how ANNs can
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be used as a modeling device for transition equations, capturing nonlinear interdependencies

and thereby bringing the setup closer to the data compared to a standard SVAR. Then, we

apply reinforcement learning, which is a computational approach of goal-directed learning from

interaction and optimal control.

Reinforcement learning is flexible enough to account for different kinds of nonlinear constraints

like the ZLB, convex Phillips/ IS curves and asymmetric preferences. Further, it does not

require perfect knowledge of the environment and can therefore mitigate the problem of model-

uncertainty. However, learning requires experimenting with the economy’s reaction to policy

actions.

Relying on a nonlinear ANN representation of the economy, our optimized linear rules are shown

to reduce the central bank’s loss by 35 % and the nonlinear ones by over 43 % compared to values

implied by actual data. The results of our DSGE model comparison, where we evaluate the

linear optimized rules across several models, further indicate the approach’s robustness with

respect to model uncertainty. Robustness checks concerning model uncertainty of the optimized

nonlinear rules are left for future research.

Revising a central bank’s monetary policy strategy certainly involves many more aspects than

we touch upon in this paper. The Fed recently announced that it will switch to average inflation

targeting and review its strategy roughly every 5 years. Future research could therefore consider

loss functions that incorporate an average inflation target. One could further think of combining

the advantages of economic modeling and RL by deviating from rational expectations and

combining a learning central bank with learning private agents within a DSGE model. While

we focus on a reaction function for the nominal interest rate in this paper, one might also

consider reaction functions for unconventional monetary policy measures like asset purchases.

The most obvious step for future research is to add more variables to broaden the representation

of the economy as well as the controlled variables of the central bank. Compared to standard

DP algorithms that suffer from the curse of dimensionality, increasing the amount of data is

unproblematic with deep RL.

Based on the promising results of this paper, we suggest adding reinforcement learning to the

central bankers’ toolkit for determining optimal monetary policy reaction functions. When

implementing our method, one should update the algorithm regularly. This means, that the

neural network representing the economy is estimated with the latest data, which incorporates

possible modified social behaviour or structural changes.
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C Appendix C

C.1 DDPG Algorithm

Corresponding to Table 1, we would like to explain the DDPG algorithm in more detail:

a) First, the actor parameters θP = [βj, δj, αi] with j = 1, . . . , q and i = 0, . . . , q are initial-

ized. Among them, the parameters [βj, δj] are randomly initialized using the He-approach,

which is the recommended when working with ReLu layers as shown in He et al. (2015).40

The biases αi are initialized to zero (default). The critic parameters θQ are also randomly

initialized using the glorot function of Glorot and Bengio (2010).41 Biases are again set to

zero initially. Hereby, the actor and critic networks P (x|θP ) and Q(x, i|θQ) are initialized.

b) As stability of the Q-learning process is increased by using ’soft’ target updates instead

of directly changing the calculated weights, copies of the actor (P ′(x|θP ′
)) and the critic

Q′(x, i|θQ′
)) are generated in order to calculate the target values. Their parameters are

initialized using initial θP and θQ.

c) The replay buffer B is also initialized in order to store experiences of the agent in a later

step.

d) A major challenge of learning in continuous action spaces is exploration (Lillicrap et al.,

2015). The action taken at each time step t is therefore subject to some noise which en-

courages exploration of the actor and can be suited to the environment. The underlying

noise model N is an Ornstein-Uhlenbeck process with mean zero. To encourage explo-

ration, it is common to set the variance between 1 % and 10 % of the action range, which

is 20 in our case. Hence, we choose a variance of 1, while the variance decay rate stays at

default.

e) To keep the analysis close to reality, we initialize the observational states xz0, z ∈ 1, 2 by

randomly drawing pairs π0 and y0 from our data series. This approach can be interpreted

as challenging the algorithm with different economic situations from our data set as a

starting point for training. As further lags are required to compute the next state by our

economy representations, we also initialize these from the data.

40The He-initializer samples from a normal distribution with zero mean and variance 2/InputSize, where
InputSize corresponds to the number of variables entering the respective layer of the neural network. De-
pending on our policy function this equals either 2 or 4.

