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Abstract

Are the managers of financial institutions ready fersmall but increasingly significant risk of
inflation in the near future, due to the unprecedentedlfesad monetary responses of the U.S.
government to prevent an economic collapse? This pddeesses this important issue by reviewing
important findings in the area of interest rate risknagement. We discuss five classes of models in the
fixed income literature that deal with hedging the riskacde, non-parallel yield curve shifts. These
models are given as M-Absolute/M-Square models, duratidoewmdels, key rate duration models,
principal component duration models, and extensions o timeslels for fixed income derivatives, for
valuing and hedging bonds, loans, demand deposits, and otheinfieaoke instruments. These models
can be used for designing various hedging strategies such fadigp@rtmunization, bond index
replication, duration gap management, and contingent mpation, to protect against changes in the
height, slope, and curvature of the yield curve. We argatdlik current regulatory models proposed
by the U.S. Federal Reserve, the Office of Thrift Sup@mwi and the Bank of International
Settlements, may understate the true interest siexposure of financial institutions, if sharp
increases in interest rates lead to higher default risk.
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MANAGING INTEREST RATE RISK: THE NEXT CHALLENGE?

High volatility in oil and commodity prices and the umliolg credit crisis in United States and
Europe have made financial institutions all around the witeé&ply concerned about the effects of
movements in interest rates on their profitabilitd @apital solvency ratios. Increases in interdstsra
can significantly erode the equity values of highly legedhinstitutions such as universal banks and
hedge funds. Many of these institutions hold a large ptagerof their assets in mortgage loans and
mortgage-backed securities, which are likely to experiersigraficant increase in the average
maturity orduration as the values of the prepayment options plummet duging interest rates.
Though sharp reductions in the discount rate and signifzachases of Treasury securities by the
U.S. Federal Reserve has buffered the losses imtdecfal sector, significant risks exist for additional
losses in this sector due to future increase in the sitemges. Such increases may also lead to
additional costs tied to provisions for losses in pHeetors, as the creditworthiness of corporate
customers may deteriorate due to higher borrowing costeseladditional losses coming on top of the
losses already incurred by financial institutions haveptitential to further destabilize the global
financial system. On the positive side, to the exteait many banks now have a bigger percentage of
earnings tied to non-interest income, they will be ssha immune to future increases in the interest
rates.

Though much talk about explicit “socialization” of theancial sector has centered around
nationalization of big banks, significant movemenpovate sector funds from the risky stock and
bond markets into the U.S. Treasury securities, togetlile a significant increase in participation of
the U.S. government in the financial sector impliesnaplicit socialization of the financial sector
(through more than a trillion dollars in purchases of tgeicurities and hundreds of billions in direct
equity purchases, by the U.S. Treasury, and trillions ldirgan swaps by the U.S. Federal Reserve).

As investors flee from risk and leverage, governmentriefibto own more risk and assume more
1
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leverage. Such risk shifting is based on a hidden assumfitainisk and leverage can be shifted to
the government, if the government happens to be thdeahbost powerful nation, economically and
militarily. Will risk shifting of such enormous magnitudein private sector to public sector lead to
unforeseen consequences? Though it would be considered $pghlylative to consider a default by
the U.S. government, the cost of insuring the U.S.singadebt as revealed by the credit default swaps
(CDS) written on U.S. Treasuries rose seven-foldshat span of one year from March 2008 to

March 2009 to approximately $100,000 to ensure $10 million of Tredsinty before falling to about
$40,000 in April 2009.

The unusually large fiscal and monetary responses by.tegdvernment come with a small
but significant risk of inflation. Will there be suffent political will to cut fiscal spending when the
economy begins to recover? Will sharp reversalsarcthrently high levels of money supply —
expected in response to an economic recovery - leadge increases in the short term interest rates,
and similar decreases in the slope and the curvatuhe gfeld curve? Though higher inflationary risk
exists with respect to an economic rebound, the ristagflation is not irrelevant under the opposite
scenario of an economic collapse. Will the Chinesegowent capitulate and liquidate a significant
share of its U.S. Treasury holdings in order to divgmifd/or stimulate China’s domestic economy,
leading to significant increases in the interest ratélsa U.S.? Could the U.S. dollar collapse and the
U.S. Treasury rates rise due to the small chance ofilleddlected in the CDS premiums on U.S.
Treasury debt, and the small chance of Internationaletéoy Fund’'s SDRs to become the new global
reserve currency?

