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Abstract

Using bank-level data, we document new facts on the cross-sectional and busi-
ness cycle properties of the banking distribution. The asset and deposit distributions
feature significant heterogeneity and concentration. Estimated credit markups and
deposit markdowns are time-varying and counter-cyclical. Idiosyncratic loan return
risk is counter-cyclical due to pro-cyclical skewness. We then develop a dynamic
general equilibrium model with heterogeneous financial intermediaries, incomplete
markets, two-sided bank market power, counter-cyclical income risk, and aggregate
uncertainty. The model generates a bank net worth fluctuation problem analogous to
the canonical Bewley-Huggett-Aiyagari-Imrohoğlu setup. Both bank heterogeneity
and counter-cyclical risk significantly amplify real and financial aggregate fluctua-
tions. Granular shocks to the top quintile of bank assets generate realistic business
cycles without any aggregate shocks and can account for almost all of the variation
in output due to idiosyncratic risk. Finally, credit market power amplifies aggregate
fluctuations while deposit market power dampens them.
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1 Introduction

The 2007-2008 Financial Crisis has led to a considerable reconsideration of how financial
intermediaries (banks, for short) affect the macroeconomy (Gertler and Kiyotaki, 2010;
Brunnermeier and Sannikov, 2014). Fast-forward fifteen years, the 2023 regional banking
crisis is putting banks back on the center stage. Following the collapse of Silicon Valley
Bank and the ensuing panic, aggregate bank lending in the United States has fallen by
a record $100 billion in the two weeks of March 2023 alone. This has heightened the
possibility of a future financial crisis and of an economic recession.
Understanding the role that banks play in business fluctuations is therefore important.
Most of the existing studies, however, have so far focused on a representative interme-
diary in environments with perfect competition. In this paper, we develop a tractable,
empirically-motivated, quantitative macroeconomic framework where a dynamic distri-
bution of banks with two-sided market power has first-order effects on aggregate fluctu-
ations.

Based on detailed micro data from U.S. depository institutions, we document four facts
on the banking distribution, both in the cross section and over the business cycle.

Fact 1: Size heterogeneity and concentration. The cross-sectional distributions of bank
assets and deposits feature high dispersion and, especially, right-skewness. There is a
small mass of extremely large intermediaries that co-exist with a large number of smaller
banks. Moreover, size concentration has been rising steadily over the past decades.
This evidence speaks outright against the assumption of a representative intermediary
which is typically assumed in the literature and complements the exceptions that develop
heterogeneous-intermediary frameworks (Corbae and D’Erasmo, 2022; Coimbra and Rey,
2023).

Fact 2: Granularity. The distributions of bank assets and deposits follow a Power law.
If the “Granular Hypothesis” applies (Gabaix, 2011), then idiosyncratic shocks to banks
in the right tail of the size distribution can by themselves generate realistic aggregate
fluctuations , both on the real and the financial side of the economy.

Fact 3: Two-sided market power. There is evidence of time-varying market power on both
the asset and the liability sides of bank balance sheets. Estimated credit markups (the
spread between the credit rate and the marginal cost), are counter-cyclical, pointing to a
pass-through to loan rates that is greater than one-to-one. Estimated deposit markdowns
(the spread between the deposit rate and the marginal risk-free rate) are also counter-
cyclical, suggesting that the pass-through to deposit rates is also greater than one-to-one.
Moreover, bank market power is concentrated in the right tail of the size distribution:
large banks charge both higher credit markups and lower deposit markdowns.

Fact 4: Counter-cylical income risk. The idiosyncratic rate of return risk faced by banks
is counter-cyclical. This is due to pro-cyclical left skewness. In other words, the skewness of
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the distribution of returns becomes more negative in recessions, so that conditional on a
negative aggregate state the likelihood of a very low idiosyncratic return draw increases.
Also, the first moment of the distribution of returns is pro-cyclical, whereas the second
moment is a-cyclical, i.e., flat.

Against this empirical background, we develop a tractable, quantitative dynamic gen-
eral equilibrium framework with aggregate uncertainty and a rich financial intermediation
sector whose function is to invest into risky claims on non-financial firms and to source
deposits from households. The banking industry features two core properties and de-
viations from the standard models. First, we introduce both ex-ante and ex-post bank
heterogeneity in the rate of return on loans, in the spirit of Benhabib and Bisin (2018);
Benhabib et al. (2019). Ex-ante, there is permanent return inequality across banks, which
we model with a power law density. Second, markets are incomplete and each bank
faces transitory uninsured idiosyncratic shocks to the rate of return. The permanent-
transitory heterogeneity mixture generates a bank net worth fluctuation problem analo-
gous to the canonical Bewley-Huggett-Aiyagari-Imrohoğlu environment (Bewley, 1977;
Huggett, 1990; Aiyagari, 1994; Imrohoglu, 1996). Moreover, transitory risk is counter-
cyclical, i.e., aggregate state-dependent. In recessions, the first and the third moment of
the distribution of idiosyncratic return draws both fall. In other words, both the mean
and the skewness of transitory returns are pro-cyclical and banks get exposed to greater
downside risk to their portfolios in bad aggregate states.

Second, departing from the perfect competition assumption, we allow banks to charge
markups to non-financial firms and markdowns on household deposits. Households
save either in mutual funds or bank deposits but derive utility from the special liquidity
services that deposits provide. Internalizing this effect, banks charge markdowns over
the risk-free rate. Because marginal liquidity preferences are aggregate state-dependent,
markdowns vary over the business cycle. At the same time, loans to non-financial firms
are differentiated, which allows banks to charge markups over their marginal costs. The
loan aggregator features a “keeping up with the Joneses” form and yields a fully dynamic
aggregate demand elasticity and markup. Moreover, since banks are heterogeneous, both
markdown and markup choices explicitly depend on bank size, the distribution of which
is itself aggregate state-dependent. In equilibrium, a dynamic distribution of two-sided
market power emerges.

Our modeling approach eliminates scale invariance: all dynamic choices in the financial
sector depend on bank-specific characteristics such as the level of net worth. The resulting
equilibrium yields a non-trivial, dynamic distribution of bank assets and deposits. The
presence of aggregate risk makes this distribution, in principle, an infinitely-dimensional
object and a relevant state variable. We resort to numerical methods and the Krusell
and Smith (1996, 1998) algorithms to solve our model fully non-linearly. Under perfectly
competitive loan and deposit markets, and in the absence of both permanent and transitory
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heterogeneity, our Bewley Banks framework nests the canonical Real Business Cycle model
and the Gertler and Kiyotaki (2010), Gertler and Karadi (2011), Gertler et al. (2016), Gertler
et al. (2020) (GK henceforth) stream of influential macro-banking models as special cases.

We use our framework to show that the dynamic distribution of imperfectly competi-
tive banks has significant implications for aggregate fluctuations. The model is calibrated
to match select moments of the U.S. banking sector and business cycle. Most of our
quantitative exercises study conditional model-implied responses to an aggregate Total
Factor Productivity (TFP) shock - the only source of aggregate uncertainty in the model.
We reach six main results.

First, the model generates realistic, right-skewed ergodic distributions of bank size
(assets, deposits, and net worth). Both asset and deposit markets are considerably con-
centrated, mostly due to the presence of permanent bank returns inequality. In the cross
section, there is a positive relationship between bank size, credit markups, and deposit
markdowns. The calibrated model also generates financial and business cycle statistics
that approximate the cyclical properties of the different moments of the U.S. economy
rather well.

Second, bank heterogeneity amplifies business cycles. In order to understand this
result, we introduce the notion of Marginal Propensity to Lend (MPL), defined as the bank-
level response of lending to a marginal change in net worth. In the baseline economy, MPL
is heterogeneous and declining in bank size: smaller banks have a greater elasticity of
lending with respect to shocks to net worth. Moreover, the average MPL of our economy
is greater than the MPL in a representative-bank benchmark. Heterogeneity introduces
a mass of banks that are very large and with a low MPL. However, their share is not
sufficiently high enough to counteract the larger mass of small, high-MPL banks. As a
result, the average MPL is larger relative to the representative-bank benchmark, and the
economy - total bank lending in particular - is more responsive to aggregate shocks.

We further elucidate this point by showing that our model features distributional
state-dependency: the transmission of aggregate shocks depends on the degree of ex-
ante financial fragility. Suppose that a negative aggregate TFP shock hits the economy
conditional on a financial shock that shifted, in the previous quarter, the distribution of
bank capital ratios (defined as the ratio of net worth to assets) leftward. We find that a
negative aggregate shock that occurs once the banking sector is already fragile generates
a more severe financial and real-economy contraction. Excess contraction scales with the
duration and severity of the prior financial shock. The mechanism for this outcome relies
on the MPL heterogeneity logic: the fragile economy features a higher starting average
MPL because a greater number of banks are close to zero net worth. As a result, any
subsequent negative aggregate shock becomes more detrimental.

Third, counter-cyclical idiosyncratic bank return risk amplifies aggregate fluctuations.
The effect is quantitatively significant. The response of output, household consumption,
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bank assets, and bank net worth to a negative TFP shock is up to fifty per cent larger in
the economy with counter-cyclical risk relative to the a-cyclical risk baseline case. The
intuition for this result is that entering a recession triggers the switch towards a more
left-skewed density of idiosyncratic draws: banks are more heavily exposed to downside
risk. Once this downside risk materializes, a fraction of banks experience extremely bad
portfolio outcomes. Bank lending contracts, production stalls, and consumption falls.

Fourth, the model generates both counter-cyclical credit markups and counter-cyclical
deposit markdowns, in line with the data. The intuition works as follows. Consider
a bad aggregate state, with a rising risk-free interest rate. In the model, this increases
the households’ opportunity cost of saving in deposits. Banks, therefore, exercise their
market power in order to avoid a deposit flight, and raise the deposit interest rate more
than proportionally relative to the risk-free rate, leading to a counter-cyclical markdown.
There is, however, an interaction between market power on the asset and the liability side
of banks’ balance sheets. The rise in the deposit rates leads to a rise in the marginal cost.
Therefore, in order to shield their profits in a recession, banks raise the credit interest
rate more than proportionally relative to the marginal cost, leading to a counter-cyclical
markup.

Credit market power per se amplifies aggregate fluctuations. In recessions, banks
charge firms with higher interest rates. Thus, aggregate quantities (total assets, output,
and consumption) all contract by more relatively to the perfect competition counterfac-
tual. Conversely, deposit market power dampens the response of both financial and real
variables. Banks, by raising markdowns in bad aggregate states, try to protect the de-
mand for deposits, thereby allowing depositors (households) to smooth their response to
shocks, preventing deposit withdrawals and the resulting contraction in lending.

Fifth, granularity plays a crucial role in shaping the business cycle in our model. Al-
most all the variation in aggregate output due to idiosyncratic shocks can be accounted for
by shocks hitting only the top quintile of the banking distribution. Granular shocks are also
quantitatively important relative to aggregate shocks. They account for about forty per-
cent of the fluctuations in output due to aggregate TFP shocks. The role of granular shocks
is particularly large for financial variables. Relative to an economy with only aggregate
shocks, granular banking shocks account for 90 percent of the fluctuations in assets and
for twice as much as the movement in net worth. Thus, in our economy, idiosyncratic
shocks to large banks alone can lead to endogenous real and financial fluctuations even
in the absence of any aggregate disturbances. This result complements the findings in
Carvalho and Grassi (2019) for the case of non-financial firms and further advances the
broader granular hypothesis agenda (Gabaix, 2011).

Finally, we leverage the dynamic nature of our framework and study properties of
banking and economic crises that occur in a long simulation of the model. We employ
the event-study approach that is popular in the open-economy macroeconomics literature

5



(Mendoza, 2010), simulate our model for a large number of periods, and identify events as
incidents of aggregate output falling below a certain threshold . Our framework is good
at generating realistic banking and economic crises. When the baseline Bewley Banks
economy is parameterized to fit the collapse of U.S. GDP during the Great Recession,
the representative-bank economy can account for less than half of the actual observed
contraction of output in the data. Also, the contraction in bank assets and net worth
during a banking crisis is an order of magnitude larger in the Bewley Banks economy
relative to an economy with a representative bank.

We then test whether macroprudential regulation can mitigate the loss of output during
crises. Doubling capital requirements improves financial stability and dampens economic
contractions in typical model-simulated recessions. The reduction is, however, quantita-
tively small and is potentially not justified given that capital requirements generate lower
levels of lending and production in the high-regulation steady state.

Related Literature Our paper relates to several literature strands that span macroeco-
nomics, banking, and financial economics. The first - so-called “macro-banking” - branch
embeds the financial intermediary sector into macroeconomic frameworks1. The broad
idea can be understood as quantifying the impact of general-form financial frictions on ag-
gregate dynamics (Kiyotaki and Moore, 1997; Bernanke et al., 1999; Cooley and Quadrini,
2001). Our paper’s modelling approach is related to the seminal setup in Gertler and
Kiyotaki (2010) and Gertler and Karadi (2011), which has been furthered in such works
as Bocola (2016), Nuno and Thomas (2017), and Lee et al. (2020). Our study particu-
larly emphasizes the departure from the representative intermediary and perfect banking
competition assumptions and their first-order impact on business cycle fluctuations.

The present paper also builds on the vast banking literature2. Especially relevant to
us is the growing literature on imperfect competition in banking3. The deposit market
power channel in our framework is modelled in the spirit of Drechsler et al. (2017, 2021):
via the assumption that deposits are differentiated across banking franchises and that they
provide special liquidity services for households. In addition, the credit market power
channel operates through imperfect substitutability of bank loans and real rigidities in the
spirit of the “keeping up with the Joneses” specification (Gali, 1994). As a result, we achieve

1Important contributions include, among others, Cúrdia and Woodford (2001); Brunnermeier and Ped-
ersen (2009); Adrian and Shin (2010); Jermann and Quadrini (2013); Brunnermeier and Sannikov (2014); He
et al. (2016); Begenau et al. (2021); Amador and Bianchi (2021); Elenev et al. (2021); Bocola and Lorenzoni
(2023).

2Some of the relevant studies include Diamond and Dybvig (1983); Diamond (1984); Bernanke and
Blinder (1988); Bernanke and Gertler (1995); Holstrom and Tirole (1997); Allen and Gale (1998); Hellman et
al. (2000); Allen and Gale (2004).