41The glorot initializer independently samples from a uniform distribution with zero mean and variance
2/(InputSize+OutputSize). In our case, the denominator depends on the number of critic nodes.
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f) The action is computed based on the current policy function parameters, inputs plus a

random noise:

it = P (xt|θPt ) +Nt. (21)

g) The previously chosen action and the state enters the environmental equations, i.e. our lin-

ear ((6) and (7)) or ANN economy ((4) and (5)). The next observations xt+1 = (πt+1, yt+1)

can be calculated. Note that this simulation includes random shocks, with mean zero and

variance equal to the one of the estimated shocks.

h) The data tuple (xt, it, rt, xt+1) is then stored in the replay buffer B.

i) As information mass can become a problem in such a continuous setting, the algorithm

learns on mini-batches drawn from the replay buffer. This buffer contains only a certain

amount of samples and drops the oldest when being full. A minibatch of size N is sampled

uniformly from the buffer B and is used to update actor and critic at every time step. We

use the default values of 10000 and N = 64 for the experience buffer and mini-batch sizes,

respectively.

j) For each sample in the minibatch, hj is calculated according to

hj = r(xj, ij) + γQ′(xj+1, P
′(xj+1|θP

′
)|θQ′

). (22)

It is composed of the reward in j plus the discounted future reward, presuming the adher-

ence to the present target actor and critic networks. The discount factor is set to γ = 0.99

(default).

k) When calculating the squared deviations of (hj − Q(xj, ij|θQ)), one evaluates the perfor-

mance of critic parameters θQ versus the target critic parameters θQ
′
.

L =
1

N

∑
j

(hj −Q(xj, ij|θQ))2 (23)

By minimizing this loss function L, also called Bellman residuum, the critic parameters

are updated. The speed of parameter adjustment is given by the learn rate which is set

to 0.0001 (slower than the default value of 0.01).

l) The policy gradient, i.e. the gradient of the policy’s performance with respect to the
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coefficients θP , is calculated using the chain rule:

∇θP J ≈
1

N

∑
j

[∇iQ(x, i|θQ)|x=xj ,i=P (xj)∇θPP (i|θP )|x=xj ], (24)

where J denotes the expected expected cumulative discounted reward from the initial

state. Differentiating the critic with respect to the nominal interest rate i and multiplying

the derivative of the policy function with respect to the policy parameters yields the policy

gradient. This gradient determines the update of the coefficients. By taking small steps

at each iteration in the direction of the negative gradient of the loss, the loss function

is minimized and the parameters are optimized. The applied optimizer is the adaptive

moment estimation or adam (see Kingma and Ba (2014)). The learn rate is identical to

the critic learn rate with 0.0001.

m) Both target network (actor and critic) weights are adjusted through a slow tracking of the

actual networks’ parameters: θ′ ← τθ+(1−τ)θ′, τ < 1. This means that the target values

are constrained to change slowly, greatly improving the stability of learning (Lillicrap

et al., 2015). In our case, τπ = τy = 0.001 are set to default values.
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Table 8: Network Structure and Hyperparameters

Network Structure Hyperparameters

Critic Observation Path imageInputLayer
fullyConnectedLayer Nodes: n
tanhLayer
fullyConnectedLayer Nodes: n

Action Path imageInputLayer
fullyConnectedLayer Nodes: n
tanhLayer
fullyConnectedLayer Nodes: n

Common Path concatenationLayer
fullyConnectedLayer Nodes: 1

General Initializer: Glorot
Learn Rate: 0.0001
Gradient Threshold: 1
Optimizer: adam

Actor Linear Version imageInputLayer
fullyConnectedLayer Nodes: 1
reluLayer

Non-lin. Version imageInputLayer
fullyConnectedLayer Nodes: n
tanhLayer
fullyConnectedLayer Nodes: 1
reluLayer

General Initializer: He
Learn Rate: 0.0001
Gradient Threshold: 1
Optimizer: adam

Note: This is an overview of the critic and actor network structures (c.f. 2.1.2) applied within
the DDPG algorithm. The number of nodes (n) is varied over different training cycles and the
resulting optimal number of nodes is shown in Table 2. The gradient threshold is the threshold
value for the gradient of step l) in the algorithm. If the gradient exceeds this value, it is clipped.
This limits the parameter change in a training iteration. For more information regarding the
adam optimizer see Kingma and Ba (2014). Hyperparameters not mentioned here are kept at
Matlab’s default values and settings.
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C.2 Further Results