Though somewhat speculative, such questions underseonatilire of the basic imbalance in
the U.S. economy which is that the savings rate itJthiged States plummeted in the past decade, as
huge increases in the domestic consumption were financégk layedit bubble. With the collapse of

the credit bubble, it is likely that the savings and comion will be brought back into balance by
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increases in the U.S. Treasury rates, regardless aherhihis happens with an economic rebound or
with an economic collapse. Hence, regardless of wdiielttion the U.S. economy takes, it is likely

that U.S. Treasury rates will rise in the near terimediate term from their record low levels.
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Figure 1. Non-parallel yield curve shift

Near term increases in the interest rates are ltoelbe non-parallel rising more at the shorter
end, as the shapes of the LIBOR and U.S. Treasury yielgstlatten out. It is well known that the
traditional duration and convexity risk measures (see LandyNawalkha [1993] and Nawalkha and
Latif [2004]) are valid only when the whole yield curve rasun a parallel fashion. If short rates
increase more than the long rates, then the slogeofi¢ld curve will experience a negative shift,
while the curvature will most likely experience a positshift (from a high negative curvature to a low
negative curvature) as shown in Figure 1. Though such hication of height, slope, and curvature
shifts is more likely based on casual empiricism, oglsenarios may lead to other types of shifts in the
yield curve.

How do the managers of financial institutions hedge thetfqlims composed of fixed income

securities and their derivatives, against the effect®ofparallel yield curve shifts? This article



addresses this important issue by reviewing the importahinfis in the area of interest rate risk
management. We discuss five classes of models give ifixed income literature that deal with this
issue. The next four sections discuss four classe®déls given as M-Absolute/M-Square models,
duration vector/M-vector models, key rate duration maaied, principal component duration model
that allow interest rate risk hedging for regular bondfptios. These models are derived as
extensions to the traditional duration-convexity model Wiaissumes parallel yield curve shifts (with
the unfortunate implication that riskless arbitrage opputies are allowed under non-infinitesimal
yield curve shifts).

As the first extension, Fong and Vasicek [1983, 1984] olatéomver bound on the change in
the future value of a duration-immunized bond portfolio avgiven horizon, as a linear function of
the portfolio’s M-square. By minimizing portfolio’s M-squasebject to the duration constraint not
only immunizes the portfolio against height shifts, bub afsnimizes its exposure to slope, curvature,
and other higher order shifts in the yield curve. Unlikeddese model, that requires two risk measures
for hedging (i.e., both duration and M-square), NawalkhaGlrambers [1996] derive the M-absolute
model, which only requires one risk measure for hedging agamsion-parallel yield curve shifts.
Even with one risk measure, Nawalkha and Chambers dématnd-absolute model to reduce more
than 50% of the immunization risk inherent in the tiadal duration model.

Further improvements in the immunization performaneenaade possible by the next class of
models given as the duration vector model of Chambertt@ay and McEnally [1988], and the M-
vector model of Nawalkha and Chambers [1997] and Nawalldta, 8d Zhang [2003]. These
models derive separate risk measures of different typesrafstructure shifts, such as shifts in the
height, slope, curvature, etc. of the yield curve. Urllkkabsolute/M-square models which disallow
short positions, the duration vector model and the beremodel allow short positions in the bond

portfolio, and obtain significant improvements in themunization performance.



Ho’s [1992] “key rate durations” represents the next classonlel for hedging against non-
parallel yield curve shifts. The key rate duration modatlés the term structure of interest rates in
separate segments, and then immunizes the bond poagaiost changes in each segment of the term
structure. The immunization performance of the keydatation model is similar to that of the
duration vector model and the M-vector model. Howewvelike the duration vector model and the M-
vector model, which require at most three to five rislasnees, the number of duration measures to be
used and the corresponding division of the term struattwedifferent key rates, remain quite arbitrary
under the key rate model. For example, Ho [1992] proposesuag asleven key rate durations to
effectively hedge against interest rate risk.

To reduce the dimensionality of hedging problem, a numbersefarchers have proposed the
next class of models known as the principal componentidnnmodels. These models capture the
changes in the entire yield curve by applying a statidgcdinique calle@rincipal component analysis
(PCA) to the past interest rate changes. The us€AfiRPthe Treasury bond markets has revealed that
three principal components (related to the height,ltgesand the curvature of the yield curve) are
sufficient in explaining almost all of the variationinterest rate changes. However, unlike the earlier
models, the major shortcoming of the principal compon®del is that it assumessiationary
covariance structure of interest rate changes.

The four classes of hedging models described above are lgatena the subsequent section
which discusses interest rate risk hedging models foultigfeone bonds/loans, demand deposits, and
fixed income derivatives. As an important finding, thisteecargues that the current regulatory
models proposed by the U.S. Federal Reserve, the OffiEeridf Supervision, and the Bank of
International Settlements, may understate the treegst rate risk exposure of financial institutions, if

sharp increases in interest rates can lead to higharlides&.