3Valuable contributions are Boyd and Nicolo (2005); Egan et al. (2017); Heider et al. (2019); Kurlat (2019);
Drechsler et al. (2021); Polo (2021); Whited et al. (2021); Di Tella and Kurlat (2021); Wang (2022); Wang et al.
(2022); Abadi et al. (2022)
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heterogeneous and aggregate state-dependent markups and markdowns simultaneously.
Our paper belongs to the new, burgeoning literature on heterogeneous financial inter-

mediaries4. Coimbra and Rey (2023) develop a general equilibrium model with financial
intermediaries that are ex-ante heterogeneous in Value-at-Risk constraints, i.e. prefer-
ences for risk-taking. Corbae and D’Erasmo (2022) build a quantitative model of banking
industry dynamics with uninsured idiosyncratic return risk and imperfect credit-market
competition. Bianchi and Bigio (2022) study the credit channel of macroeconomic trans-
mission in a macro-banking framework with stochastic deposit withdrawal shocks. Our
contribution relative to this stream of papers is to embed both ex-ante and ex-post bank
heterogeneity in an empirically consistent way. Moreover, we allow ex-post heterogene-
ity (transitory risk) to be counter-cyclical, thus generating substantial amplification of
business cycles due to greater downside loan portfolio risk in recessions.

Finally, we solve our model non-linearly by building on the canonical Krusell and
Smith (1996) solution method. A novel aspect of our framework is that the endogenous,
dynamic distribution of bank size is a relevant state variable. We approximate the dy-
namics of this distribution - an infinitely dimensional object - with a small number of
moments. Many of our quantitative exercises study financial and macroeconomic re-
sponses to aggregate TFP impulses. By the logic of Boppart et al. (2018), these impulse
responses would be identical, as a first-order approximation, to transitional dynamics in
response to zero-probability MIT shocks in a version of our model without aggregate risk.
An important advantage of solving our model with full-fledged aggregate uncertainty
is our ability to target and match moments of the U.S. business cycle, thus making the
model more empirically-consistent, and to study the frequency and severity of banking
and economic crises in its long simulation.

The rest of the paper is structured as follows. Section 2 reports stylized facts on the
banking distribution in the cross-section and over the business cycle. In Section 3, we
lay out our model. Section 4 describes our calibration strategy, shows the model policy
functions and ergodic distributions, and demonstrates the responsiveness to aggregate
fluctuations. Section 5 inspects the model mechanism by isolating each key moving part.
Section 6 presents our main quantitative results and experiments. Section 7 explores
the implications of heterogeneity for economic and banking crises. Finally, Section 8
concludes.

4Among others, the literature includes such contributions as Gerali et al. (2010); Martinez-Miera and
Repullo (2010); Christiano and Ikeda (2013); Cuciniello and Signoretti (2015); Boissay et al. (2016); Jamilov
(2020); Rios Rull et al. (2020); Begenau and Landvoigt (2021); Goldstein et al. (2022); Abadi et al. (2022).
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2 Stylized Banking Facts

Our quantitative framework is centered around three fundamental sets of banking facts:
two-sided market power, counter-cyclicality of idiosyncratic loan returns, and concentra-
tion of the distribution of size.

2.1 Two-Sided Bank Market Power

We begin by presenting evidence of market power on the asset and liability sides of bank
balance sheets. Our empirical analysis leverages Call Reports data, which covers the
universe of commercial banks in the United States. Our approach is similar to the lines
of Corbae and D’Erasmo (2021) and De Loecker et al. (2020). Specifically, we compute
quarterly measures of bank-level loan markupsµk

j,t and deposit markdownsµb
j,t. We define

µk
j,t as a ratio of a proxy for the interest rate on loans to the marginal cost of raising a unit

of credit. The markdown µb
j,t in turn is defined as the ratio of a proxy for the interest rate

on risk-free asset holdings to the marginal cost of raising a unit of deposits. Our quarterly
methodology replicates the yearly evidence on loan markups from Corbae and D’Erasmo
(2021) and extends the analysis to markdowns which, to the best of our knowledge, is the
first of its kind. Appendix A.1 provides details on the data and Appendix A.2 explains
the estimation procedure.

Figure 1 presents the cyclical component of bank markups and markdowns respec-
tively in Panels (a) and (b) 5. To arrive at these series, we construct quarterly unweighted
averages for µk

t =
∑

j stµk
j,t and µb

t =
∑

j stµb
j,t where st is the inverse of the number of banks

in a quarter.6 The two series have then been logged and filtered with the Hodrick-Prescott
filter with the usual smoothness parameter 1600. The same data treatment has been ap-
plied to the series of U.S. real GDP growth. We document that both credit markups and
deposit markdowns are heavily counter-cyclical. The correlation of each with filtered
GDP growth is around -0.49 and statistically significant at the 1% level.

The counter-cyclicality of both credit markups and deposit markdowns has implica-
tions for the pass-through from changes in marginal costs to credit and deposit interest
rates. In slight anticipation of our model, suppose that business cycles are driven by a
single, supply-side disturbance. Then, negative aggregate states are associated with a
rising marginal cost of funds. Conditional on this, counter-cyclical credit markups imply
a pass-through from the marginal cost to the credit rate that is greater than one-to-one. As
the marginal cost rises, so does the markup, fueling a more than proportional increase
in the credit rate. Counter-cyclicality of markdowns also points to a pass-through that
is greater than one-to-one. The wedge between the risk-free rate and the retail rate on

5Appendix A.2 also shows the raw, unfiltered series.
6Appendix A.3 shows that results do not change if we compute weighted-average quarterly measures.
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Figure 1: Bank Market Power
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(b) Deposit markdowns
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(c) Credit markups
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deposits shrinks in negative aggregate states, which means that the deposit rate change is
larger than the change in the risk-free rate.

Credit markup counter-cyclicality is reminiscent of the classic New Keynesian logic
(Nekarda and Ramey, 2021). However, our theoretical economy will be described by a
completely ”real” model where real rigidities are obtained through the assumptions on
technology rather than any type of nominal price stickiness. Deposit markdown counter-
cyclicality reflects the notion of deposit franchise “stickiness”, which has resurfaced amidst
the 2023 regional banking crises in the U.S.. A key contribution of our paper is to analyze
two-sided bank market power jointly in an empirically-motivated equilibrium setting.

Figure 1 also shows, in Panels (c) and (d), the cross-sectional relationships between
markups, markdowns, and bank size. The panels present binned scatterplots over 100
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Figure 2: Counter-Cyclical Income Risk
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equally-sized bins of (log) total assets, such that the y-axes show bin-specific unweighted
averages. In addition, variables have been residualized from the time fixed effect. Market
power on both sides of the balance sheet is concentrated in the right tail of size distribution:
markups increase and markdowns fall with bank assets. In other words, larger banks
charge simultaneously higher credit markups and lower deposit markdowns. Notice that
the dual concentration of size and market power is potentially concerning from the point
of view of competition regulation 7.

Before proceeding with the rest of the section, it is important to address a concern
whereby our markup and markdown measures might be biased. There is a risk that
the so-called “production function estimation” approach, a variant of which we follow
in this paper, hinges on assumptions on the price and quantities of loan and deposit
goods that could bias the outcome. Recent work by Grassi et al. (2022) for non-financial
firms shows that while such approach may produce an incorrect level of the aggregate
markup, its behavior over time - including the trend and cyclical components - is strongly
correlated with the true markup measure. Thus, our cyclical components of markups and
markdowns are unbiased. Furthermore, the fact that Call Reports data has exact balance
sheet data on both loan and deposit returns and quantities implies, importantly, that a
significant component of marginal costs is directly observable.
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2.2 Counter-Cyclical Loan Income Risk

A second key ingredient of our quantitative analysis is the cyclicality of transitory loan
return risk. A substantive literature has documented that households and firms face
greater uninsured idiosyncratic risk in recessions, particularly due to the pro-cyclicality
of the third moment (Bloom et al., 2019; Buch et al., 2022). A natural question to ask is
whether banks face the same problem. Our measure of loan income risk is built in line
with the literature (Guvenen et al., 2014). First, the realized return on loan (RoL) r j,t is
computed as a ratio of total interest income on loans to loan holdings at the bank-quarter
level. The log-difference of this variable, ∆r j,t, then constitutes our quarter-on-quarter
transitory loan return risk measure.

Figure 2 depicts the distributions of ∆r j,t for U.S. expansions and recessions, defined
by the NBER criterion, and over the 1984:1-2020:1 period. The density of RoL growth is
visibly pro-cyclical. The unweighted mean of RoL growth is roughly -0.3$ in expansions
and -2.4% in recessions, i.e., lower by a full two percentage points. To further shed light on
the cyclicality of moments of the RoL distribution, we aggregate∆r j,t to the quarterly level
by computing the unweighted first, second, and third moment (statistical skewness). Each
series is then HP-filtered and, additionally, smoothed with a moving-average filter with
four lags. Panel (b) of the Figure plots the time-series dynamics of the resulting smoothed
measures of the first and third moments. Both variables are heavily pro-cyclical, with
pairwise correlations with U.S. real GDP growth equal to 0.56 and 0.54, respectively, and
statistically significant at the 1% level. 8

The pro-cyclicality of skewness of bank income risk, in particular, is a novel and
important finding. It suggests that banks face greater downside risk in recessions. The
implication for our modeling approach is significant: it potentially requires a departure
from the standard Gaussian assumption on the distribution from which idiosyncratic
return shocks are drawn. Interestingly, the second moment of the distribution of RoL
growth is essentially flat over the cycle, with the correlation coefficient with GDP growth
statistically indistinguishable from zero at the 10% level (not shown). This finding is
consistent with the evidence in, for example, Buch et al. (2022) who show that the variance
of individual-level earnings growth is acyclical in four advanced economies. All in all,
pro-cyclicality of the first, a-cyclicality of the second, and pro-cyclicality of the third
moment of the banks’ RoL growth distribution are key motivating facts for our theoretical
framework.
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Figure 3: Size Concentration
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2.3 Size Concentration

A robust feature of the U.S. banking data is the market concentration of the sector, which is
not only considerably high but rising since at least the 1980s (Corbae and D’Erasmo, 2020).
Figure 3 plots Lorenz curves - a standard market concentration metric - for commercial
bank total assets, using Call Reports data. Departure from the equal allocation counter-
factual (45-degree line) is substantial. The Gini coefficient has increased by roughly 12%
over the 1986-2020 period and currently stands at 0.94. To put these numbers in further
context, at present times the largest 25 banks controls roughly 95% of all assets.

Interestingly, it appears that a lesser known fact is the rise of deposit market concen-
tration over the same period and for the same sample. Figure 3 plots the Lorenz curves
for the U.S. commercial bank deposit market, also using data from Call Reports. The
rise of banking concentration is even more profound when size is proxied with deposits.
Consider that the deposits Gini has grown by about 20% since 1986 and is currently 0.93.
What is the correct proxy for bank size is not immediately obvious. However, the 2023
U.S. regional banking crisis has put at the center stage the present discounted value of
deposit franchises. Deposit franchise stickiness acts as a hedge against asset portfolio risk
which could stem from, for example, rising interest rates. Therefore, deposits (especially
those that are insured) act as a buffer stock against adverse fluctuations in returns on loans
and other investments. Therefore, from the point of view of our quantitative model that
is built around unhedged idiosyncratic rate of return risk, it could be argued that total

7A good measure of market power should correlate with proxies of profitability. In Appendix A.3 we
show that markups and markdowns are strongly correlated with bank-level returns on assets (RoA)

8Appendix A.3 shows that our results hold at the bank holding level of aggregation.
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Figure 4: Granular Banks
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deposit holding is a more relevant notion of size.

2.4 Granularity

The seminal contribution by Gabaix (2011) has put forth the so-called “Granular Hypoth-
esis”: idiosyncratic firm-level disturbances by themselves could theoretically be enough
to generate aggregate fluctuations for as long as some firms are abnormally large, i.e.,
granular. The granular hypothesis has been investigated extensively in the contexts of
non-financial firms (Carvalho and Grassi, 2019), bank portfolio concentration (Galaasen
et al., 2020), trade (Gaubert and Itskhoki, 2021), and exchange rates (Camanho et al.,
2022). In the context of the U.S. banking sector, we have already documented the extreme
degrees of size heterogeneity in the markets of both asset and deposit holdings. We now
examine whether the granular hypothesis applies, thus making the right tails of the asset
and deposit distributions relevant from a macroeconomic perspective.

There are two simple tests of granularity that are typically run in the literature. First,
the ranks-size rule compares log-size against log-rank (Gabaix, 2009). A special case of this
comparison is the famous Zipf’s law, which arises if the relationship is approximated with
a straight negatively-sloped line. We run this test for the U.S. banking sector, restricting
the sample to 2020:1 and the largest 4,000 banks. Figure 4 plots log-ranks of assets (Panel
A) and deposits (Panel B) on the y-axis against log-size on the x-axis. The striking result is
how tightly straight lines can summarize the data. The R2 of linear regressions of log-rank
on log-size, on both panels, is above 0.99.

The second test is understood in distributional terms: consider Pr(Size > S) = κ/Sα
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which means that the likelihood of a bank being greater than some S is proportional to
α/S. We estimate α with maximum likelihood methods for both assets and deposits,
again for 2020:1 and for the largest 4,000 banks, and obtain the values of 1.02 and 1.001 for
assets and deposits, respectively. First of all, this implies that Zipf’s law is in fact a good
first-order approximation of the data. Second, there is strong evidence in support of the
granular hypothesis applying to financial intermediaries. In other words, idiosyncratic
shocks to large banks alone could generate non-diversified grains of financial activity and
drive aggregate fluctuations. We return to this important point in the modelling sections
of the paper.

Summary To conclude, a realistic quantitative macro-banking model should feature
several empirically verified modeling devices. First and foremost, there must exist a
well-defined notion of bank size - measured by either assets, deposits, or net worth
(capital). Second, the model needs to deliver a reasonable degree of size concentration
with a non-trivial share of very large institutions. Third, idiosyncratic shocks to those
large institutions should be enough to generate reasonable aggregate fluctuations. Fourth,
competition should be imperfect on both the asset and the deposit side of the balance sheet;
banks should be allowed to charge markups to borrowers and markdowns to depositors
in a flexible, heterogeneous fashion. Finally, banks should be exposed to idiosyncratic
shocks that get worse in negative aggregate states. This counter-cyclicality should be
driven, at least in part, by the pro-cyclicality of the third moment of the density of risk.

3 Model

This section lays out a business cycle model with heterogeneous banks. Time is discrete
and infinite. The economy is populated by four agents: a representative household, a
representative firm that produces the capital good, a final good producer, and a continuum
of heterogeneous financial intermediaries (banks, for short) indexed by j ∈ [0, 1].

