
Forecasting Real Time Inflation with Time Varying

Vector Autoregressions

Antonello D’Agostino

CBFSAI∗
Luca Gambetti

UAB and RECent†

Domenico Giannone

European Central Bank‡

First Draft: September 2008,
Very Peliminary

Abstract

We perform an out-of-sample real time forecasting exercixe using a model with the unem-
ployment rate, inflation and the short term interest rate. We compare the time-varying
autoregressions forecast with those produced by alternative fixed coefficient models. Our
findings show that TV-VAR are very powerful in forecasting. In particular the time-varying
autoregressions model is the only model producing forecasts that are accurate for all the
three variables. Moreover the time-varying autoregressions model produces by far the most
accurate forecast for inflation.

∗Contact: Central Bank and Financial Services Authority of Ireland - Economic Analy-
sis and Research Department, PO Box 559 - Dame Street, Dublin 2, Ireland. E-mail: an-
tonello.dagostino@centralbank.ie.

†Contact: Office B3.174, Departament d’Economia i Historia Economica, Edifici B, Universi-
tat Autonoma de Barcelona, Bellaterra 08193, Barcelona, Spain. Tel (+34) 935811289; e-mail:
luca.gambetti@uab.cat

‡Contact: European Central Bank - Monetary Policy Reserach, Postfach 16 03 19, 600 66, Frank-
furt am Main, Germany; ; e-mail: domenico.giannone@ecb.int. The views expressed in this paper
are those of the authors, and do not necessarily reflect those of the Central Bank and Financial
Services Authority of Ireland or the European Central Bank.

1



1 Introduction

The US economy has undergone many structural changes in the post war period. On

the real side, we have witnessed a strong moderation of business cycle fluctuations.

On the nominal side we had the rise of inflation in the 70s and the subsequent fall in

the course of the 80s. The conduct of policy has undergone substantial changes, in

particular monetary policy that has become more transparent and more aggressive

against inflation (Clarida, Gali and Gertler, 2001). The relation among the real and

the nominal side of the economy has changed drastically, the most well know case is

the recent break down of the Phillps curve which as very strong and stable before the

80s (Stock and Watson, 2007).

To study these evolution the literature has developed dynamic models that allow

for time variation in the dynamic interrelations among economic variables. Since the

seminal paper by Cogley and Sargent (2003), a growing amount of works have con-

ducted the analysis using time-varying vector autoregressions (e.g. Primiceri, 2006,

Canova and Gambetti, 2008). These reduced form models are essentially forecasting

models in which the dynamic interrelation and the size of the forecast errors are al-

lowed to change over time. These model have been proved to be very powerful for

studying, explain and tracking the structural changes that have affected affecting the

economy. Taking into account structural changes might be helpful for forecasting.

There are at least two reasons why these could be helpful. First, the models could

be able to detect structural changes in real time and hence help forecasting them,

e.g. the declined level of inflation in the 80. Structural changes could hide short term

relations among macroeconomic variables which could be could be reestablished once

the structural break/trend component is removed (Cogley, Primiceri and Sargent,

2008 using a TV VAR find that the Phillips curve is reestablished once the trend

component of inflation is removed; Cogley and Sbordone, find that the Phillips curve

relation could be distorted by the presence of structural break).

The existing literature is based however on in-sample ex-post estimation and it

is not known whether these model are also useful in real-time. This paper is a first

attempt to fill this gap. We perform an out-of-sample forecasting exercixe using a

model with Unempleyment rate, inflation and the policy interest rate. The exercise if

real-time since the forecast is estimated recursively using the data that were available

at the time the forecast is made (we use real-time data).

We compare the TV-VAR forecast with those produced by alternative fixed co-
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efficients models. We estimate them using all historical data available at each point

the forecast is made. We also consider estimate these models using a rolling windows

which is an heuristic way of taking structural changes into account.