The variety of interest rate risk models reviewed is f@per can be used for designing various
interest rate risk hedging strategies such as portfolicuinmration, bond index replication, duration
gap management, and contingent immunization, to protect aghargyes in the height, slope, and
curvature of the yield curve. For a detailed discussidhese models, we refer the reader to

Nawalkha, Soto, and Beliaeva [2005]. The final sectionnsanzes and concludes the paper.

M-ABSOLUTE AND M-SQUARE MODELS

Consider a bond with cash flow payable at timé The bond sells for a pride and is
priced using a term structure of continuously compounded zenaeooyields given by(t). The
traditional duration model can be used to approximate pegeentange in the bond price as folldws

A_Ff’ 0-Day (1)

. t=ty C,
where D = Duration= ;lt W, , andw {W}/ P.

Duration is given as the weighted average timedtunity of the cash flows, where the weights
are defined as the present values of the cash flovided by the bond price. The duration model
given in equation (1) assumes that the yield cergeriences infinitesimal and parallel shifts. &ksn
the change in the yieldy, is assumed to beual for all bonds regardless of their coupons and
maturities. However, we know that shorter matuidtes are more volatile than the longer maturity

rates, so the assumption of parallel yield cunifissis obviously false. Due to the violation bfg

! Under discrete compounding, equation (1) beco%\jzsj—DM Ay, whereD,, is the modified duration of the bond

t=ty
defined a®, == 3" tw , with w =/ —_|/P
I+yi= (1+y)



assumption, the duration model given above explainsaimut 70% of the ex-post return differentials
on riskless bonds.

As shown in Nawalkha and Latif [2004], the approximatioregiin equation (1) can be
extended to include non-linearities due to convexity. Thoudjrsahigh convexity seems like a win-
win proposition, since regardless of the directiorhefparallel yield curve shifts higher convexity
portfolios outperform lower convexity portfolios, Hegdalatunn [1980] show the gains due to
convexity are extremely trivial. This can be seen ligming the approximation in equation (1) as

follows:

& 0-Day+7

5 CON(Ay)? (2)

For example, even forlarge 50 basis points change in the yield, the gain due to gdyan a
bond with a price of $1000 and a convexity of 50 (for exan#pl)-year coupon bond) is only*¥%50
x (0.0050f x 1000 = 0.625 dollars or about 0.06% of the $1,000 value. Mergbacey and
Nawalkha [1993] show that high convexity in a bond portfodin mtroduce significant risks when the
slope of the yield curve experiencepaaitive shift.

Though convexity leads to higher returns for large and phsdlifts in the term structure of
interest rates, as pointed out in the introductios, ‘tonvexity view” is somewhat naive and has been
challenged both theoretically and empirically in tixed income literature. An alternative view of
convexity, which is based upon a more realistic econdnramework, relates convexity sbope shifts
in the term structure of interest rates. This viewarfvexity was proposed by Fong and Vasicek
[1983, 1984] and Fong and Fabozzi [1985] through the introductitreafew risk measure, M-square,

which is a linear transformation of convexity. The itare of a bond portfolio is given as the



weighted average of the squares of the distance betmsérflow maturities and the planning horizon
of the portfolio:

t=ty

M2=3" (t-H)2my 3)
=

where the weights are defined in equation (1) Withedefined as portfolio’s cash flow at tirpd?
redefined as the value of the portfolio, &thds the planning horizon.

M-square allows obtaining a limit on the changéhmterminal value of a bond portfolio whose
duration equals the planning horizon and hengg,ithmunized against parallel movements of the term

structure of interest rates. This lower bound \&gias:

AP, 1 .,
>—=
B, > 2 kM (4)

wherek is a constant.

A bond portfolio selected with minimum M-square leash flows clustered around the
planning horizon date and hence, protects thegdortffom immunization risk resulting from non-
parallel yield curve shifts. Though both convexatyd M-square measures give similar information
about the riskiness of a bond or a bond portfaioge one is a linear function of the other), the
developments of these two risk measures folloversifit paths. Convexity emphasizesdaen in the
return on a portfolio, against large and paraklefts in the term structure of interest rates. t@mother
hand, M-square emphasizes thak exposure of a portfolio due to slope-shifts in the ternusture of
interest rates. Hence, the “convexity view” ahe tM-square view” have exactly opposite
implications for bond risk analysis and portfoli@nagement. Lacey and Nawalkha [1993] empirically

investigate the convexity view versus the M-squéee/ and find strong support for the M-square



view. They find that high convexity (which is the saméigh M-square) adds risk but not return to a
bond portfolio using U.S. Treasury bond price data ovepénod 1976-1987.

Unlike M-square model, that requires two risk measures figihg (i.e., both duration and M-
square), Nawalkha and Chambers [1996] derive the M-absoadelmvhich only requires one risk
measure for hedging against the non-parallel yield curvisshihe M-absolute of a bond portfolio is
given as the weighted average of the absolute digdreteeen cash flow maturities and the planning

horizon of the portfolio.