3.1 Technology

There is a continuum of measure one of perfectly competitive firms that produce the final
good using an identical constant returns to scale Cobb-Douglas production function with
capital and labor as inputs:

Yt = AtKαt L1−α
t , 0 < α < 1 (1)

Output is transformed into future capital or current consumption. Capital accumulates
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over time according to the law of motion:

Kt+1 = (1 − δ)Kt + It (2)

where 0 ≤ δ ≤ 1 is the rate of depreciation and It is aggregate investment. Returns on
aggregate capital holdings can be represented by:

Rk
t+1 =

At+1αKα−1
t+1 + (1 − δ)Qt+1

Qt
(3)

where Qt is the price of capital determined by the capital production block. Aggregate
productivity At is stochastic and takes on two possible values: Ah and Al which represent,
respectively, good and bad aggregate states. The shock follows a first-order Markov
structure with πa the matrix of transition probabilities.

3.2 Firms

Capital good producers are cash-strapped and require bank financing in the form of
equity-type claims, which we will be referring to interchangeably as assets or credit.
In exchange for bank credit, firms pledge the future realized return on the aggregate
capital stock (3). We assume that firms possess a technology to costlessly convert units of
credit into differentiated units of capital, which get immediately aggregated. The credit
market is imperfectly competitive and aggregate capital Kt is assembled by the following
aggregator:

Kt =

∫ 1

0

[(
kt( j) − γ1Kγ2

t

) θk−1
θk dj

] θk
θk−1

(4)

where θk > 1 is the elasticity of substitution and {γ1, γ2} govern the degree of produc-
tion externalities. Firms solve a cost minimization problem, which yields the following
demand curve for differentiated units of capital:

kt( j) =
(

qt( j)
Qt

)−θk

Kt + γ1Kγ2
t (5)

where Qt is the aggregate credit rate. The asset demand elasticity can be shown to

equal: θk
kt( j)−γ1Kγ2

t
kt( j) . We can now write down the Lerner condition for the credit market,

which decomposes qt( j) in terms of the markup µk
t ( j) and the marginal cost MCt( j), to be
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determined later:

qt( j) =
θk

kt( j)−γ1Kγ2
t

kt( j)

θk
kt( j)−γ1Kγ2

t
kt( j) − 1︸            ︷︷            ︸

Credit markup µk
t ( j)

MCt( j)

︸ ︷︷ ︸
Marginal Cost

(6)

The capital aggregator (4) requires a special discussion. It is an amalgamation of
several directions and concepts in the literature. First, canonical Pollak (1971) demand is
nested as a special case whenever {γ1 > 0, γ2 = 0}. This case yields an equilibrium markup
which is greater than unity but homogeneous across banks. Second, under the {γ1 <

0, γ2 > 0} parametrization we obtain the classic “keep up with the Joneses” specification,
or a type of positive production externalities (Gali, 1994). In this case, increases in the
aggregate production of capital in the economy raise the private marginal product, forcing
an individual firm to produce more capital for which, in turn, it requires more funding
from the banks. This specification would yield a distribution of markups that, correctly,
increase with relative bank size. Third, a variant of the classic habit formulation is obtained
whenever {γ1 > 0, γ2 = 1} (Ravn et al., 2006). Finally, the constant elasticity of substitution
case obtains for γ1 = 1. The diagram below summarizes all the possible situations:

γ1


= 0 CES

> 0 Negative production externalities

< 0 Keeping up with the Joneses

γ2


= 0 Pollak demand

= 1 Linearity

> 1 Convexity

In order to match the observable cross-sectional distribution and cyclicality of loan
markups in the data, we first require γ1 < 0, i.e., the keeping up with the Joneses specifica-
tion. This grants us the correct relationship between size and markups in the cross section.
In addition, we need γ2 > 1, i.e., convexity. General equilibrium adjustment of the full
distribution of claims

∫
k( j) in response to an aggregate shock nullifies private, bank-level

partial-equilibrium markup changes in a way that makes the aggregate markup a-cyclical.
In other words, while private markups µk( j) rise when private relative size is high after a
positive shock, in equilibrium the aggregate K adjusts and the aggregate markup remains
unchanged. With γ2 > 1, we are able to obtain a pro-cyclical aggregate demand elasticity.
In response to a positive aggregate productivity shock, once aggregate capital Kt adjusts,
the convexity of the production function kicks in and the aggregate demand elasticity in-
creases endogenously due to second-round effects, thus lowering the aggregate markup.
This grants the correct unconditional correlation between production and markups along
the time series. All in all, in order to match two moments in the data - one cross-sectional
and one time-series - we require two parametric restrictions: γ1 < 0 and γ2 > 1.

In models with aggregate uncertainty, like ours, parsimony is crucial. Our aggregator
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is designed to be operational and flexible. At the same time, it is a reduced-form repre-
sentation of much more complex, deeper mechanisms at work. Consider the canonical
contribution of Chevalier and Scharfstein (1996) who develop a theory of counter-cyclical
markups and capital-market frictions. In their theory, firms face an occasionally-binding
liquidity constraint that binds in bad aggregate states. Illiquidity forces firms to increase
profits in the short run by raising prices. Our capital production function is entirely
consistent with this economic mechanism. Recessions are associated with lower realized
returns for the financial intermediaries. Banks, in order to prevent a complete depletion of
net worth, have an incentive to sacrifice private market share in the short run and improve
profitability by raising markups.

3.3 Households

The representative household’s preferences are separable intertemporally and discounted
at the rate of β ∈ (0, 1). The household derives utility from consumption and bank deposit
holdings as well as disutility from labor. The household can save in the form of one-
period deposits or mutual funds. To motivate imperfect competition in the market for
bank deposits, we assume that deposits provide special liquidity services, similarly to the
setup of Drechsler et al. (2017, 2021) and Bellifemine et al. (2022) or more generally to the
money-in-utility framework (Sidrauski, 1967; Gali, 2008; Walsh, 2010). Mutual funds are
risk-less investments but provide no liquidity utility. Both vehicles pay guaranteed, state
non-contingent rates of returns. Flow utility, which features non-separability between
consumption and hours in the spirit of Greenwood et al. (1988) and separability with
respect to deposit holdings, takes the form of:

U(Ct,Lt,Bt) =
1

1 − ϕ

Ct − χ1
L1+χ2

t

1 + χ2

1−ϕ

+ ν1
B1−ν2

t

1 − ν2
(7)

where 1
χ2

is the elasticity of labor supply, 1
ν2

is the elasticity of deposit supply, χ1 gauges
labor disutility, and 1

ϕ is the intertemporal elasticity of substitution. Deposit products
are imperfect substitutes across banking franchises, indexed by j, and assembled into the
aggregate stock of deposits by the following aggregator:

Bt =

[∫ 1

0
bt( j)

θb+1
θb dj

] θb
θb+1

(8)

with θb > 0 the elasticity of substitution across deposit franchises. The flow budget
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constraint is given by:

Ct +

∫ 1

0
bt( j)dj +Mt ≤ RtMt−1 +

∫ 1

0
Rb

t ( j)bt−1( j) + LtWt +Divt + Tt (9)

where Mt are mutual fund holdings, Wt is the competitive wage rate, Rb
t ( j) is the non-

contingent bank-specific interest rate on deposits to be determined in equilibrium, Rt is
the real risk-free interest rate, Tt are lump-sum taxes, and Divt are lump-sum transfers of
bank dividends.

The first-order condition with respect to bt( j) yields a Lerner-type formula for deposit
interest rates:

Rb
t+1( j) = Rt+1


1 −


UB,t (Ct,Lt,Bt)
UC,t (Ct,Lt,Bt)︸           ︷︷           ︸

Marginal Liquidity Preferences

Product Differentiation︷   ︸︸   ︷(
bt( j)
Bt

) 1
θb




(10)

where UB,t and UC,t denote marginal utility operators and Rt+1 =
[
βEt

UC,t+1(Ct+1,Lt+1,Bt+1)
UC,t(Ct,Lt,Bt)

]−1

is the risk-free interest rate, which is pinned down by a first-order condition with respect
to risk-less mutual fund holdings. The dynamic, heterogeneous deposit markdown can
be defined as follows:

µb
t ( j) =

Rb
t+1( j)
Rt+1

≤ 1

The deposit market power of banks is determined by two factors. First, the “marginal
liquidity preferences” term which is governed by the cyclicality of the marginal utility of
deposit holdings. In recessions, the marginal utility of consumption rises. If the marginal
utility of deposit holdings rises but by less, such that the ratio is pro-cyclical, then the
markdown is counter-cyclical - as in the data. In other words, the relative marginal benefit
from deposits needs to fall in response to negative aggregate shocks. Banks, internalizing
this effect, attempt to protect the deposit franchise by raising the markdown, i.e., by
shrinking the deposit spread and prioritizing market share retention in the short run.
Second, the “product differentiation” term, which can also be understood as the degree
of substitutability across deposit franchises. It is evident from (B2) that the model can
nest (a) perfect deposit market competition (if ν1=0) or (b) a homogeneous markdown (if
θb → ∞ for some finite ν1 > 0). In the baseline economy, the markdown is time-varying,
heterogeneous, and proportional to relative deposit size.
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Finally, the first-order-condition with respect to labor supply is standard:

Lt =

(
Wt

χ1

)− 1
χ2

(11)

3.4 Financial Intermediaries

The financial intermediation sector is populated by a continuum of measure one banks
which are indexed by j ∈ [0, 1]. Banks’ role in the economy is to source deposits dt( j) from
households and invest into the capital producing firms via claims kt( j). Deposits pay a
state non-contingent interest rate Rb

t ( j). Banks accumulate net worth nt( j), maximize the
present discounted value of their franchise value, exit the economy with a probability
1 − σ, upon which their entire franchise gets transferred to the household in the form of
dividends.

Ex-ante Heterogeneity Banks are ex-ante non-identical due to permanent differences in
the efficiency of intermediation κ ∈ Θ. A higher κ( j) allows banks to consistently identify
more profitable lending opportunities, yielding permanently higher returns for the same
amount of claims held. For example, this could be due to differences in monitoring skill
and ability (Diamond, 1984). In addition, markets are incomplete and portfolio returns
feature uninsured idiosyncratic risk ξt( j). All banks earn a common aggregate return on
capital Rk

t , which is perturbed by the permanent and transitory components of rate of
return heterogeneity. Bank-level total portfolio return RT

t ( j) can thus be written as:9

RT
t ( j) = κ( j)ξt( j)Rk

t (12)

At the beginning of time, permanent return types κ( j) are drawn by nature from a
power law distribution, specifically the Type 1 Pareto density with the shape parameter
α > 0 and a normalizing minimal value κm:

κ( j) ∼ P(α, κm), Prob(κ > κm) =
(
κm

κ

)α
(13)

As the shape parameter approaches unity, the departure from standard laws of large
numbers becomes more severe, and the “Granular Hypothesis” becomes more relevant
(Gabaix, 2011). Specifically, in the α ∈ [1, 2) region, idiosyncratic shocks to individual
banks that operate in the right tail of the distribution of permanent income are more likely
to not wash out in the aggregate. This insight will be important in Section XXX when
we discuss the role of large banks in aggregate financial and business cycles. This comes

9The permanent-transitory risk mixture is common to other work in the literature. See, e.g., Guvenen
et al. (2023) in the context of household income risk and wealth taxation.
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in addition to enabling the model to generate a realistic degree of size concentration. In
equilibrium, banks with an abnormally large κ( j) are much larger than the median bank,
raising the model-implied GINI coefficient.

Ex-post Heterogeneity Transitory rate of return risk ξ ∈ Ξ follows an AR(1) process
with shocks et( j) drawn from a non-Gaussian, aggregate state-dependent distribution.
Specifically, we employ the Hansen (1994) Skewed-t density with time-varying parameters
µϵ,t, λϵ,t ∈ (−1, 1), and ηt ∈ (2,∞) which, respectively, govern the mean, skewness, and
degrees of freedom of the distribution. Formally:10

ξt( j) = (1 − ρξ)µξ + ρξξt−1( j) + ϵt( j) (14)

and

ϵt( j) ∼ g(zt( j)|ηt, λϵ,t) =


bc

(
1 + 1

ηt−2

(
bzt( j)+a
1−λϵ,t

)2
)−(ηt+1)/2

, zt( j) < −a/b

bc
(
1 + 1

ηt−2

(
bzt( j)+a
1+λϵ,t

)2
)−(ηt+1)/2

, zt( j) ≥ −a/b
(15)

with zt( j) a variable drawn from the standard Normal distribution and triad {a, b, c}
known constants. Following Hansen (1994), in order to control the number of free pa-
rameters, we impose an exact mapping from λϵ,t onto ηt: ηt = L + U−L

1+exp(−λϵ,t)
such that

the only source of time-varying deviation from non-normality is the skewness parameter
λϵ,t. Figure 5 illustrates how Hansen’s skew-t departs from the Gaussian density. The
major difference is the introduction of a sharp, prolonged left-tail. Left-skewness appears
whenever λϵ,t < 0.