C.2.1 Estimation Results

Table 9: Estimation Results of Restricted SVAR

Parameters Estimates p-Values

Output gap
Cy 0.3834 0.0351
ayy,1 0.9084 0.0000
ayπ,1 -0.1437 0.1409
ayi,1 0.2726 0.0661
ayi,2 -0.2896 0.0313

R̄2 0.9100
MSE 0.2108
σ̂2
ε1

0.2136
DW 1.8206
LM(1) 3.1037 0.1644

Inflation
Cπ 0.1035 0.1659
aπy,0 -0.0655 0.1578
aπy,1 0.1970 0.0048
aπy,2 -0.1121 0.0163
aππ,1 1.2970 0.0000
aππ,2 -0.3116 0.0076
aπi,1 -0.0122 0.4174

R̄2 0.9450
MSE 0.0326
σ̂2
ε2

0.0330
DW 2.1095
LM(1) 2.5542 0.0696

Note: This table shows the estimation re-
sults of our linear economy represented by a
restricted recursive SVAR(2).
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C.2.2 Partial Dependence Plots

Figure 13: Partial Dependence Surface Plot - RLANN,no lag

Note: This figure shows the partial dependence of the nominal inter-
est rate, it, (FFR) on inflation, πt, and on the output gap, yt, under
RLANN,no lag.

Figure 14: Partial Dependence Surface Plot - RLANN,no lag

Note: This figure shows the partial dependence of the nominal interest
rate, it, (FFR) on inflation, πt, and on the output gap, yt, assuming
πt = πt−1 and yt = yt−1 under RLANN, one lag.
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Figure 15: Partial Dependence Line Plots - RLANN,no lag, nonlin
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Note: This figure shows the partial dependence of the nominal interest
rate, it, (FFR) on inflation, πt, (left) and on the output gap, yt, (right)
under RLANN,no lag, nonlin, marginalizing over the respective remaining
variable.

Figure 16: Partial Dependence Line Plots - RLANN, one lag, nonlin
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Note: This figure shows the partial dependence of the nominal interest
rate, it, (FFR) on inflation, π,t (left) and on the output gap, yt, (right)
under RLANN, one lag, nonlin, assuming πt = πt−1 and yt = yt−1 and
marginalizing over the respective remaining variable.
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Figure 17: Partial Dependence Plots - Inflation Dynamics under TR93 and BA

(a) at it−1 = 5 (TR93) (b) at it−1 = 3 (BA)

Note: This figure illustrates the inflation dynamics of the historical counterfactual in the ANN economy under
TR93 (a) and BA (b). It plots the partial dependence of inflation πt, on last period’s inflation πt−1 = πt−2
and the output gap yt = yt−1 = yt−2, by assuming constant values across lags and fixing the nominal interest
rate, it−1, at its respective value. The highlighted points represent the dynamics over time.

Figure 18: Partial Dependence Plots - Ouput Gap Dynamics under TR93 and BA

(a) at it−1 = 5 (TR93) (b) at it−1 = 3 (BA)

Note: This figure illustrates the output gap dynamics of the historical counterfactual in the ANN economy
under TR93 (a) and BA (b). It plots the partial dependence of output gap yt, on last period’s output gap yt−1
and inflation πt−1, by fixing the nominal interest rate, it−1, at its respective value. The highlighted points
represent the dynamics over time.
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C.2.3 Static Counterfactual

By plugging in the quarterly data on inflation and the output gap into each rule without

considering any feedback mechanisms, we can compare the different interest rate prescriptions

to the actual behaviour of the Fed.42 This approach is taken very often to compute measures

of discretion (see e.g. Nikolsko-Rzhevskyy et al. (2014, 2018) and Cochrane et al. (2019)).

However, it does not provide information on which policy is preferable.

Although only data from 1987 until 2007 was used for the reinforcement learning part, we plot

the static counterfactuals until 2019, in order to compare policy prescriptions in crisis periods

where the actual nominal interest rate was stuck at the effective lower bound. It can be seen

that the optimized rules account for the lower bound by never reaching negative territory.