MA =" Jt—H|0Oy (5)

where the weights are defined in equation (1), tnsithe planning horizon.
The lower bound on the change on the terminal valdleeolbond portfolio depends linearly on

M-absolute as follows:

> —kM A (6)

The essential difference between the duration mautktlze M-absolute model can be
summarized as follows. The duration model completalyiinizes against the height shifts but
ignores the impact of slope, curvature, and other higltkar éerm structure shifts on the future target
value of a bond portfolio. In contrast, the M-absolatedel immunizes only partially against the
height shifts, but it also reduces the immunization caksed by the shifts in the slope, curvature, and
all other term structure shape parameters by selectimgienum M-absolute bond portfolio with cash
flows clustered around its planning horizon date. The velakesirability of the duration model or the
M-absolute model depends on the nature of term structute skpected. If height shifts completely
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dominate the slope, curvature, and other higher ordersteutture shifts, then the duration model will
outperform the M-absolute model. If, however, slopeyature, and other higher order shifts are
relatively significant — in comparison with the heighifts — then the M-absolute model may
outperform the traditional duration model. Using McGcifi's term structure data over the
observation period 1951 through 1986, Nawalkha and Chambers [19@6h& M-absolute model

reduces the immunization risk inherent in the duration ioglenore than half.

DURATION VECTOR MODELS

Though both M-absolute and M-square risk measures progdgicant enhancement in the
immunization performance over the traditional duratiom@hoperfect immunization is not possible
using either of the two measures except for the trida&an which the portfolio consists on a zero-
coupon bond maturing at the horizon date. Further gaimsmunization performance have been
made possible by the duration vector model, which using anefchigher-order duration measures
immunizes against changes in the shape parameterbdight, slope, curvature, etc.) of the term
structure of interest rates. Various derivations ¢odiration vector model have been given by
Chambers [1981], Granito [1984], Chambers, Carleton, and M¢Ha888], Prisman and Tian
[1994], Nawalkha [1995], Nawalkha and Chambers [1997], and Gré{R@01]. According to them,
the percentage change in the bond price is approximategradwct of the duration vect@r(m) and a

shift vectorAY(m), as follows:

A—Flj O-D(m)AY (m) ()

where the duration vector is defined as,
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D(m) :tftmm =H™ form=1,2,3,.Q (8)
=y

with the weights defined in equation (1), afds the planning horizon. The shift vector elements
AY(1), AY(2),...,AY(Q) approximate both the linear and non-linear changes ihdiggt, slope,
curvature, and other shape parameters of the term sewitunterest rates measured as a polynomial
function. The duration vector of a portfolio of bonds barobtained by taking a weighted average of
the duration vectors of individual bonds. About threéue duration vector constraints (i.e., Q = 3 to
5) have shown to almost perfectly immunize a bond postfdiainst the risk of non-parallel yield
curve shifts.

Diebold, Ji, and Li [2006] obtain a three-factor duratioedel (exponential-based duration
vector) which measures the level, slope, and curvatske ais defined from a reformulation of the
Nelson and Siegel [1987] model. They find some paralleligmdsn their model with the traditional
duration vector model, and with the principal componerdehof Soto [2004] introduced later in this
paper. They confirm the immunization performance of thidel to be similar to that of the
traditional duration vector model, but superior to thahef¥acaulay duration model using CRSP data
from 1971 to 2001.

A more general derivation to the duration vector maglglven by the M-vector model of
Nawalkha and Chambers (1997Unlike the traditional approach, the M-vector approamschot
restrict the term structure shifts to be of a polynadfaiactional form. This approach is based upon a

Taylor series expansion of the bond return functioh waspect to the cash flow maturities around a

% This model allows the risk measures to be set to zero. In contrast, theakd-snodel of Fong and Vasicek [1984] and the M-
absolute model of Nawalkha and Chambers [1996] are derived to minimizekthreegisures subject to portfolio constraints.
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given planning horizon. Similar to the duration vectodelpthe M-vector model leads to duration
measures that are lineartjri?, t%, etc. wherd is the maturity of the cash flow. Extending theliear
empirical work, Nawalkha and Chambers find near perfestumzation performance using a five
element M-vector model, using McCulloch’s term structute daer the period 1951 to 1986.

Ventura and Pereira [2006] test the M-vector model usintugalrbond data from August 1993
to September 1999. They obtain results similar to thod&awaflkha and Chambers [1997] using the
first three elements of the M-vector. Additional Metor constraints beyond three did not lead to
further improvement in immunization performance, a teslgb found by Soto [2004]. Also, consistent
with Soto [2001, 2004], bond portfolios including a bond maturewy the end of the planning horizon
provide the best immunization performance.