Balance Sheet Banks start each period with an initial stock of net worth n ∈ N ⊂ R+.
Each banking franchise is required to pay operational, non-interest variable expenses that
are increasing and convex in book assets under management: ζ1kζ2

t with ζ1 > 0, ζ2 > 1.
Alternatively, private adjustment of the quantity of loans is costly and the cost must be
incurred at the franchise level. Convexity of these costs breaks scale invariance and makes
bank size (net worth) a relevant state variable. The law of motion of bank-level net worth
nt( j) can thus be written as:

nt+1( j) = RT
t+1( j)qt( j)kt( j) − Rb

t+1( j)bt( j) − ζ1kt( j)ζ2 (16)

At all times and for all banks, the balance sheet constraint must hold:

bt( j) + nt( j) = kt( j) (17)

10Our approach complements other existing methods in the literature. For example, see ? who model
ξt( j) as a random variable that is drawn from a mixture of several normally distributed random variables.
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Figure 5: Hansen’s Skew-t Density
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To motivate some role for macroprudential policy, and in anticipation of our quantita-
tive experiment that involves raising capital requirements, we follow Gertler and Kiyotaki
(2010) and Gertler and Karadi (2011) and postulate that the banking sector is subject to an
agency friction. Bankers have an incentive to divert a fraction λ of the franchise Vt( j) for
personal use. If a diversion is successful, the franchise is bankrupt and only the remaining
fraction 1 − λ is recovered by depositors. We assume that the household sector is unable
to impose a ceiling on bank asset growth. However, the government can. In particular, λ
is set such that it exactly offsets the bankers’ diversion incentive and, in equilibrium, this
yields the following constraint on leverage:

λkt( j) ≤ Vt( j) (18)

The presence of market incompleteness and uninsured idiosyncratic rate of return
risk implies that there is an inherent probability of fundamental bank insolvency. This
occurs whenever the draw ξt( j) is sufficiently low such that nt( j) is drawn down to zero,
below which the bank cannot operate. Insolvency risk is priced competitively into the
distribution of the market price of deposits Rb

t ( j). We assume that the government operates
a deposit insurance scheme - an essential pillar of traditional banking (Farhi and Tirole,
2020). The scheme neutralizes the insolvency risk spread such that, in the absence of any
markdown distortions, the deposit rate equals the non-contingent risk-free rate Rt. The
scheme is financed with lump-sum non-distortionary taxation of the household sector.
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Marginal Cost It can be shown that the relevant marginal cost for the dynamic banking
problem is:

MCt( j) =
Rb

t + ζ1ζ2kt( j)ζ2−1 + λ̃t( j)λ
EtRT

t+1( j)
(19)

where λ̃t( j) is the Lagrange multiplier on the leverage constraint. The total marginal
cost is increasing in marginal interest and non-interest costs of producing a single unit
of bank credit, the shadow cost of the incentive constraint, and decreasing in expected
portfolio profitability. The latter term, in the spirit of Melitz (2003), essentially acts as
an “efficiency” shifter, making the franchises of the more profitable banks less costly to
operate.

Dynamic Problem Henceforth, we adopt a recursive notation and, for ease of notation,
we drop the time and ( j) indexations temporarily. The aggregate state of the economy
S is characterized by a dyad {µ,A}. µ is a probability measure defined on the Borel
algebra B that is generated by the open subsets of the product space B = N × Θ × Ξ,
representing the endogenous, time-varying joint cross-sectional distribution of bank net
worth, permanent return types, and transitory return draws. The law of motion of the
distribution is denoted by Γ such that µ′ = Γ(µ(n, κ, ξ),A,A’). Note that A’ is included
in the law of motion because idiosyncratic risk is aggregate state-dependent. The law of
motion that concerns A is exogenous and described by πa.

The relevant idiosyncratic state vector s includes net worth n as well as the permanent
and transitory components of return heterogeneity κ and ξ. The stream of future flows of
net worth is discounted with the marginal rate of substitution Λ(S’,S), which is pinned
down by the household problem, and augmented by the exogenous death rate 1−σ. Banks
take their initial net worth as given and choose how much to lend to firms k and at what
rate q, and how much to borrow from households b and at what rate Rb. Competitive
structures in the credit and deposit markets are taken as given. The problem takes the
following form:

max
{k,q,b,Rb}

V(s; S) = Es,S{Λ
′(S’,S) [(1 − σ)n′ + σV′(s’; S’)]} (20)
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subject to:

n′ = RT′(s’; S’)qk − Rb′b − ζ1kζ2

b + n = k

RT(s; S) = κξRk(S)

λk ≤ V(s; S)

Rb′ = R′(S)

1 −

UB(S)
UC(S)

(
b

B(S)

) 1
θb




q =
θk

k−γ1K(S)γ2

k

θk
k−γ1K(S)γ2

k − 1

Rb + ζ1ζ2kζ2−1 + λ̃(s; S)λ
ESRT′(s’; S’)

µ′ = Γ(µ,A′)

as well as the exogenous laws of motion for ξ and A.

3.5 Market Clearing and Equilibrium

Clearing of the market for firm claims implies that the distribution of bank credit aggre-
gates and equals to the aggregate demand for capital from firms:

K′(S) =
∫

B
k∗(s; S)µ(n, κ, ξ)dξdκdn (21)

where k∗(s; S) denotes the banks’ policy function for firm claims. Similarly, deposit
market clearing requires:

B(S) =
∫

B
b∗(s; S)µ(n, κ, ξ)dξdκdn (22)

where b∗(s; S) denotes the banks’ policy function for deposit demand.
Goods market clearing requires:

Y(S) = C(S) + I(S)

Finally, optimal choices of credit and deposit rates {q∗,Rb∗
} are appropriately summed

up to, respectively, the aggregate credit rate Q and deposit rate Rb.

Equilibrium A recursive competitive equilibrium is the law of motion of the banking
distribution Γ, the bank value function V, policy functions for banks {k∗, b∗, q∗,Rb∗

}, and
policy functions for the household {c∗, l∗, b∗} such that, given a vector of aggregate pricing
functions {R,Rk,Q,W}, (i) value and policy functions of all agents solve the corresponding
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decision problems; (ii) Γ is consistent with agents’ optimization; (iii) all markets clear.

3.6 Numerical Methods

MAY BE PUT IN APPENDIX?
In order to solve our model, we resort to non-linear computational methods. Our

algorithm builds heavily on the seminal contribution of Krusell and Smith (1998). A key
numerical challenge is that µ - an infinitely-dimensional object - is an endogenous state
variable in the model. More specifically, in order to make private quantity and pricing de-
cisions at time t, each bank needs to have an estimate of the return on capital in t+1, which
in turn depends on the full distribution of future lending decisions

∫
kt+1( j). To bypass the

curse of dimensionality, we assume that banks form linear, limited-information forecasts
based on a small set of K moments of the distribution, denoted as m ≡ (m1,m2, . . . ,mK).
The law of motion of the distribution can then be re-formulated in terms of the dynamics
of its moments: m′ = Γ(m,A,A′).

The algorithm consists of three basic steps. First, conditional on some initial guess forΓi

and the pricing functions, each agent’s problem is solved using standard non-linear meth-
ods, yielding the first set of candidate value and policy functions {V∗, k∗, b∗j, q

∗,Rb∗, c∗, l∗, b∗}i.
We solve the dynamic problems on a sparse grid of idiosyncratic and aggregate state
variables. To this end, we discretize both ξ and κ and use interpolation to compute values
of policy and value functions not on the grid. Second, conditional on the just-computed
policy functions, we simulate a panel of I banks that runs for T periods. Third, we run a
linear regression on the simulated data and obtain a new candidate Γi+1. Algorithm stops
as soon as we achieve convergence of both the outer and the inner loops.

Our numerical approach, while transparent and efficient, has two possible limitations.
First, in our setup we have exogenously imposed both the number and the set of moments
that banks use to form expectations of future returns. In practice, endogenous information
acquisition may incentivize different agents to acquire different magnitudes and intensities
of information, potentially in an aggregate state-dependent manner (Broer et al., 2022a,b).
Second, it is possible to impose more general, non-linear limited information forecasts
of the aggregate state µ, specifically by leveraging neural networks (Nuno et al., 2023).
However, we do not pursue these complications because our solution is already accurate.

4 Taking the Model to the Data

This section first describes how we take our model to the data and proceeds by analyzing
some of its dynamic and cross-sectional equilibrium properties.

24



4.1 Calibration

One period corresponds to a quarter. Table 1 reports calibration targets that we use to
pin down certain parameters internally. It also lists several additional business-cycle and
steady-state moments. Table 2 summarizes the values we have assigned to every model
parameter.

Technology, Firms, and Households We begin with the technology parameters. Ag-
gregate productivity can take two values: Ah = 1.0045 and Al = 0.9955. These values
are chosen in order match the empirical volatility of U.S. real GDP growth. The transi-

tion probability matrix is set to πH,L =

{
0.87 0.13
0.13 0.87

}
in order to deliver an autocorrelation

coefficient of roughly 0.95 (Smets and Wouters, 2007).
The firms’ block consists of three key parameters. First, we set θk to 2.05 in order to

target the empirical asset-weighted average credit markup of 1.7. Second, the linear term
γ1 in the capital aggregation equation (4) is set to -0.02 in order to target the cross-sectional
elasticity of credit markups with respect to bank size, which is 0.0048 in the data. To arrive
at this value empirically, we first clean (log) markups from the bank-specific averages,
thus discarding the permanent component of markup heterogeneity. Second, we run
a panel linear regression of the de-meaned (log) markup on (log) real total bank assets
and a time fixed effect. Third, γ2 is assumed to equal 2, which helps deliver pro-cyclical
movements in the aggregate demand elasticity.

We now move on to the household block. The discount factor is fixed at β = 0.996 in
order to target an annualized risk-free rate of roughly 1.6%. Relative risk aversion ϕ is
set to 2, a standard value in the literature. Labor disutility, χ1, is calibrated in order to
exactly deliver steady-state hours of 0.3. In other words, the household works 30% of the
time. χ2 is set to unity as is common in macroeconomic studies (Nuno and Thomas, 2017;
Kaplan et al., 2018). θb is calibrated in order to target the empirical mean of the deposit
markdown series. In the data, this value is roughly 0.8 and is obtained by taking an asset-
weighted average of estimated markdown values. ν1 is calibrated in order to target the
cross-sectional elasticity of deposit markdowns with respect to bank size. The empirical
procedure is identical to the case of loan markups - detailed above. The estimated elasticity
in the data is -0.0050. Finally, ν2 is set to 0.1 in order to deliver an elasticity of deposit
supply of ten and a sufficiently pro-cyclical ratio of relative marginal liquidity preferences
and, by extension, a counter-cyclical aggregate deposit markdown.

Banks The banking block is comprised of several standard and some novel parameters.
The bank survival rate is set to 0.9, yielding an expected life duration of 10 years, which
is in the range of values commonly used in the literature (Gertler et al., 2016, 2020; Lee
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Table 1: Calibration Targets and Moments

Steady State

Moment Data Model

Hours worked (target) 0.3 0.3
Average loan markup (target) 1.7 1.7
Average deposit markdown (target) 0.8 0.8
Commercial bank leverage (target) 6.5 6.5
Loan markup - size elasticity (target) 0.0048 0.0052
Deposit markdown - size elasticity (target) -0.0050 -0.0049
Commercial bank assets GINI 0.94 0.70
Commercial bank deposits GINI 0.93 0.73

Financial and Business Cycles

Moment Data Model

σY (target) 0.011 0.011
σC/σY (target) 0.62 0.62
ρC,Y 0.65 0.97
ρL,Y 0.86 0.92
ρK,Y 0.38 0.96
ρN,Y 0.15 0.64
ρLEV,Y 0.24 0.64
ρµk ,Y -0.49 -0.92
ρµb,Y -0.48 -0.78

et al., 2020). The fraction of divertible assets λ equals 0.12, a value which approximates
aggregate capital requirements in most countries.

A key parameter that drives permanent bank returns inequality in the model is the
Pareto shape index α. Motivated by our empirical exercises, we assume that the Zipf’s
law holds and set α to unity. To calibrate the persistence ρξ of transitory return risk, we
adopt two distinct strategies. First, following Bellifemine et al. (2022) closely we bring
our return process (12) to the data by estimating a linear panel fixed effects model with
AR(1) disturbances in the spirit of Baltagi and Wu (1999). Our main variable of interest
is the return on loans (RoL), defined as the ratio of interest income on loans over total
loans. We remove the aggregate component by subtracting from the returns their quarterly
averages. We then run a linear regression of de-meaned returns on a bank fixed and an
AR(1) component, the latter being estimated with the Durbin-Watson estimator. We find
that ρ̂ξ is 0.526. Our second approach relies on estimates in Galaasen et al. (2020) who
use Norwegian bank-firm matched loan-level data and report persistence parameters - at
various levels of aggregation - for an uninsured idiosyncratic loan risk process. At the
levels of a borrower or a banking franchise, estimates range from 0.1 to 0.32. All in all,
evidence points to transitory loan return risk of banks being highly non-persistent. In the
model, we set ρξ to 0.5. The volatility of return risk σξ is set to 0.12, which corresponds to
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Table 2: Model Parametrization

Parameter Value Description Parameter Value Description

Technology Banks
σa 0.45 Standard deviation, aggregate risk (%) σ 0.9 Bank survival rate

πL,L,πH,H 0.87 Transition probability, aggregate risk λ 0.12 Fraction of divertible assets
Firms α 1 Permanent returns, Pareto shape

γ1 -0.02 Capital aggregator, linear ρϵ 0.5 Transitory returns, persistence
γ2 2 Capital aggregator, quadratic σϵ 0.12 Transitory returns, standard deviation
θk 2.05 CES markup µH 0 Mean of transitory returns, high state

Households µL -0.02 Mean of transitory returns, low state
β 0.996 Discount factor λH 0 Skewness of transitory returns, high state
ϕ 2 Relative risk aversion λL -0.5 Skewness of transitory returns, low state
χ1 9.4 Labor disutility χ1 0.01 Non-interest expense, linear
χ2 1 Frisch elasticity χ2 1.45 Non-interest expense, quadratic
ν1 0.52 Deposits in utility
ν2 0.1 Elasticity of deposit supply
θb 2.2 CES markdown

the standard deviation of the quarter-on-quarter RoL growth for the sample of commercial
banks and over the usual time period.

Counter-cyclicality of loan return risk is shaped by two sets of parameters. First, the
mean µe,t of the distribution of transitory risk takes the values of 0 (µh) in the high and
-0.02 (µl) in the low aggregate states, respectively. This differential corresponds to the
difference in mean quarter-on-quarter RoL growth across U.S. expansions and recessions,
as shown on Panel (a) of Figure 2. Second, pro-cyclical skewness of transitory return risk
is achieved by setting the values of λϵ,t to 0 and -0.5 in high and low aggregate states,
respectively. The value of -0.5. roughly approximates the average difference in skewness
of RoL growth across U.S. expansions and recessions, as presented on Panel (b) of Figure 2.
In other words, we have normalized the high aggregate state (expansion) in the model to
feature no deviations from normality. Recessions, on the other hand, feature an extended
left tail of the ϵt( j) density.