Moreover, all rules prescribe larger interest rates between 2003-2005 compared to the actual

path, supporting the too low for too long argument. All rules also show an earlier lift-off from

the ZLB after the great financial crisis, where under RLANN, one lag,nonlin, the ZLB is binding

longest until 2014.

Figure 19: FFR and Prescriptions from Common and RL Rules based on SVAR
Economy
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Note: This figure shows the static counterfactual of several common and the optimized policy rules within the
linear economy. Actual refers to the FFR time series (black). In red we show results of Taylor (1993) rule
(TR93 ), in yellow we see the inflation tilting rule (NPP) and the balanced approach (BA) is shown in green.
Our optimized policy rules are depicted in blue (RLSV AR, no lag) and purple (RLSV AR, one lag).

42For the counterfactual analyses, the natural rate of interest r∗ and the inflation target π∗ are set equal to 2 in
TR93, BA and NPP.
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Figure 20: FFR and Prescriptions from Common and Linear RL Rules based on
ANN Economy
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Note: This figure shows the static counterfactual of several common and the optimized policy rules within the
ANN economy. Actual refers to the FFR time series (black). In red we show results of Taylor (1993) rule
(TR93 ), in yellow we see the inflation tilting rule (NPP) and the balanced approach (BA) is shown in green.
Our ANN-based optimized linear policy rules are depicted in blue (RLANN,no lag) and purple (RLANN, one lag).

Figure 21: FFR and Prescriptions from Common and Nonlinear RL Rules based
on ANN Economy
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Note: This figure shows the static counterfactual of several common and the optimized policy rules within the
ANN economy. Actual, TR93, NPP and BA are the same as before. Our ANN-based optimized nonlinear
policy rules are depicted in blue (RLANN,no lag, nonlin) and purple (RLANN, one lag, nonlin).
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C.2.4 Model Comparison

Figure 22: Model Comparison

Note: This figure shows the results of our model comparison exercise in detail. For all included models, the resulting unconditional variances

(relative to TR93) of the nominal interest rate (FFR), inflation (Infl) and output gap (GDP) are given under each policy rule. While the

optimal simple rule per model (shown in purple) naturally has very good results in all of the models, we can also see that our optimized rules

(shown in green and blue) perform very well. This proves robustness with respect to model uncertainty.
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Table 10: OSR Parameters: No Lag Policy

Model ϕ0
π ϕ0

y

LWW03 1.25 1.99
SW07 2.03 0.24
CW09 6.87 4.63
IN10 3.39 8.06
CCTW10 2.24 0.29
GK11 10.92 6.18
IMF13 2.02 1.00
DNGS15 1.40 2.67
FGKR15 1.68 0.47

Average 3.53 2.84
Median 2.03 1.99

Note: This table shows the
policy coefficients resulting
from the OSR analysis, min-
imizing unconditional vari-
ances of inflation, output gap
and interest rate changes. The
policy at hand is obviously
the one with two inputs and
no lagged variables. We also
show the calculated mean and
median of the coefficients over
the models.

Table 11: OSR Parameters: Policy with Lags

Model ϕ0
π ϕ1

π ϕ0
y ϕ1

y

LWW03 0.93 0.73 1.31 1.03
SW07 1.23 1.31 0.83 -0.29
CW09 3.42 3.19 2.16 1.68
IN10 3.03 2.05 4.60 3.76
CCTW10 1.57 1.38 0.74 -0.07
GK11 11.46 11.04 0.83 6.01
IMF13 1.57 1.42 0.75 0.56
DNGS15 1.00 0.78 1.87 1.76
FGKR15 0.50 1.68 0.45 0.51
Average 2.75 2.62 1.51 1.66
Median 1.57 1.42 0.83 1.03

Note: This table shows the policy coefficients re-
sulting from the OSR analysis, minimizing uncon-
ditional variances of inflation, output gap and in-
terest rate changes. The policy at hand is obvi-
ously the one with four inputs and lagged vari-
ables. We also show the calculated mean and me-

dian of the coefficients over the models.
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