Since the shifts in the height, slope, curvature, aner ggarameters of the term structure of
interest rate shifts are generally larger at the shertd of the maturity spectrum, it is possible that an
alternative set of duration measures that are lineg(t)ing(t)? g(t)®, etc., and which put relatively
more weight at the shorter end of the maturity specttuento the specific choice of the functig(t),
may provide enhanced immunization performance. Consisitinthis intuition, Nawalkha, Soto, and
Zhang [2003] derive a class gdneralized M-vector models using a Taylor series expansion of the
bond return function with respect to specific functiohghe cash flow maturities. This paper finds
thatg(t) = t>%or g(t) = t>° perform significantly better than the traditional M-t@cfor short planning
horizons when at least three risk measures are uSaserall, though the duration vector, the M-vector,
and the generalized M-vector models, significantly outperfine M-absolute and M-square models,
the improvement in performance comes at the cosigbiehiportfolio rebalancing costs required by

these models.
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KEY RATE DURATION MODELS

The key rate duration model of Ho [1992] describes the shiftse term structure as a discrete

vector representing the changes inkéespot rates of various maturities. That is:
TSR shift =(Ay(t,),Ay(t,)....Ay (tm)) 9)

wherey(t)) is the zero-coupon rate for tetpandy(ty), y(t2), ..., ¥(tm) define the set ah key rates.
Interest rate changes at other maturities are denmoad these values via linear interpolation. The

linear interpolations, together with an initial termusture give the new term structure as shown in

Figure 2.
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Figure 2. The term structure shift under the key rate model

Key rate durations are then defined as the sensitiafidse percentage change in bond price to
key rates ain different points across the term structure. The ké&y duration model can be considered

an extension of the traditional duration model giveadguoation (1), as follows:

AP & .
3 D—; KRD(i) [Ay(t;) (10)

13



where the yield curve is divided intodifferent key rates. The key rate durations of a plootff
bonds can be obtained by taking weighted averages of ylratieedurations of individual bonds.

Similar to the duration vector models, an appealing featitige key rate model is that it does
not require atationary covariance structure of interest rate changes (unlefs'perg a VAR
analysis). Hence, it doesn't matter whether theetations between the changes in interest rates of
different maturities increase or decrease or evertheh¢hese changes are positively or negatively
correlated. Also, the model allows for amymber of key rates, and therefore, interest ratecaskbe
modeled and hedged to a high degree of accuracy.

However, unlike the duration vector models, which requiracst three to five duration
measures, the number of duration measures to be usecearattbsponding division of the term
structure into different key rates, remain quite arbittarger the key rate model. For example, Ho
[1992] proposes as many @sven key rate durations to effectively hedge against inteatstrisk.
Further, unlike the duration vector model, where the highger duration measures serve as linear as
well as non-linear risk measures (for examplg) simultaneously gives the linear exposure to slope
shifts, as well as non-linear exposure to height shtfig)key rate durations give only the linear
exposures to the key rates. To measure non-linear egsasuthe key rates, key rate convexity
measures are required (see Ho, Chen, and Eng [1996]). Hedgiimgt a large number of key rate
durations and convexities, implies larger long and shaitipas in the portfolio, which can make this
approach somewhat expensive in terms of the transacsigs associated with portfolio construction

and rebalancing.

PRINCIPAL COMPONENT MODELS
The principal component model assumes that the yield coovements can be summarized by

a few composite variables. These new variables areracted by applying a statistical technique
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calledprincipal component analysis (PCA) to the past interest rate changes. The us€AfiRthe
Treasury bond markets has revealed that three principadarzents (related to the height, the slope,
and the curvature of the yield curve) are sufficient jplaring almost all of the variation in interest

rate changes. An illustration of the impact of theseponents on the yield curve is shown in

Figure 3.
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Figure 3. Shape of the Principal Components

The first principal componermt, basically represents a parallel change in the yielecuvhich
is why it is usually named the level or the height factdve second principal componegtrepresents
a change in the steepness or the slope, and is nam&dpgbdactor. This factor is also called the
“twist factor” as it makes the short-term rates amdytterm rates move in the opposite directions. The
third principal componernt,, is called the curvature factor, as it basically aff¢le curvature of the
yield curve by inducing a butterfly shift. This shift consist short rates and long rates moving in the
same direction and medium-term rates moving in the ofgpdsection.

The yield changes can be given as weighted linear stithe principal components as follows:

Ay(t) =l Ac, +li A+l A, 1=1,...,m (11)
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whereAcy is the change in the first componeit; is the change in the second component,faRds
the change in the third component.