Our findings show that TV-VAR are very powerful in forecasting. In particular

the TV-VAR model is the only model producing forecasts that are accurate for all the

three variables. Precisely, the TV-VAR produces by far the most accurate forecast

for inflation. For the unemployment rate the best forecasts are produced by the TV

VAR and a fixed coefficient models estimated over rolling windows. For the interest

rate the best forecast are produced by the TV-VAR and the TV-AR.

These implies that TV-VAR models are faster than rolling VARs in recognizing

structural changes in inflation. Moreover, the TV multivariate models work better

than TV univariate models and the Random walk model indicating that interrela-

tions among macroeconomic variables carry out important information once we take

structural change explicitly into account. These results holds true in different sub-

samples. In particular, they are also confirmed in the great moderation sample when

it is known that inflation has become very hard to forecast since most of the model are

outperfomed by the RW (Atkenson and Ohanian) and simple univariate TV models.

2 The Dataset

The dataset used in the paper consists of three variables: GDP deflator (GDPD),

Unemployment Rate (UR) and the three month treasury bills (denoted as IR). We

use real time databases for GDPD (quarterly vintages on quarterly frequency) and

UR (quarterly vintages on monthly frequency).1 For the three month interest rate

we use the actual series.2 The unemployment and the interest rate series are sampled

monthly, following CS2001, CS2005 and CPS, we convert them into quarterly series by

taking the middle month and the first month values in each quarter, respectively for

UR and IR. The time span is therefore on quarterly basis from 1948:Q1 to 2007:Q4.

It is covered, in the case of GDPD and UR, by the quarterly vintages 1966:Q1 to

2007:Q4.

1The data are available on the Federal Reserve Bank of Philadelphia website at:
http://www.phil.frb.org/econ/forecast/reaindex.html.

2The series is available on the FRED dataset of the Federal Reserve Bank of St. Louis (mnemonics
TB3MS), at: http://research.stlouisfed.org/fred2/series/TB3MS
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3 The Forecasting Exercise

Our objective is to predict the h-period ahead unemployment rate URt+h, the interest

rate IRt+h and the annualized price inflation πh
t+h = 400

h
log(Pt+h

Pt
), where Pt+h is the

GDP deflator at time t+ h and 400
h

is the normalization term.

3.1 The forecasting model

Let yt be a vector including the inflation rate (πt), the unemployment rate (URt),

and the short term interest rate (IRt). We assume that yt admits the following time

varying coefficients VAR (TV-VAR) representation:

yt = A0,t + A1,tyt−1 + ...+ Ap,tyt−p + εt (1)

where A0,t contains time-varying intercepts, Ai,t are matrices of time-varying coeffi-

cients, i = 1, ..., p and εt is a Gaussian white noise with zero mean and time-varying

covariance matrix Σt. Let At = [A0,t, A1,t..., Ap,t], and θt = vec(A′
t), where vec(·) is

the column stacking operator. We assume that all the roots of the VAR polynomial

lie outside the unit circle at every t - this is sufficient to make yt locally stationary.

Given this condition, we postulate the following law of motion for θt:

θt = θt−1 + ωt (2)

where ωt is a Gaussian white noise with zero mean and covariance Ω. We let Σt =

FtDtF
′
t , where Ft is lower triangular, with ones on the main diagonal, and Dt a

diagonal matrix. Let σt be the vector of the diagonal elements of D
1/2
t and φi,t ,

i = 1, ..., n − 1 the column vector formed by the non-zero and non-one elements of

the (i+ 1)-th row of F−1
t . We assume:

log σt = log σt−1 + ξt (3)

φi,t = φi,t−1 + ψi,t (4)

where ξt and ψi,t are Gaussian white noises with zero mean and covariance matrix Ξ

and Ψi, respectively. Let φt = [φ′
1,t, . . . , φ

′
n−1,t], ψt = [ψ′

1,t, . . . , ψ
′
n−1,t], and Ψ be the

covariance matrix of ψt. We assume that ψi,t is independent of ψj,t, for j 6= i, and

that ξt, ψt, ωt, εt are mutually uncorrelated at all leads and lags. In principle, one

could make εt and ωt correlated. However, it is well known that such a model can

be equivalently represented with a setup where shocks are mutually uncorrelated but
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εt is serially correlated. Since our measurement equation is a VAR, such a flexibility

is unneeded here. Note that the specification in (3) and (4) is similar to the one

employed by Primi. Relative to CS2005, it allows ψt 6= 0 at each t. Details of

estimation appear in Appendix.