Finally, the diad {χ1, χ2} is chosen in order to target two moments in the data. First, we
calibrate χ1 by targeting the aggregate book leverage ratio of banks, defined as the ratio
of assets over equity. In the data, importantly, we define the numerator (assets) with total
loans only. Under this definition, we find that the average leverage ratio is about 6.5 across
banks and time. Leverage, when defined as total assets over equity, is considerably higher
at around 11. In our model, the correct definition of leverage is loans over equity because
there is only one risky asset in the economy and this asset most closely corresponds to
a commercial loan to non-financial firms. Second, χ2 is calibrated in order to match the
volatility of aggregate consumption relative to that of aggregate output, which is about
0.62 in U.S. data over the usual time frame.
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Summary Before proceeding with the presentation of main results, we briefly sum-
marize the success and shortcomings of our calibration procedure. First, the model is
designed to be flexible enough such we are able to hit our targets with relative ease.
Second, many untargeted business cycle moments - such as the high correlation of out-
put, consumption, and hours - are very much in line with the data. Third, bank size
concentration in the stationary steady state, while considerably high, is still roughly 25%
too low. This point has been discussed previously and potential remedies and extensions
have been offered. Third, µk

t and µb
t are counter-cyclical, as in the data, but correlation

coefficients with output seem too high in the model. This is driven by the fact that there is
only one aggregate shock in our model and only one absorbing bank-level characteristic:
size. Introducing a simple fix such as markup and markdown (i.i.d) shocks can bring
the values to the empirical counterparts exactly. Fourth, bank balance sheet quantities
and leverage in the model are - correctly - pro-cyclical but for the same reason as with
markups and markdowns they are too pro-cyclical. This point is well understood since
at least Nuno and Thomas (2017): financial sector’s cyclicality properties are complicated
and generally depend on the sample and exact definition of the “bank”. Recall that our
model-consistent empirical sample includes only depository institutions. The aggregate
financial sector - inclusive of broker-dealers and finance companies - is much more volatile.
Overall, financial and business cycle

5 Model Properties

We now investigate whether our calibrated and solved model is able to replicate key
properties of the banking data.

5.1 Bank Heterogeneity and Distributional Dynamics

We start with a central piece of our framework - the endogenous cross-sectional distribu-
tion of bank size. Figure 6 visualizes the distribution’s two key aspects. Panel (a) shows
the histogram of bank assets from the stationary equilibrium. The histogram reveals
something akin to persistent multi-modality, which represents the behavior of perma-
nent inequality types κ( j). There is a small fraction of consistently large intermediaries,
followed by medium- and many small-sized banks.

The same panel also shows heterogeneity in the marginal propensity to lend (MPL).
We define the MPL as the change in bank-level lending k( j) in response to a marginal
change in net worth n( j). From the Figure, we see that the MPL is noticeably decreas-
ing in size, suggesting that small banks have a higher lending elasticity of net worth
shocks. This property is consistent with the classic evidence on the heterogeneous effects
of the bank lending channel (Kashyap and Stein, 1995, 2000). The Panel also reports

28



Figure 6: Bank Heterogeneity and Dynamics
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unweighted-average MPL values for the baseline economy and for the representative-
bank counterfactual. Note that the two must not necessarily equalize, since the average of
the cross section does not need to equate the behavior of the representative agent model. In
fact, this is precisely what occurs as the average MPL in the Bewley Banks economy is 9.7%
while for the representative-bank benchmark it is roughly 7%. While the largest banks
in our economy have low MPL, their share is not sufficiently high so that to counteract
the larger mass of smaller, high-MPL banks that heterogeneity introduces. In anticipation
of the next section, the MPL heterogeneity channel is the reason why our business cycle
fluctuations - and particularly the response of total bank lending - get amplified in our
economy11.

Panel (b) of Figure 6 presents a ”waterfall” representation of how the full distribution of
bank assets in our baseline economy evolves over time. The cross section is fully dynamic,
and there is within-type cross-bank heterogeneity that is driven by transitory risk ξt( j).
Individual banks retain the average profitability of their business model over the long
run but still move around the state space in the short run due to uninsured idiosyncratic
shocks.

Figure 7 visualizes the model’s ability to generate a realistic degree of size concen-
tration. Panels (a) and (b) plot the model-implied Lorenz curves for

∫
k( j) and

∫
b( j),

respectively, alongside the empirical counterparts. Recall that these object exist in equilib-
rium due to scale variance, which is in turn achieved through non-interest cost convexity.
Any departure from the perfect equality counterfactual (the 45-degree line) suggests that
either the loan or deposit market features an unequal degree of concentration. The baseline

11Conceptually, our MPL object is related to several related constructs in the literature. For example, the
Marginal Propensity to take on Risk (MPR) in an environment where heterogeneous households choose
their portfolio risk exposure (Kekre and Lenel, 2022) and the “marginal propensity to invest” in models
with heterogeneous firms and financial frictions (Ottonello and Winberry, 2020).
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Figure 7: Bank Size Concentration
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economy is considerably concentrated with Gini coefficients of 0.70 and 0.73 for assets and
deposits, respectively. The representative-bank counterfactuals feature Gini coefficients
of exactly 0, by construction. An important special case that is also shown on the same
plots is the economy with only permament heterogeneity κ( j), i.e., when the volatility
of transitory risk σϵ is set to zero. The Lorenz curves for the permanent-only cases are
qualitatively non-distinguishable from the baseline. In other words, transitory risk does
little to generate equilibrium size concentration while permanent inequality appears to be
very important.

In the data, the Gini coefficient was roughly 0.94 in 2020:1. Despite a considerable,
order-of-magnitude improvement over the representative-bank benchmark, our baseline
economy still cannot account for the extreme levels of concentration in the U.S. banking
sector. For example, it’s difficult to engineer a situation where the top quintile of banks
controls 95% of assets, as it is typically the case in the U.S., even when κ( j) follows Zipf’s
law. In our baseline economy, the corresponding value is 78%. A relevant feature of
the data that is missing in our framework is the mergers and acquisitions market, which
has historically accounted for a non-trivial share of bank exits. Endogenous horizontal
integration would allow large, high-profitability types to acquire franchises of small, low-
type competitors. Introducing an M&A market could bring equilibrium concentration
even closer to the data but is beyond the scope of this paper.

5.2 Cross-Sectional Correlations

Bank size is an essential characteristic in the model because it is also a relevant state. Every
other variable can be computed if the distribution of net worth is pinned down. We are
now interested in seeing whether the model predicts correct cross-sectional relationships
between bank size and other key objects. Figure 8 presents a series of bivariate histograms
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Figure 8: Cross-Sectional Correlations

(a) Credit markups (b) Deposit markdowns

(c) Transitory Returns (d) Leverage Ratio

Notes:

with relative banks’ size
(

k( j)
K

)
on the y-axis, a corresponding variable of interest on the

x-axis, and density on the vertical z-axis. Panel (a) depicts the plot for credit markups
µk( j). The relationship is increasing and concave, which is delivered by the choice of ν1 < 0
or the “keeping up with the Joneses” specification. The smallest banks in our model have
essentially no market power, as evidenced by their choice of µk( j) which is close to unity.
The largest banks, however, enjoy a lot of credit market power and can set gross markups
in excess of 1.8 over their marginal costs. Panel (b) of the Figure shows a similar plot for
deposit markdowns µb( j). Markdowns fall with size in an almost linear fashion, as they
do also in the data. This relationship is guaranteed by θb > 0. Whenever the household
derives utility from liquidity holdings and as long as deposit franchises are imperfect
substitutes, the larger bank will always hold more deposit market power because the
household has a preference to save in larger banks. Panel (c) plots the realization of
transitory risk draws ξ( j) which is notably left-skewed as can be seen from the x-axis.
Its correlation with relative size is strongly positive, intuitively suggesting that more
profitable opportunities allow banks to accumulate more net worth. A significant mass
of banks that are seemingly at the boundary of low size are of the low permanent types.
For them, even abnormally positive transitory draws are not sufficient to compensate for
a permanently low value of κ( j).
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Panel (d) of Figure 8 shows how the distribution of book leverage is shaped by size.
The plot reveals an interesting non-linearity in the relationship. Starting from low levels
of relative assets, book leverage marginally increases with size, as studies by Adrian and
Shin (2010) and others have pointed out. At the extreme, however, the largest banks have
only moderate leverage ratios of 5-7. These institutions have outgrown all constraints -
either in the form of the hard leverage constraint or the pressure of convex asset adjustment
costs. The largest banks in our economy are safe from the financial stability point of view.
At the same time, there is also a non-trivial share of small banks with very high leverage
ratios. These franchises are not profitable, have low levels of net worth, and cannot
outgrow the cost constraint. Importantly, a relevant notion of “risk” in our economy
would correspond to insolvency risk, which is cancelled out by the deposit insurance
scheme but could still matter ex-post if, for example, default was costly. Since small
banks are closer to fundamental insolvency, we do obtain concentration of leverage and
fundamental risk (Coimbra and Rey, 2023). This concentration, however, is in the left
tail of the size distribution. Importantly, we abstract from bank runs (Gertler et al., 2016;
Amador and Bianchi, 2021) or the presence of a “too big to fail” externality (Philippon and
Wang, 2022). Both frictions, especially the latter by definition, would disproportionally
impact large banks, thus skewing risk towards the right tail.

6 Aggregate Fluctuations

In this section we characterize model responses to aggregate and idiosyncratic shocks.
We begin by studying model behavior in response to aggregate TFP shocks. We pro-
ceed by investing the mechanism and isolating the contributions of different frictions.
Finally, we characterize model behavior in response to granular shocks, i.e., idiosyncratic
disturbances that hit only a specified subset of banks.

To obtain the plotted impulse responses with respect to an aggregate shock, we perform
the following computational steps. First, we run a simulation based on an already-solved
economy with I banks for T periods using only idiosyncratic shocks up until quarter T∗ -
represented on the figures by the vertical line. At time T∗ there is a quarterly innovation
to At that mean-reverts back to unity over time. Second, we run a second simulation
which is identical to the first except that there is not aggregate shock hitting at T∗. Third,
to obtain impulse responses we subtract the path of aggregates in the second simulation
from the path of aggregates in the first simulation.

6.1 Counter-Cyclical Idiosyncratic Risk

Figure 9 displays the effects of a one-standard deviation negative shock to aggregate TFP.
We compare three model specifications. First, the baseline case of heterogeneous banks
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Figure 9: The Role of Counter-Cyclical Risk
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Notes: impulse responses to an aggregate TFP shock. Baseline model with a-cyclical income risk (solid) vs.
representative bank (dashed) vs. baseline model with counter-cyclical income risk (dotted)

with a-cyclical idiosyncratic risk (solid line). Second, the case of heterogeneous banks with
counter-cyclical idiosyncratic risk (dotted line). Third, the limit case of a representative
bank (dashed line) which coincides with the GK economy.

In the baseline economy, a negative TFP shock generates a severe financial tightening
driven by a decline in the aggregate return on investment: the size of the banking sector
shrinks as both assets and net worth fall. The bank lending channel transmits onto non-
financial firms which, receiving less funding from the banks, produce less capital. As a
result, an economic recession ensues: total output, consumption, and hours all decline.

In line with our empirical evidence, both credit markups and deposit markdowns
increase. To gain intuition, it is useful to first focus on the banks’ liability side. Since the
risk-free rate is rising (and consumption falling), banks face an increase in the household’s
opportunity cost of holding deposits relative to mutual funds. To prevent deposit with-
drawals, banks raise their deposit rates more than proportionally relative to the risk-free
rate, leading to a counter-cyclical rise in the markdown, in line with what we observed in
the data. This is consistent with the household’s marginal liquidity preference for deposits
falling in a bad aggregate state. The rise in the deposit rate leads to an increase in banks’
marginal cost (although less than proportional, since the non-interest component of the
marginal cost is contracting as banks are shrinking in size). In turn, on the asset side,
banks shield their profits by raising the credit rate more than proportionally relative to
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their marginal cost, leading to a counter-cyclical rise in the credit markup. Interestingly,
and precisely because the deposit rate is an important component of banks’ marginal cost,
there is a strict interaction between market power on the liability side and market power
on the asset side of banks’ balance sheets. Furthermore, notice that the banking sector is
becoming more concentrated, as seen from the rising GINI coefficient.

Relative to the behavior of the representative-bank case, the baseline economy exhibits
noticeable amplification of both financial and macroeconomic aggregates, particularly
bank assets and total output. The intuition for this result is best understood by recalling
heterogeneity in the marginal propensity to lend (MPL). As Figure 6 had documented,
the average MPL in the baseline economy is higher than the MPL of the representative
(GK) intermediary. As such, this means that the baseline economy is more susceptible to
aggregate shocks.

An important result from Figure 9 concerns the economy with counter-cyclical income
risk. Recall that in this case, as soon as the negative aggregate shock hits the economy,
both µe,t and λϵ,t switch permanently to their corresponding low-state values such that
banks now draw from a more left-skewed density of ξ( j). Counter-cyclical risk gener-
ates significant amplification of aggregate fluctuations, on top of whatever amplification
heterogeneity adds to the representative-bank case. The response of output is up to fifty
percent larger in the Bewley Banks economy with counter-cyclical risk relative to the base-
line with a-cyclical risk. The financial crisis is also much more severe and pronounced
as bank assets and net worth collapse by 100% more. Counter-cyclicality of bank income
risk - a robust feature of the micro data - appears to be an important source of financial
and business cycle amplification.

6.2 Heterogeneity

Does bank heterogeneity per se matter for aggregate fluctuations? We now perform a
test that isolates the role of heterogeneity by shutting down bank market power, which
may have conflated our conclusions from Figure 9. Figure 10 displays the effects of an
aggregate negative TFP shock in two counter-factual cases: a heterogeneous bank perfect
competition economy (HBPC, solid line) and an economy with a representative perfectly
competitive bank (RBPC, dashed line). Thus, the latter case de facto corresponds to the
GK model. Recall that obtaining the HBPC economy entails (a) shutting down deposit
liquidity preferences by setting ν1 = 0 and (b) using the CES aggregator in (4) by choosing
γ1 = 0.

Figure 10 confirms that bank heterogeneity per se leads to amplification of aggregate
shocks: output contracts by up to 25% per cent more in the case of bank heterogeneity
relative to the representative-bank limit. As already suggested earlier, the intuition for
why heterogeneity leads to amplification lies in the presence of a large share of small
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Figure 10: The Role of Bank Heterogeneity
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Notes: impulse responses to a negative aggregate TFP shock. Heterogeneous banks and perfect competition
(solid) vs. representative bank and perfect competition (dashed).

banks with a large MPL, leading to a greater average ex-ante economywide MPL and a
substantial ex-post decline in net worth and bank assets12.