The variable$i, lis, and lic, are the factor sensitivities (or loadings) of yiedd changedy(t)
on the three principal components respectively. Thesespond to the lines in Figure 3. The
sensitivities of the percentage change in the bond firitieese three risk factors is measured by

principal component durationBCDs) given as follows:

AP

5 0= X, PCD()Ag (12)

i=h,s,c

The first three principal component durations given in gqud12) explain anywhere from 80
to 95% of the ex-post return differentials on bonds, deipg on the time period chosen. To measure
non-linear exposures, Nawalkha, Soto, and Beliaeva [200%darincipal component convexity
measures. Besides the benefit of reduction in the diomalgy (when compared with other models
such as the key rate model), the principal component nwéble to produce orthogonal risk factors.
This feature makes interest rate risk measurement anagesient a simpler task because each risk
factor can be treated independently.

Also, since the principal component model explicithestd the factors based upon their
contributions to the total variance of interest rdt@nges, it should lead to some gain in hedging
efficiency. Further, in situations where explicit miplicit short positions are not allowed, the duration
vector or the key rate duration model cannot give a zemwimzation risk solution, except for some
trivial cases. With short positions disallowed, sfigant immunization risk is bound to remain in the
portfolio, and this risk can be minimized with the knadge of the factor structure of interest rate

changes using a principal component model.
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The major shortcoming of the principal component modgdas it assumes a stationary
covariance structure of interest rate changes. Thefuke model will lead to hedging errors in
situations where this assumption is violated. RecdllttteM-absolute/M-square models, the duration
vector model, and the key rate duration model do not rethig@ssumption,and therefore the
hedging performance of these models is invariant to thestagionarities in the covariance structure of
rate changes. Allthat is required is that the shifthe term structure remain smooth in order to be
captured by a small number of risk measures under thesdsmode

Furthermore, since the three most important prin@paiponents that drive the interest rate
movements resemble the changes in height, slope, arataawf the yield curve measured by the
first three elements of the duration vector, the duratertor model is not inconsistent with a principal
component model for hedging. As Soto [2004] demonstratespicific yield curve shifts
corresponding to the first three duration vector eldmeapture as much as the variance captured by

the first three principal components of the interagt changes.

INTEREST RATE RISK HEDGING MODELSFOR FIXED INCOME DERIVATIVES

The revolution in finance unleashed by the option pricing saafeBlack and Scholes [1973]
and Merton [1973] allows any derivative security to be expikas a portfolio of traded securities in a
complete market, simply by absence of arbitrage. Thoxigéoted or average maturity defines the
sensitivity of the percentage price changes fofel-coupon, default-free bond to interest rate changes,
such a concept does not define the sensitivity of theep&ge price changes of a security with

embedded options to interest rate changes. If we defumation” as the sensitivity of percentage price

% In its generality, the key rate model does not requatationary factor structure of interest rate changesyever, for
performing a VaR analysis, the factor structure of therlite changes must remain stationary.
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changes of a security (with or without embedded optiansjtérest rate changes, then the duration of a
security with embedded options maynaay not have a relation with the expected or average maturity
of that security. For example, a call option writtenany fixed income instrument may mature in 3
months, but the duration of the call option (definedhassensitivity of the percentage price changes of
the option to interest rate changes) can be 10 or@n Because the definition of duration coincides
with expected (or average) maturity for the case offaudtefree fixed-coupon bond, researchers
sometimes assume incorrectly, that this relationshigsheVven for securities with default risk, or with
floating payments, or with embedded options.

A common fallacy of this type occurs in the case @éfault-prone bond, which can be
modeled as a default-free bond minus a put option wiathetine firm’s underlying assets. For example,
Chance [1990] derives the duration of a zero-coupon defaufiedrond using such a framework (see
Merton’s [1973, 1974]) and finds that the duration represengsected maturity” of the bond under
the risk neutral measure. Since the possibility ofudefaduces the expected maturity of the bond,
Chance claims that the duration of the default-prone-ezeupon bond ialways less than or equal to
the duration of the default-free zero-coupon bond wdigmiical maturity. A simple example can
demonstrate the fallacy of this argument. Considenaiith its assets priced at $100, financed by $8
of equity and $92 of zero-coupon debt maturing in one yéhranMace value of $100. Assume that the
duration of the firm’s assets equals 12. Thus, a onermigueaeallel increase in the yield curve reduces
the firm’s asset value to approximately $88. Since the tigfeane zero-coupon bond must lose at
least $4 (i.e., $92 - $88 = $4), the duration of this bond nauat keast 4 (which iur times its
maturity), resulting in about 4% loss due to a 1% rigéenyield curve.