Equation (1) has the following companion form

yt = µt + Atyt−1 + εt

where yt = [y′t...y
′
t−p+1]

′, εt = [ε′t0...0]′ and µt = [A′
0,t0...0]′ are np× 1 vectors and

At =

(
At

In(p−1) 0n(p−1),n

)

where At = [A1,t...Ap,t] is an n× np matrix, In(p−1) is an n(p− 1)× n(p− 1) identity

matrix and 0n(p−1),n is a n(p − 1) × n matrix of zeros. Let µ̂t and Ât denote the

median of the joint posterior distribution of µ̂t Ât (see Appendix for the details).

The forecast of yt+1 1-step ahead is:

ŷt+1|t = µ̂t + Âtyt (5)

Forecasts at time t+ h are computed iteratively from the previous forecasts:

ŷt+h|t = µ̂t + Âtŷt+h−1 =
h∑

j=1

Âj−1
t µ̂t + Âh

t yt (6)

Forecasts of πh
t+h are computed by cumulating the first h forecasts of the first

entries (which correspond to πt) of the forecasted vector ŷt+h|t:

π̂h
t+h|t =

1

h

h∑
i=1

ŷ1,t+i|t

where ŷ1,t+h−i|t = πt+h−i if i >= h. Forecast of URt+h and IRt+h correspond to

the second and third entries of the of the forecasted vector ŷt+h|t.

3.2 Other forecasting models

The forecasting ability of the time varying VAR is compared with that of other time

series models. Particular emphasis will be posed on the comparison between the time

varying VAR and the non-time varying (coefficient) counterpart. Such comparison

allows us disentangle and evaluate the eventual contribution to the forecast accuracy

due to the richer model specification.

5



• Näıve Forecasting Models (Benchmarks):

The first approach used to forecast the variables is a simple, näıve forecasting

model. In the case of inflation we choose the Atkeson and Ohanian (2001)

(AO) benchmark. AO demonstrate that, since 1984, structural models of US

inflation have been outperformed by a näıve forecasts based on the average rate

of inflation over the current and previous three quarters. This is essentially a

”no change” forecast for inflation:

π̂h,ao
t+h|t = π4

t =
1

4
(πt + πt−1 + πt−2 + πt−3) (7)

In the case of unemployment rate and interest rate the näıve benchmark is

slightly modified. In these cases, the last available data point is used as an

estimate of the future values at every horizon.

• Time Varying Autoregression (TV-AR)

Inflation (πt), unemployment rate (URt) and interest rate (IRt) are modelled as

an autoregressive model with drifting coefficients and drifting stochastic volatil-

ity in the error term:3

xt = α0,t + α1,txt−1 + α2,txt−2 + ...+ αp,txt−p + εt (8)

The 1-step ahead ahead forecast is computed as:

x̂tv−ar
t+1|t = α̂0,t + α̂1,txt + α̂2,txt−1 + ...+ α̂p,txt−p+1

where the hat denotes coefficients estimates. Details of the estimation are given

in appendix 1. In general, at time t+h, the forecast can be computed recursively

from the previous forecasts:

x̂ar−tv
t+h|t = α̂0,t +

p∑
i=1

α̂ix̂
ar−tv
t+h−i|t

where x̂ar−tv
t+h−i|t = xt+h−i if i >= h. In the case of inflation, x1,t = πt, predictions

at time t+ h, π̂h,ar−tv
t+h|t , are computed by cumulating the first h forecasts of the

(log) price changes 1
h
(
∑h

i=1 π̂
ar−tv
t+h|t )

3AR coefficients and the residual volatility are assumed to evolve according to the equations
discussed in the previous subsection.
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• Recursive Autoregression (AR-REC)

Each of the three variables πt, URt and IRt is modelled as an autoregressive

precess:

xt = α0 + α1xt−1 + α2xt−2 + ...+ αpxt−p + εt (9)

Forecasts are computed exactely as in the previuos after the parameters are

estimated by Ordinary Least Squares (OLS).