6.3 Market Power

In Figure 11 we inspect the role of two-sided bank market power. We compare impulse
responses to an aggregate shock in three alternative cases: (i) heterogeneous banks with
perfectly competitive credit and deposit markets (solid line); (ii) heterogeneous banks
with market power only on the credit side (dotted line); (iii) and heterogeneous banks
with market power only on the deposit side (dashed line). We find that credit market
power amplifies (although marginally) both real and financial aggregate fluctuations. The
intuition for this finding stems from credit markups being counter-cyclical. As discussed
earlier in the paper, in recessions banks raise credit rates more than proportionally relative
to marginal costs in order to compensate for falling franchise values with higher short-run
profits. The larger the credit rate increase following a negative aggregate shock, the larger
the decline in asset quantities and net worth. In turn, output and consumption all fall to

12This intuition is analogous to the logic of a large class of models with heterogeneous households, such
as in the influential two-agent and heterogeneous-agent New Keynesian (TA/HANK) literature (Galı́ et al.,
2007; Bilbiie, 2008; McKay and Reis, 2016; Kaplan et al., 2018; Hagedorn et al., 2019).
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Figure 11: The Role of Market Power
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a larger extent relatively to the case of perfect credit markets.
Conversely, deposit market power dampens aggregate fluctuations. In a recession,

since the risk-free rate is rising, the households’ opportunity cost of saving via deposits
rises. Hence, households have the incentive to shift demand away from deposits towards
mutual funds, whose return has increased. Banks try to preserve the demand for deposits
by raising deposit rates more than proportionally relative to the risk-free rate. As a result
depositors (households) are better able to smooth consumption, which leads to a more
muted contraction in output relative to the case of perfect deposit markets. Quantitatively,
the dampening effect of deposit market power is substantive, suggesting that the deposit
franchise is an important hedging resource for banks to navigate the cycle.

6.4 Fragile Bank Distribution

In our environment, the endogenous distribution of bank net worth is an important,
relevant state variable. As such, all aggregate responses to exogenous shocks depend
explicitly on its shape and condition. In this vein, business cycles can be a function of the
underlying degree of financial fragility of the banking cross section. In other words, our
model should be able to generate distributional aggregate state-dependency.

We operationalize this idea by comparing aggregate dynamics in the baseline case with
what we label as the “fragile” economy. The fragile economy is such that, in period T∗−1,
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Figure 12: Fragile Banking Distribution
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a negative financial shock has caused a leftward shift in the distribution of bank capital
ratios - defined as book net worth over book assets. This distribution is characterized by
a lower mean and a higher right-skewness. We obtain impulse responses for the fragile
economy in a similar way as before. We run two model simulations, both using only
idiosyncratic shocks and with the fragility-inducing financial shock occurring at T∗ − 1.
We assume that this shock lasts for 2 quarters. We further assume that the negative TFP
shock takes place at T∗ in the first simulation but not in the second. Taking the difference
in responses across the two simulations gives us the desired result.

Figure 12 plots impulse responses to an aggregate negative TFP shock under two
different scenarios. In this experiment, a negative aggregate shock that occurs once the
banking sector is already fragile generates a significantly more severe financial and real-
economy contractions. The excess contraction scales with the duration and severity of the
prior financial shock. The mechanism for this outcome relies on the MPL heterogeneity
logic: the fragile economy features a higher starting average MPL because a greater
number of banks are close to very low or zero net worth. As a result, any subsequent
negative aggregate shock has larger effects on the economy.
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Figure 13: The Role of Granularity
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Notes: impulse responses to granular return shocks (red histogram) vs. idiosyncratic return shocks to all
banks (blue histogram) vs. aggregate TFP shock (dashed line)

6.5 Granular Banks

We have seen previously that, conditional on counter-cyclical mean and pro-cyclical skew-
ness, idiosyncratic disturbances significantly amplify aggregate fluctuations. But can
idiosyncratic shocks only to granular banks, i.e., banks in the top quintile of the size dis-
tribution, generate a realistic-looking business cycle? In other words, we are now testing
explicity whether our model can delivery granular bank dynamics.

In Figure 13, we show the results of an exercise that involves comparing impulse
responses across three sets of specifications. First, we simulate an economy with only
idiosyncratic shocks. In period T∗, only banks in the largest quintile of the distribution
of assets experience a drop in the mean and in the skewness of the idiosyncratic shock
density. We label this as the “granular shock” and represent it with red histograms on
the Figure. Nothing changes for the remaining four quintiles and aggregate TFP remains
constant. In an alternative simulation, the granular shock does not takes place. Taking
differences across simulations delivers the first set of impulse response functions (IRFs).
Second, we simulate an economy with only idiosyncratic shocks and in period T∗ all banks
experience a drop in the mean and in the skewness of the idiosyncratic shock density, all
the while aggregate TFP remains constant. In a second simulation, the countercyclical
income risk shock does not take place and taking differences across simulations gives the
second set of IRFs. This case is represented with blue histograms on the Figure. Finally,
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the third case is the usual simulation of a one-standard deviation negative TFP shock that
occurs in T∗, as discussed before.

Two observations are in order. First, granular shocks can account for almost all of
the variation in real and financial variables induced by idiosyncratic shocks. Hence,
the top quintile of the size distribution acts as a ”sufficient statistic” for the impact of
bank-level idiosyncratic shocks on the business cycle. Second, granular banking shocks
cause a contraction in output that is about 40% of that generated by a negative aggregate
TFP shock. In addition, granular shocks account for a significantly larger share of the
response of financial variables - assets and net worth - relative to the case of an aggregate
shock. The bank size distribution in our economy is very concentrated - as it is in the
data. A small share of intermediaries controls a substantive share of both loans and
deposits. Idiosyncratic disturbances to those largest banks can by themselves generate
realistic financial and business cycles. As a result, our model endogenously generates
what regulators in practice call “systemically important banks” or SIBs.

7 Banking and Economic Crises

In this section we use our model to characterize banking and economic crises. We employ
an event study approach. We simulate any given economy for 5,000 periods and define
an event as a decline in output of 2.5 standard deviations below the average. This is
chosen because the contraction in output during the Great Recession was roughly a 2.5
standard-deviation shock. We store the path of every relevant variable on the interval of
some periods before to some periods after the event occurs. Then, we take the averages
across events.
In Figure 14 we compare the baseline model with heterogeneous banks and counter-
cyclical idiosyncratic risk (solid line) with a model characterized by only a representative
bank (dashed line). As it is clear the economy with heterogeneous banks is able to track
the behavior of output observed during the Great Recession (dotted line) relatively well,
whereas the economy with a representative bank is able to account for less than half of the
trough in output. In general, the model with heterogeneous banks generates much steeper
contractions in banks’ assets and net worth around a financial crisis episode relative to the
model with only a representative bank. The reason for why financial crises are sudden and
sharper in the economy with heterogeneous banks and idiosyncratic shocks is twofold.
First, idiosyncratic risk is counter-cyclical. Second, the average MPL is larger than the
MPL in the economy with only a representative bank.
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Figure 14: Banking and Economic Crises
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Notes: banking crisis event under the baseline model (solid line) vs crisis event under a representative bank
model (dashed line) vs data (dotted line).

Capital Requirements Finally, we turn to the role of macroprudential regulation, which
has been the object of a large literature in macroeconomics and banking. We study whether
capital requirements can mitigate the loss of output during crises. Figure ?? illustrates the
results of this experiment. We present two alternative crisis scenarios. In one scenario
(solid line) the banking sector is characterized by low capital requirements, whereas
in the alternative scenario (dashed line) capital requirements are doubled. Doubling
capital requirements improves financial stability and dampens economic contractions in
typical model-simulated recessions. The reduction is, however, quantitatively small and
is potentially not justified given that capital requirements generate lower levels of lending
and production in the high-regulation steady state. TM EXPAND THIS SECTION?
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Figure 15: Capital Requirements and Crises
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Notes: banking crisis event with low capital requirements (solid line) vs banking crisis event with high
capital requirements (dashed line) vs data (dotted line).

8 Conclusions

We have developed a new tractable, dynamic stochastic general equilibrium framework
with two-sided monopolistic competition and uninsurable idiosyncratic return risk in
the financial sector. Our setup builds on the canonical macro-banking models of Gertler
and Kiyotaki (2010) and Gertler and Karadi (2011) and nests them as special cases. The
simultaneous assumptions of local decreasing returns to scale and idiosyncratic return
risk break scale invariance, a feature that typically characterizes the models with a repre-
sentative intermediary. Because the marginal value of net worth and the optimal leverage
ratios are now both size-dependent, a time-varying distribution of bank characteristics
emerges in equilibrium. With aggregate uncertainty, the distribution of bank net worth
becomes a time-varying endogenous state variable.

Our framework matches a series of stylized facts of the banking data: (i) heterogeneity
and right-skewness in the distribution of banks’ assets and deposits; (ii) a power-law dis-
tribution of bank size; (iii) a significant degree of granularity; (iv) time-varying two-sided
market power, and (v) counter-cyclical idiosyncratic rate of return risk, resulting from
pro-cyclical skewness. Our Bewley Banks model is consistent with the empirical proper-
ties (i)-(v). Relative to a model with a representative bank, the model delivers significant
amplification of real and financial variables in response to aggregate shocks. This is due to
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two main forces simultaneously at play: pro-cyclical skewness of idiosyncratic risk, and
an average marginal propensity to lend which is larger than the one in the corresponding
representative bank economy.

Our Bewley Banks framework is tractable and portable. We envision at least three
extensions for future research. First, introducing nominal rigidities to study how bank
heterogeneity affects the transmission mechanism of monetary policy. Second, using
our Bewley Banks environment to study unconventional credit policies such as bank-
level equity injections, possibly when the economy has hit the effective lower bound on
interest rates. Third, relaxing the closed economy assumption to characterize the different
behavior of domestic vs. global banks.13
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A Empirical Appendix

A.1 Data Details

This section provides details on our data work. Table A1 summarizes all series that are
used throughout the paper. The main source of data for us is the Consolidated Report
of Condition and Income, known as the Call Reports. This dataset covers all U.S. banks
that are regulated by the Federal Deposit Insurance Corporation (FDIC). We focus on
commercial banks, a list that includes depository trust companies, credit card companies
with commercial bank charters, private banks, development banks, and limited charter
banks. The sample runs over the 1984:1-2020:1 period. The level of aggregation is on an
individual bank level, identified with the Federal Reserve identifier (RSSID). Throughout,
we restrict the sample to observations with non-negative equity (RCFD3210). We have
identified bank exits that are due to mergers or acquisitions using the Call Reports’
Transformation Table and control for them by discarding observations when they occur.

Our measure of U.S. GDP growth, which is shown on Figure 1, is real Gross Domestic
Product obtained from the St. Louis Federal Reserve (FRED database). The series has been
logged and filtered with the Hodrick-Prescott filter under the usual smoothing parameter
1,600. Our measure of total bank assets is the variable RCFD2170, deflated with the
CPI index. Estimated loan markups and deposit markdowns, plotted on Figure 1, have
been deflated by the CPI index and winsorized at the 1% and 99% levels (computed for
each quarter separately). Panels (a) and (b) show quarterly time-series that have been
computed by taking equal-weighted averages, which are then logged and HP-filtered.
The two panels report correlation coefficients of markups and markdowns with respect to
GDP growth; both values (negative 0.49 and negative 0.48) are statistically significant at
the 1% level. Panels (c) and (d) show binned scatter plots with 100 equally-sized bins, with
(log) real assets on the x-axis and markups/markdowns in level on the y-axis. Dependent
and independent variables have been residualized from the quarter fixed effect.

The Return on Loan (RoL) variable, which is displayed on Figure 2, is constructed as
the ratio of interest income on loans (RIAD4010) to total loans (RCFD2122). We replace
any missing values of total loans with loans net of unearned income and loss allowance.
We drop all observations with the level of RoL less than zero. RoL growth is constructed
by log-differencing at the bank level. The variable has been winsorized at the 1% and 99%
levels (computed for each quarter separately). Expansions and recessions are defined by
the NBER criterion. On Panel (b), time series of the mean and skewness of RoL growth are
computed by computing the quarterly unweighted average and unweighted statistical
skewness, respectively. The series have been first HP-filtered and then run through a
moving-average filter with four lags (quarters). Correlation coefficients of the resulting
objects with GDP (which has been logged and HP-filtered) are 0.56 and 0.54, respectively,
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and both statistically significant at the 1% confidence level.
In Figure 3 the variable on the y-axis of Panel (a) is total assets. Similar results

obtain if we use total loans: the GINI coefficients in 1984:1 and 2020:1 were 0.85 and 0.93,
respectively. The variable on the y-axis of Panel (b) is total domestic deposits (RCON2200).

Table A1: Variable Details and Sources

Variable Details Source

GDP U.S. real Gross Domestic Product, chained 2012 dol-
lars

FRED (GDPC1)

Consumption GDP minus Real Gross Private Domestic Investment FRED (GDPC1-GPDIC1)
Hours Nonfarm business sector: hours worked for all

workers
FRED (HOANBS)

Inflation Consumer price index for all urban consumers: all
items in U.S. city average

FRED (CPIAUCSL)

Assets Total assets of U.S. commercial banks Call Reports (RCFD2170)
Loans Total loans of U.S. commercial banks Call Reports (RCFD2122)
Equity Total equity of U.S. commercial banks Call Reports (RCFD3210)
Deposits Total domestic deposits of U.S. commercial banks Call Reports (RCON2200)
Interest income on loans Total interest income on loans and leases of U.S. com-

mercial banks
Call Reports (RIAD4010)

Loan markups Estimation procedure is detailed in Appendix A.2 Authors’ calculation
Deposit markdowns Estimation procedure is detailed in Appendix A.2 Authors’ calculation
Interest expense Bank interest expenses on domestic deposits Call Reports (RIAD4170-

RIAD4172)
Expenses Bank interest and non-interest expenses Call Reports

(RIAD4073+RIAD4093)
Non-interest expense Bank non-interest expenses Call Reports (RIAD4093)
Staff cost Bank expenses on staff Call Reports (RIAD4135)
Securities Bank holdings of securities Call Reports

(RCFD1754+RCFD1773)
Non-interest income Bank non-interest income Call Reports (RIAD4079)
Fed Funds Bank holdings of Federal Funds and repos Call Reports (RCFD3365)
Fed Funds income Interest income on Federal Funds and repos Call Reports (RIAD4020)
Fed Funds expense Interest expense on Federal Funds and repos Call Reports (RIAD4180)
U.S. Treasuries Bank holdings of Treasuries and agency debt Call Reports (RCFDB558)
Income on U.S. Treasuries Interest income on Treasuries and agency debt hold-

ings
Call Reports (RIADB488)

Deposits charge Service charges on domestic deposits Call Reports (RIAD4080)
Net income Net income of commercial banks Call Reports (RIAD4340)

Notes: This table summarizes every empirical series used throughout the paper.
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Data for Model Calibration We now provide further details on the data that has been
used for model calibration. The steady-state level of hours (0.3) represents the share of
non-sleeping time that labor market participants in the U.S. spend on working according
to the American Time Use Survey (ATUS). It is also a usual value used in the literature (Lee
et al., 2020). Average loan markup and deposit markdown targets have been computed
by taking an unweighted average of the quarterly asset-weighted averages of the pooled
distributions of the estimated µk

j,t and µb
j,t. The corresponding values in the model are

average markups µk( j) and markdowns µb( j), weighted by assets k( j).
Average commercial bank leverage has been computed by taking the unweighted

average across all banks and quarters of the ratio of total loans to total equity. We discard
the vales of leverage below 100. Markup and markdown elasticities of bank size have
been estimated by running panel regressions of (log) markups or markdowns on (log) real
total bank assets. For these regressions, both markups and markdowns have been first
cleaned from the bank-specific averages. Panel regressions include quarter fixed effects.
Commercial bank assets and deposits GINI coefficient targets are computed for 2020:1.