The reason Chance’s model does not account for thigpgibgss because his model implicitly
assumes that the duration of the firm’s assets @& zZdowever, the duration of assets of most financial

institutions is rarely close to zero. Hence, defaultaprbonds issued by these institutions can have
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durations that arnger than the durations of equivalent default-free bond$eifduration of the
assets is very high, due to the interaction of defsktand interest rate risk. Consistent with this
argument Nawalkha [1996], Jacoby and Roberts [2003], and Kiaaysé®oto, and Beliaeva (NSB)
[2005], show that duration of a default-prone bond cantberehigher or lower than the duration of
the equivalent default-free bond. Other researchetsding Fooladi, Roberts, and Skinner [1997] and
Jocoby [2003] also model the risk aversion of the investiodsa delay period in the recovery (due to
the default process) and find that the duration of a degfmahe bond can be higher than the duration
of the equivalent default-free bond. Jacoby and Rof#0@3] and Duffee [1998] also show that
failing to control for call risk (which reduces the durataf the default-prone bond) can lead to a
spurious empirical conclusion that default risk reducesltination of the bond, when, in fact, it may
not reduce, and even increase the duration of the bond.

In the following, we provide a framework which allowsyqauting the interest rate sensitivity
measures of a derivative security with embedded optionsoglng it as a portfolio of securities or
assets without embedded options. Such a framework avandissing the expected or average
maturity of the derivative security with the duratiorpoice sensitivity of that security. The framework
is general enough and can be applied to a variety of deswith embedded options like default-
prone bonds, callable bonds, naked options, mortgage-baekadties with prepayment options, etc.
The framework also allows extending the four classdsfautor interest rate risk models given in the
earlier sections to the large class of fixed incomévdeve securities, with a simple inspection of
terms.

Let P* represent the price of the derivative security wittbedded options, and IBt, P»,...,

Pwm , represent the prices Bf number of replicating securities or assetfiout embedded options that

dynamically replicat®*, in a complete market, such that:
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P'=NP+N,P,+...+ N, P, (13)

where,

N, =9P" /9P ”

is the delta sensitivity of the derivative securityhwiespect to thé” replicating security or asset, for
i=12,..M.

An instantaneous percentage change in ffoean be approximated as follows:

AP AR, AP, AR,
0w, + W, +..tW, (15)
P H P2 M
where,
_ 0P /oP
W=—"F"75
PI/P (16)

is the elasticity of the derivative security wigspect to thé" replicating security or asset.

Note that if the replicating securities are allagi as default-free bonds, then substitution of
equations (1), (2), (4), (6), (7), (10), and (li&)ymediately generalizes the four classes of muliifa
interest rate risk models (i.e., M-absolute/M-sguawodels, duration vector model, key rate duration
model, and principal component duration model) givethe earlier sections to the derivative segurit
If the replicating security or asset is not a diffree bond, then the given class of multifactardeal
can be used to first derive the respective duratieasures of the replicating security or assetlaewl
appropriate substation in equation (15) can immntebtjigrovide the duration measures of the derieativ
security. Nawalkha [1995] uses the above framewmiderive duration vectors of call and put options

written on default-free bonds, and NSB [2005] use tramework to derive duration vectors of
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forward rate agreements, interest rate swaps, capssficollars, receiver swaptions, payer swaptions,
and bond options among other securities. Nawalkha [1996N&®B [2005] also use the above
framework to derive the duration measure of a default-pzere-coupon bond, under the models of
Merton [1974], Longstaff and Schwartz [1995], and Collin-Dsifikeand Goldstein [2001], and
demonstrate that the duration of a default-prone bondehilower) than the duration of the
equivalent default-free bond, if the duration of thenfs assets is higher (lower) than the duration of
the equivalent default-free bond. In general, the aliamework can be used to derive duration
measures of any derivative security with embedded opti@iscan be replicated as a portfolio of
traded securities or assets without embedded options.

The above framework is also useful for computing irsterate risk measures for demand
deposits and credit card loans. These financial instrisnaga valued by Hutchison and Pennacchi
[1996] and Jarrow and Deventer [1998] using models that abbmkdto determine the deposit rates
and credit card loan rates using imperfect competittamrow and Denventer show that these
instruments can be represented as a replicating portfotiwo assets: a shortest term default-free zero
coupon bond and an exotic interest rate swap repregehémet present value of the financial
instrument. In another class of models, FrauendonigiSzhirle [2003, 2006] and Kalkbrener and
Willing [2004] replicate the demand deposits as a portfoliasséts by optimizing a specific objective
criterion, subject to the constraint that the volurheptimal portfolio mimics the volume of the
demand deposits. The portfolio weights, which are amid the weights defined in equation (16),
determine the duration of the replicating portfolio, wiiepresents the duration of the demand
deposits. Though the duration estimates from these madelery sensitive to the objective criterion
used, Dewachter, Lyrio, and Maes [2006] find that thesmasts are in line with those obtained using
the discounted-cash flow approach if the standard deviatite margin between the optimal

portfolio return and the deposit rate is minimized.
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A potentially important application of equations (13) thro(t®) is for modeling the durations
of default-prone bonds/loans held on the asset sideedfalance sheet of banks and other financial
institutions. The current regulatory models, such as tBe Ekederal Reserve’s Economic Value model
(EVM) [1995], the Office of Thrift Supervision’s (OTS) Nebrtfolio Value model [1994], and the
model of Basel Committee on Banking Supervision [2004, 2008mglicitly use “maturities” of the
cash flows from the assets as measures of senstioit these cash flows to interest rate changes.
Hence, despite their superficial differences, alhefitegulatory models implicitly assume that the
durations of default-prone loans and bonds can be appriedrbg their “average” maturities. In the
current financial environment, one must be cautious regattis assumption, since trillions of dollars
of spending by the U.S. Treasury, and even larger amaustgaps by the U.S. Federal Reserve, could
potentially lead to high inflation in the next 3 to 5 yedrthese policies cannot be reversed quickly.

In the event of high inflation or stagflation, the dimas of default-prone loans caxceed their

average maturities, due to the interaction of defasktand interest rate risk, as shown by the example
given earlier. This risk is especially relevant ia tturrent financial environment since fixed-rate
mortgage loans and other fixed-rate loans have been fihatbcecord low interest rates exposing
these loans to significant risk of duration lengtheningtérest rates were to rise sharply.

Finally, the imperfect competition-based duration modéttemnand deposits may overstate the
durations of demand deposits in the extreme environmenglofitilation or stagflation, since deposit
volumes may decline non-linearly if interest ratesente rise sharply. Deposit holders may continue
to keep the deposits at banks if interest rates rise ghaduel, using the standard argument based on
imperfect competition), but in the event of sharp insesan the interest rates, deposit holders would
withdraw their deposits at a much faster pace, as oppgrteosts of not investing in short term money
market instruments would be too high, similar to what oeclim the late 1970s. If banks would

rapidly increase the rate of interest offered on dehamposits to counter the fast pace of deposit
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withdrawal, then the effective duration of the deposisid be lower than that assumed by models
based on imperfect competition.

Hence, the durations of assets may be understated anisic liabilities may be overstated
if interest rates were to rise sharply in the ature. This implies that the true duration gap between
assets and liabilities may turn out to be higher irgh imflationary environment, both because of the
non-linear relation between interest rates and depokitnes, and because of the interaction between
interest rate risk and default risk. Though the risk g hinflation is low at present, this risk must be

evaluated carefully by financial institutions to avoid mecenomic turmoil in the near future.

SUMMARY AND CONCLUSIONS

The unprecedented fiscal and monetary responses of thgdy&nment to prevent an
economic collapse has led to an increase in the odal$uddre inflationary regime, even though the
chances of such an occurrence seem low at presehis [paper we ask if the managers of the financial
institutions are ready to deal with the challenge dairdn if it were to arrive soon. We discuss five
classes of models in the fixed income literature thatwlitta hedging the risk of large, non-parallel
yield curve shifts. These models are given as M-AbsolutedMare models, duration vector/M-vector
models, key rate duration model, principal component duratmatel, and extensions of these models
for fixed income derivatives, for valuing and hedging bolatss, demand deposits, and other fixed
income instruments. These models can be used for desiganiogs hedging strategies such as
portfolio immunization, bond index replication, duratgep management, and contingent
immunization, to protect against changes in the heigipesland curvature of the yield curve. The

main conclusions of this paper can be summarized asvillo
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Powerful interest rate risk hedging models exist asratafes to the traditional
duration/convexity model, which assumes parallel yield cshfs and implies riskless
arbitrage opportunities.

The M-absolute/M-square models can minimize the bondghoref exposure to slope,
curvature, and other higher order yield curve shifts. Thabstlute model, using a single risk
measure, can alone reduce the risk inherent in the tnaalitduration model by more than 50%.
Further gains in immunization performance can be madeibyg asvector of risk measures
using the duration vector model and the M-vector model.

The hedging performance of the key rate duration modehitas to that of the duration vector
and M-vector model, but it requires a large number ofr&s durations to achieve this
objective.

The principal component duration model can reduce the dinmeijoof the interest rate risk
hedging problem, but this reduction comes at the cost @adtemption of aationary
variance-covariance matrix of rate changes.

The four classes of interest rate hedging models git’ene can be extended to hedging
default-prone bonds and loans, demand deposits, and othemibxede derivatives by
replicating these securities with embedded optionppefolios of securities or assets without
embedded options, using equation (15).

The current regulatory models proposed by the U.S. Feldesgrve, the Office of Thrift
Supervision, and the Bank of International Settlemenés, understate the true interest rate risk
exposure of financial institutions, if sharp increasestarest rates lead to higher default risk

and a quickening of the pace of deposit withdrawals.
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