Standard deviation of output growth (σY) has been computed from the logged and
HP-filtered U.S. real GDP. Consumption data is computed as the difference between real
GDP and real private gross investment, following Nuno and Thomas (2017). Labor data
is the total hours worked for all workers in the nonfarm business sector (HOANBS),
from FRED. All correlation coefficients have been computed on pairs of variables that
have been logged and HP-filtered. Correlation coefficient ρK,Y is computed for the pair
of output and bank loans. The latter is our standard variable from the Call Reports.
Coefficient ρK,Y measures the correlation between output and bank equity. ρLEV,Y is the
correlation coefficient between output and book leverage, defined as total loans divided
by total equity. Finally, ρµk,Y ρµb,Y are correlation coefficients for loan markups and deposit
markdowns, respectively.
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A.2 Credit Markup and Deposit Markdown Estimation

Loan Markups This section describes how we estimate loan markups and deposit mark-
downs from U.S. bank-level data. This section follows closely the procedure and descrip-
tion in Bellifemine et al. (2022). We begin with markups, which we define for bank i in
quarter t as follows:

µk
j,t =

p j,t

c j,t

where p j,t is realized interest income on loans and leases divided by total loans and leases,
and c j,t is defined as the sum of the ratio of realized interest expenses on domestic deposits
and Fed Funds over total deposits and Fed Funds plus marginal net non-interest expenses.
Marginal net non-interest expenses are constructed as marginal non-interest expenses
minus marginal non-interest income. We estimate marginal non-interest expenses with a
trans-log panel fixed-effects regression:

log(NIE j,t) = βi + βt + βl,1 log(l j,t) + βw,1 log(w j,t) + βq,1 log(q j,t)

+ βl,2 log(l j,t)2 + βw,2 log(w j,t)2 + βq,2 log(q j,t)2 + βl,w log(l j,t) log(w j,t) (A1)

+ βl,q log(l j,t) log(q j,t) + βw,q log(w j,t) log(q j,t) + ϵ j,t

where NIE j,t is non-interest expenses, βi and βt are bank and time fixed effects, respectively,
total loans and leases are denoted by l j,t, w j,t is staff expenses, computed as the ratio of
salaries over assets, and q j,t is total holdings of securities. Further details on variables
used are provided in Table A1. From (A1) we obtain marginal non-interest expenses as the
partial derivative of non-interest expenses with respect to loans:

MNIE j,t ≡
∂ log(NIE j,t)
∂ log(l j,t

=
NIE j,t

l j,t

[
βl,1 + 2βl,2 log(l j,t) + βl,w log(w j,t) + βl,q log(q j,t)

]
Marginal non-interest income estimation follows a similar procedure. This time, how-

ever, we do not include inputs into the list of regressors and the dependent variable is
now (log) non-interest income:

log(NII j,t) = βi + βt + βl,1 log(l j,t) + βq,1 log(q j,t) + βl,2 log(l j,t)2

+ βq,2 log(q j,t)2 + βl,q log(l j,t) log(q j,t) + ϵ j,t

As before, marginal non-interest income is defined as the derivative of non-interest income
with respect to loans:

MNII j,t ≡
∂ log(NII j,t)
∂ log(l j,t)

=
NII j,t

l j,t

[
βl,1 + 2βl,2 log(l j,t) + βl,q log(q j,t)

]
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Finally, we define marginal net non-interest expenses, MNNIE as the difference be-
tween marginal non-interest expenses and marginal non-interest income:

MNNIE j,t =MNIE j,t −MNII j,t

Deposit Markdowns We now proceed with deposit markdown estimation by following
a similar recipe as before. We define a markdown for bank j in quarter t as:

µb
j,t =

c j,t

p j,t

where p j,t is now a proxy for “safe revenue” that bank j collects in period t and c j,t

now represents the marginal cost that bank j must incur in order to raise an extra unit
of deposits and maintain the franchise. We measure p j,t as the ratio of realized interest
income from Federal Funds, U.S. Treasuries, and agency debt holdings divided by total
Fed Funds, U.S. Treasuries, and agency debt holdings. As before, c j,t is now defined as
the sum of two objects: the ratio of interest expenses on domestic deposits (net of service
charges on domestic deposits) over total domestic deposits, plus marginal net non-interest
expenses.

We compute marginal net non-interest expenses as marginal non-interest expenses
minus marginal non-interest income. We estimate marginal non-interest expenses with a
trans-log panel fixed-effects regression, which is very similar in nature to the one we used
for credit markups:

log(NIE j,t) = αi + αt + βl,1 log(l j,t) + βw,1 log(w j,t) + βq,1 log(q j,t) + βd,1 log(d j,t) (A2)

+ βl,2 log(l j,t)2 + βw,2 log(w j,t)2 + βq,2 log(q j,t)2 + βd,2 log(d j,t)2

+ βl,w log(l j,t) log(w j,t) + βl,q log(l j,t) log(q j,t) + βw,q log(w j,t) log(q j,t)

+ βl,d log(l j,t) log(d j,t) + βw,d log(w j,t) log(d j,t) + βq,d log(q j,t) log(d j,t) + ε j,t

where d j,t denotes total domestic deposits,1 while the definition of all other variables is
the same as before.

From (A2) it is straightforward to obtain marginal non-interest expenses as the deriva-
tive of non-interest expenses with respect to deposits:

MNIE j,t =
∂ log(NIE j,t)
∂ log(d j,t)

=
NIE j,t

d j,t

[
βd,1 + 2βd,2 log(d j,t) + βl,d log(l j,t) + βw,d log(w j,t) + βq,d log(q j,t)

]
Estimation of marginal non-interest income relies on the exact same procedure, with

the usual caveat that we drop inputs from the right-hand side of the regression and the

1Like us, Fries and Taci (2005) also use both deposits and loans as proxies for bank-level output.
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dependent variable is now (log) non-interest income:

log(NII j,t) = αi + αt + βl,1 log(l j,t) + βq,1 log(q j,t) + βd,1 log(d j,t)

+ βl,2 log(l j,t)2 + βq,2 log(q j,t)2 + βd,2 log(d j,t)2

+ βl,q log(l j,t) log(q j,t) + βl,d log(l j,t) log(d j,t) + βq,d log(q j,t) log(d j,t) + ε j,t

Figure A1: Loan Markups and Deposit Markdowns

(a) Credit Markups
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(b) Deposit Markdowns
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Notes: This figure plots time series of loan markups and deposit markdowns, computed as quarterly unweighted averages.

Marginal non-interest income is defined as the derivative of non-interest income with
respect to deposits:

MNII j,t =
∂ log(NII j,t)
∂ log(d j,t)

=
NII j,t

d j,t

[
βd,1 + 2βd,2 log(d j,t) + βl,d log(l j,t) + βq,d log(q j,t)

]
Finally, marginal net non-interest expenses, MNNIE, are computed, analogously to be-

fore, as the difference between marginal non-interest expenses and marginal non-interest
income:

MNNIE j,t =MNIE j,t −MNII j,t

Figure A1 plots the resulting estimated time series of µk
t and µb

t , computed as quarterly
unweighted averages of µk

j,t and µb
j,t, respectively. Note that µk

t and µb
t are reported in

levels, unlike in Figure 1 where they are HP-filtered. Three observations are apparent
from Figure A1. First, loan markups have been trending up consistently over the past
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decade, reaching values of above 2 (in gross terms) by 2020. The rise of markups is
concentrated around crisis episodes, which is consistent with their counter-cyclicality as
we documented before.

Second, deposit markdowns do not exhibit any clear time-series trend. Instead, µb
t as a

first-order approximation is stationary and centered around 0.85. The markdown is also
visibly counter-cyclical, in terms of its unconditional behavior. The markdown is most of
the time below unity, implying presence of deposit market power. In early 1990s and early
2010s, µb

t climbed to levels of above unity. This is consistent with the spread between the
deposit rate and the risk-free rate vanishing to zero during the same episodes (Drechsler
et al., 2017).
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A.3 Additional Empirical Results

This section presents additional empirical results that supplement our findings in the
main text. We begin with a validation check of our measures of loan markups and
deposit markdowns. A viable proxy of market power should correlate with measures
of profitability. That is, banks that charge high markups or low markdowns should,
on average, earn more for the same unit of assets, everything else equal. We test this
idea directly by computing bank Return on Assets (RoA) as a ratio of net income over
total assets. Figure A2 shows binned scatter plots of RoA on the x-axis and markups
(markdowns) on the y-axes of Panel A (Panel B). For both panels, it is clear that market
power correlates strongly with higher profits. This result gives more credence to our
estimation procedure.

Figure A2: Bank Market Power and Profitability

(a) Credit Markups and RoA
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(b) Deposit Markdowns and RoA
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Notes: This Figure plots binned scatter plots of credit markups and deposit markdowns on the y-axes and Return on Assets on the
x-axis. Variables have been residualized from the time fixed effect. Each panel features 100 equally-sized bins.

Next, we present two tests of robustness. In main text, our reported quarterly series
of markups and markdowns are unweighted averages of bank-level distributions. It is
known in the literature that aggregate properties of markups could be affected by how
aggregation is performed. We now compute size-weighted average quarterly series µk

t

and µb
t with total assets as a proxy for bank size. As usual, we HP-filter (logged) µk

t and
µb

t and report them alongside U.S. GDP in Figure A3. Cyclical behavior of µk
t and µb

t is
preserved: both are still counter-cyclical with pairwise correlation coefficients with respect
to output equal to -0.29 and -.34, respectively, and statistically significant at the 1% level.
Size-weighted aggregation therefore mutes the cyclicality of markups and markdowns
over the cycle, which is consistent with the idea of market power of large banks (such as,
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e.g. the deposit franchise) being more sticky or stable across time.

Figure A3: Bank Market Power - Size-Weighted Averaging

(a) Credit Markups over the Cycle
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(b) Deposit Markdowns over the Cycle
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Notes: This Figure plots time series of loan markups and deposit markdowns, which have been computed with weighted quarterly
averaging. Bank-level total assets are used as weights.

The second check of robustness involves our other key empirical result: counter-
cylicality of loan income risk. In main text, we document that the first and third moments
of the distribution of bank-level quarterly return on loan (RoL) growth are heavily pro-
cyclical. The level of aggregation in that finding was an individual bank. There is a
concern that this result would not hold at the level of bank holding companies. We check
whether this is the case by re-doing the exercise for the bank holding company level.
Figure A4 reports the densities of holding-level RoL growth in recessions and expansions
(on Panel A) and time series of the unweighted mean and skewness (on Panel B). The basic
takeaway from this test is that the level of aggregation does not influence our results. Bank
income risk is counter-cyclical, driven by expansions of the left tail (greater downside risk)
in recession. Correlation coefficients of mean and skewness of holding-level RoL growth
with U.S. GDP are 0.55 and 0.30, respectively, both statistically significant at the 1%.
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Figure A4: Loan Income Risk of Bank Holding Companies
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(b) Cyclicality of RoL Growth Moments
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Notes: This figure reports counter-cyclicality of bank income risk at the level of bank holding companies.
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B Model Appendix

B.1 Model Details

Household Problem The representative household solves an intertemporal constrained
maximization problem subject to a sequence of flow budget constraints and the deposit
aggregator. The choice variables in every period are consumption Ct, labor hours Lt,
bank-specific deposit savings

∫
bt( j), and savings in the mutual fund Mt. The problem

takes the following form:

maxEt

∞∑
j=0

β jU
(
Ct+ j,Lt+ j,Bt+ j

)
s.t. the sequence of:

Ct +

∫ 1

0
bt( j)dj +Mt ≤ RtMt−1 +

∫ 1

0
Rb

t ( j)bt−1( j) + LtWt +Divt + Tt

Bt =

[∫ 1

0
bt( j)

θb+1
θb dj

] θb
θb+1

The flow utility function is non-separable in hours and separable in deposit holdings:

U(Ct,Lt,Bt) = 1
1−ϕ

(
Ct − χ1

L1+χ2
t

1+χ2

)1−ϕ

+ ν1
B1−ν2

t
1−ν2

. The first-order condition with respect labor

hours is standard. Note that the non-separability assumption ensures that the marginal
utility of consumption does not enter the equation and, thus, the labor supply block can
be determined independently from the savings block:

Lt =

(
Wt

χ1

)− 1
χ2

(B1)

The first-order condition with respect to Mt yields a condition that pins down the
risk-free rate:

βEt

[
UC,t+1(Ct+1,Lt+1,Bt+1)

UC,t(Ct,Lt,Bt)

]
=

1
Rt+1

where UC,t(Ct,Lt,Bt) ≡
(
Ct − χ1

L1+χ2
t

1+χ2

)−ϕ
. The first-order condition with respect to bt( j)

yields:

UB,t (Ct,Lt,Bt)
θb

θb + 1

(
bt( j)
Bt

) 1
θb θb + 1
θb

−UC,t(Ct,Lt,Bt) + βUC,t+1(Ct+1,Lt+1,Bt+1)Rb
t+1 = 0

where UB,t (Ct,Lt,Bt) ≡ ν1B−ν2
t . Simple algebra then delivers Equation (B2) in main text:
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Rb
t+1( j) = Rt+1

1 −

UB,t (Ct,Lt,Bt)
UC,t (Ct,Lt,Bt)

(
bt( j)
Bt

) 1
θb


 (B2)

Bank Problem We now derive the Lerner decomposition for the price of claims. Each
bank solves:

maxV(s; S) = Es,S{Λ
′(S’,S) [(1 − σ)n′ + σV′(s’; S’)]}

subject to:

n′ = ESRT′(s’; S’)qk − Rb′b − ζ1kζ2

b + n = k

λk ≤ V(s; S)

as well as the laws of motion of the distribution and stochastic processes. The value
function can be simplified in several steps. First, we define an augmented stochastic
discount factor as:

Λ̃(s’; S’) ≡ Es,S{Λ
′(S’,S) [(1 − σ) + σV′(s’; S’)]} (B3)

Define λ̃(s; S) as the Lagrange multiplier with respect to the leverage constraint. Plug-
ging in the balance sheet constraint into the law of motion of net worth grants a simplified
value function:

V(s; S) = Es,SΛ̃(s’; S’)RT′(s’; S’)qk − Rb (k − n) − ζ1kζ2 + λ̃(s; S) (V(s; S) − λk) (B4)

The first-order condition of Equation (B4) with respect to the choice of claims k yields:

Es,SΛ̃(s’; S’)RT′ ε(s; S) − 1
ε(s; S)

q − Rb
− λ̃ (s; S)λ = ζ1ζ2kζ2−1 (B5)

where ε(s; S) is the credit demand elasticity. Re-writing yields a Lerner decomposition
for the price of claims, as in main text:

q =
ε(s; S)
ε(s; S) − 1

Rb + λ̃ (s; S)λ + ζ1ζ2kζ2−1

Es,SΛ̃(s’; S’)RT′
(B6)

Firm Problem The representative capital good producing firm solves a zero-profit, cost
minimization static problem every period:

min qt( j)kt( j)

13



subject to: ∫ 1

0

[(
kt( j) − γ̃t

) θk−1
θk dj

] θk
θk−1

= Kt

where γ̃ ≡ γ1Kγ2
t . The inverse demand function is:

kt( j) =
(

qt( j)
Qt

)−θk

Kt + γ̃t (B7)

where Qt is the aggregate price index. We can re-write it as:

qt( j)
Qt
=

(
kt( j) − γ̃t

)− 1
θk K

1
θk (B8)

Define the credit demand elasticity as follows:

εt( j) ≡ −
qt( j)
Qt

kt( j)
∂
(

qt( j)
Qt

)
∂kt( j)

(B9)

The derivative term equals
∂
(

qt( j)
Qt

)
∂kt( j) = −

1
θk

(
kt( j) − γ̃t

)−1
θk
−1 K

1
θk . Substitution and algebra

yields:

εt( j) = θk
kt( j) − γ̃t

kt( j)
(B10)

Plugging (B10) into (B6) yields the desired equation.
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B.2 Additional Results

This section reports additional model-based results which supplement main text. DIS-
CUSS GRANULAR CRISES. Table B1 summarizes business cycle fluctuations across all
specifications discussed in the paper. The baseline model (column (1)) features both per-
manent and transitory heterogeneity as well as both credit and deposit market power.
The baseline model has been calibrated to match select empirical targets, as per Table
(1). In each subsequent column from (2) to (4) we report standard deviations - relative to
column (1) - of select macroeconomic and financial variables, obtained from a 5,000 period
simulation of each corresponding model specification. In column (6) we report standard
deviations relative to the low capital-requirement specification in column (5).
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Table B1: Business Cycle Fluctuations: All Specifications

Relative to Baseline Relative to Low CR

(1) (2) (3) (4) (5) (6)

Macro Aggregate
Baseline
Model

Only TFP
Shocks

Idiosyncratic
Shocks to

Large Banks

Represen-
tative Bank

Low
Capital

Require-
ments

High
Capital

Require-
ments

Output, Yt 1 0.65 0.46 0.57 1 0.84
Consumption, Ct 1 0.55 0.62 0.49 1 0.78
Hours, Lt 1 0.73 0.45 0.61 1 0.85
Bank Assets, Kt 1 0.36 0.67 0.27 1 0.76
Bank Net Worth, Nt 1 0.13 0.85 0.10 1 0.60
Bank Deposits, Dt 1 0.40 0.64 0.29 1 0.84
Credit Rates, Qt 1 0.40 1.14 0.09 1 0.66
Deposit Rates, Rb

t 1 0.98 0.42 0.26 1 0.81
Credit Markups, µk,t 1 0.51 0.65 0.37 1 0.68
Deposit Markdowns, µb,t 1 0.09 0.98 0.07 1 0.71

Notes: This table summarizes model-implied business cycle fluctuations across tested specifications. Columns report standard
deviations of variable from model simulations.

Three points are worth highlighting. First, shutting down either counter-cyclical
idiosyncratic shocks (column (2)) or bank heterogeneity (column (4)) considerably reduces
macroeconomic volatility. Second, idiosyncratic shocks to large banks (column (3)) -
defined as banks with in the highest quintile of the κ( j) distribution of permanent income
- by themselves can account for roughly half of business cycle fluctuations. Third and
finally, doubling capital requirements from λ = 0.12 to λ = 0.24 - conditional on the
leverage constraint always binding - reduces business cycle fluctuations by about 16%-
22% (column (6)).
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B.3 Numerical Methods

This section provides details on the computational algorithm that we use to solve our
model. It is a variant of the canonical approach developed by Krusell and Smith (1996,
1998). In order to eventually solve the baseline model with aggregate uncertainty, we
proceed with the following these steps:

I. Solve a simpler model without aggregate uncertainty.

The full model features an endogenous aggregate state variable N, for which we
need to construct an exogenous grid. Before doing so, it is useful to solve for a
stationary equilibrium and determine the steady-state value of Nss. Specifically, we
normalize the value of aggregate productivity A to unity and solve a version of
the model that resembles the Aiyagari (1994) framework with endogenous capital
accumulation. The special case of our model without aggregate risk is essentially
an Aiyagari (1994) model augmented with financial intermediation, which in turn
features heterogeneity and imperfect competition.

We solve for the stationary equilibrium on a discrete grid and use interpolation
to obtain value and policy function values on off-grid points. For the household
problem, we choose an exponential grid for initial deposit holdings b−1 with nb = 200
points. We solve the household problem with linear time iteration (Rendahl, 2017).
For the bank problem, we set up an exponential grid for net worth n( j) with nn = 12
points. We discretize the distribution of permanent returns κ( j) by first drawing a
large array of random numbers from a Pareto I density with the shape parameter
α = 1. The constant κm has been normalized such that the distribution’s median value
is unity. Then, we define 5 permanent return types with the quintiles of the drawn
values. We discretize the distribution of left-skewed transitory risk ξt( j) with nξ = 5
nodes. To this end, we use a variant of the Tauchen and Hussey (1991) approach
which has been modified to handle the case of non-Gaussian shocks. First, we use
the Tauchen and Hussey (1991) method to obtain a matrix of transition probabilities
for a stochastic process ξ with volatility σϵ and persistence ρϵ as if it was Normally
distributed. Second, we draw a large number of random variables from the Hansen
(1994) Skew-t density conditional on the chosen diad {λϵ, η}. The grid for ξ takes on
the values of the quintiles of the resulting draw. The median of the grid is normalized
to one, and the only difference from the standard case is that our grid is left-skewed.
How much more left-skewed it is relative to the Gaussian baseline is controlled by λϵ.
We can recover Gaussian nodes under a special case of symmetry, i.e. when λϵ = 0.
We solve the bank problem by finding a fixed point V∗ with value function iteration.

II. Solving the baseline model with aggregate uncertainty.
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• Preliminaries.
Having solved for the stationary equilibrium, we build an equally-spaced grid
with nk = 4 for aggregate bank net worth N, centered around its stationary
steady-state value Nss. We assume that aggregate productivity takes on two
values: {Ah,Al

} with Ah
− Al = ∆a chosen as per the calibration table (1) and

the discussion surrounding it. The probability matrix that governs transitions
across aggregate states is πa. Now that we have aggregate risk, transitory risk ξ
becomes aggregate state-dependent. We assume that high-productivity Ah states
are characterized by ξ that is drawn from a Skew-t distribution withλϵ = 0 while
the low-productivity Al state features ξ drawn from a Skew-t distribution with
λϵ = −0.5. That is, banks face Gaussian idiosyncratic shocks in normal states
and left-skewed non-Gaussian shocks with a greater downside in bad states.

• Law of motion of the distribution.
A crucial aspect of our numerical solution is how we deal with the endogenous,
time-varying distribution of banks µt. We follow Krusell and Smith (1998) and
assume that banks build limited-information forecasts based on the end-of-
period aggregate net worth Nt+1 =

∫
nt+1( j)dµt as well as the level of At. The

limited-information aggregate state vector is thus given by St = (Nt,At). We
conjecture that the equilibrium mapping Γ is log-linear:

A = Ah : log Nt = β
h
0 + β

h
1 log Kt (B11)

A = Al : log Nt = β
l
0 + β

l
1 log Kt (B12)

The fixed point for Γ is given by the vector
(
β∗h0 , β

∗h
1 , β

∗l
0 , β

∗l
1

)
.

• Projection methods.
The mapping Γ transitions the distribution of net worth intertemporally. How-
ever, banks and the household must also form beliefs over additional aggregate
objects intratemporally. Specifically, agents take as given the following aggre-
gate variables:

(
Bt,Qt,Kt,Wt,Rb

t ,Ct,Lt,Λt

)
. We employ linear projection methods

and assume and later verify that St is an absorbing aggregate state. That is, once
agents know St they can correctly predict every other relevant aggregate. For
every relevant aggregate variable Xt in

(
Bt,Qt,Kt,Wt,Rb

t ,Ct,Lt,Λt

)
, we assume

that agents form the following projection:

A = Ah : log Xt = β
x,h
0 + β

x,h
1 log Nt (B13)

A = Al : log Xt = β
x,l
0 + β

x,l
1 log Nt (B14)

where again note the dependency on the value of At. Denote ΓX the collection
of projection rules. Now, let superscript (i) denote an iteration of the algorithm.
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We now run the following steps:

(I) Solve the problem of the banks.

Start with some initial value for the law of motion of the distribution Γ(i) and
projections ΓX(i). Solve the dynamic banking problem with value function
iteration and obtain candidates {V, k, b j, q,Rb

}
(i).

(II) Solve the problem of the household.

Solve the household problem with linear time iteration, conditional on the
candidate forecasts {ΓB,ΓW,ΓRb

}
(i). Obtain new candidates for {C,L,Λ}(i).

(III) Montecarlo Simulation.

Simulate the model with a panel of I = 1, 000 banks for T = 1, 000 periods.
In each period, compute the end-of-period aggregate net worth Nt as well as
every other aggregate variable using explicit aggregation and without using
the forecasting rules.

(IV) Update laws of motion.

Using the simulated data, run OLS regressions of (log of) Nt on (log of) Nt−1

and a constant, having discarded the first 100 periods, and conditional on the
aggregate state of the economy At = {Ah,Al

}. Obtain the new candidate for the
forecasting rule Γ(i+1). Having obtained the sequence of NT

t , run contempora-
neous OLS regressions of (log of) Xt on (log of) Nt and a constant, conditional
on the aggregate state of the economy At = {Ah,Al

}, and obtain ΓX(i+1).

(V) Convergence test.

Compute the Euclidian norm between Γ(i) and Γ(i+1). If the difference is below
a chosen level of tolerance, the algorithm quits. Otherwise, slowly update the
forecasting rule as follows: Γ(i+1) = κΓ(i+1) + (1 − κ)Γ(i) with κ = 0.3. Similarly,
update ΓX(i+1) = κΓX(i+1) + (1 − κ)ΓX(i).
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Table B2: Equilibrium Forecasting Rules and Accuracy Results

Γ∗ R2 Mean Error SD Error

Al Ah Al Ah Al Ah

N
β∗0 0.102 0.117

0.995 0.995 0.497% 0.426%
β∗1 0.912 0.908

K
βK∗

0 2.259 2.291
0.996 0.995 0.078% 0.060%

βK∗
1 0.585 0.572

D
βD∗

0 2.193 2.232
0.943 0.959 0.120% 0.093%

βD∗
1 0.481 0.467

Λ
βΛ∗0 -0.005 -0.003

0.985 0.982 0.000% 0.000%
βΛ∗1 0.000 0.000

L
βL∗

0 -1.368 -1.358
1.000 1.000 0.003% 0.002%

βL∗
1 0.143 0.143

C
βC∗

0 -0.402 -0.392
0.993 0.991 0.006% 0.004%

βC∗
1 0.304 0.304

W
βW∗

0 0.855 0.872
1.000 1.000 0.028% 0.022%

βW∗
1 0.159 0.154

P
βK∗

0 0.114 0.113
0.996 0.973 0.010% 0.007%

βK∗
1 0.023 0.023

Rb
βR∗

0 0.004 0.003
1.000 1.000 0.000% 0.000%

βR∗
1 -0.001 0.000

Notes: This table reports equilibrium forecasting rules for the law of motion of the distribution as well as every other relevant aggregate
variable. It also presents R2 values from simulation-based linear regressions on equilibrium series. The last two columns report results
from the Den Haan (2010) accuracy test and summarize mean and standard deviation of percentage errors between actual and projected
simulated series.

Table B2 reports equilibrium forecasting rules obtained as part of the recursive com-
petitive equilibrium solution. The first two columns show the values of β∗0 and β∗1 for every
aggregate variable and conditional on low and high aggregate states.

B.4 Solution Accuracy

In order to test whether our algorithm is accurate, we perform two checks. First, it is
important to verify that the equilibrium projection rules Γ∗ can explain a high percentage
of the variation of model-implied aggregates. Table B2 reports the R2 from the regressions
that we run in part (IV) of the numerical algorithm above. The law of motion of the
banking distribution is approximated very accurately, as can be seen from the first two
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rows, with the R2 of above 99%. This confirms that approximating the distribution with
the first moment does quite well in terms of capturing the dynamics of the full distribution
of net worth. We also see that the values of R2 never drop below 0.94 and are around 0.97
on average across all other aggregates.

A second accuracy test encourages us to go beyond reporting simply the R2. Den Haan
(2010) recommends to compare model-implied time-series of aggregates with forecasts
that are built with their corresponding equilibrium forecasting rule Γ∗. Figure B1 plots
actual and forecasted values of all the relevant variables. It is clear that projected values
track the actual ones very closely. Table B2 reports the mean and standard deviation of
the mean percentage difference between actual and projected values for every aggregate.
Errors are very low; in particular, mean error for the law of motion of the distribution is
less than half of a percentage point with a standard deviation of 0.43%.

Figure B1: Equilibrium and Predicted Aggregates
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Notes: This figure plots actual and forecasted series of relevant aggregate variables based on the model simulation.
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