• Rolling Autoregression (AR-ROL)

This model is equivalent to the previous one AR-REC, with the difference that

estimates of the parameters are computed on a ten years rolling window, instead

of using the whole sample length.

• Recursive VAR (VAR-REC) This is a VAR model in the three variables,

πt, URt and IRt, collected in a (3 × 1) vector of variables yt:

yt = A0 + A1yt−1 + A2yt−2 + ...+ Apyt−p + et (10)

Forecasts of the variable πt are computed using formulas (5) and (6), but re-

placing At with the estimated matrix of parameters computed by OLS.

• Rolling VAR (VAR-ROL) Equivalent to VAR-REC, with estimates com-

puted by OLS on a ten years rolling window.

3.3 The Simulation Exercise

To analyze the predictive power of the previous model we perform a standard out-

of-sample forecast exercise. The procedure is as follows; the exercise begins by es-

timating all the parameters of the models on a sample span called the estimation

window (1948:Q2 to 1969:Q4). The estimated parameters are then used to fore-

cast the variables h-steps ahead outside the estimation window.4 The estimation

window is updated sequentially with one observation and the parameters are re-

estimated based on the new sub-sample.5 The h-steps ahead forecasts are again

computed outside the new sample. This procedure is then iterated until the end

of the sample. Forecasts of the vector of variables xh
t+h,v labeled as x̂h,i

t+h|t, with i ∈

4Following the related literature, we use a two lags specifications for all the analyzed models.
5In the case of VAR-ROL the estimation window is kept fixed to ten years. The first observation

is then dropped every time a new observation is added in the iteration,.
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{NAIV E,AR−REC,AR−ROL,AR− TV, V AR−REC, V AR−ROL, V AR− TV }
are stored and used to compute the Mean Square Forecast Error (MSFEh) at horizon

h.6 For horizon h the MSFEh is defined as the following:

MSFEi
h =

1

t1 − (t0 + h)

t1∑
s=t0+h

(xh
s,s+2 − x̂h,i

s|t)
2

with i ∈ {NAIV E,AR−REC,AR−ROL,AR− TV, V AR−REC, V AR−ROL, V AR− TV }.
Since data are continuously revised at each quarter, several measures of inflation avail-

able. Following Romer and Romer (2000), we consider the figures published after the

next two subsequent quarters as the true realized values.

The MSFE is a measure of the average forecast accuracy over the out-of-sample

window. In the empirical exercise t0 = 1970 : Q1 + h and t1 = 2007 : Q4 − 12 + h

with h = 1, 2, ..., 12. 7

To facilitate comparisons between the various models, the results are reported in

terms of the relative MSFE statistics, where the MSFE of the NAIV E model, used

as benchmark, is at the denominator:

MSFEi
h

MSFENAIV E
h

When the relative MSFE is less than one, the model i improves the forecast of the

benchmark model. For example, a value of 0.8 would indicate that model i improves

the forecast performance of the benchmark model by 20%.

4 Results

Forecasting results for the three variables are reported in table 1 to 3 in appendix

appendix 2 and are discussed below individually for each variable.

4.1 Inflation

Results for inflation are reported in table 1. The table is divided in three sub-tables

describing the results for the all sample, the first sub-sample (1970:Q1 to 1984:Q4)

6The ex-post realized inflation xh
t+h,v can be computed on different vintages. The second subscript

v denotes the vintage used for such computation.
7In the simulation exercise forecasts for horizon h = 1 correspond to nowcast, given that in the

real time dataset figures are available only up to the previous quarter.
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and the second sub-sample (1985:Q1 to 2007:Q4) respectively. In each sub-table,

the first row refers to the forecasting horizon, ranging from 1 to 12. In the second

row there is the MSFE for the näıve model, used as benchmark. The following rows

show the ratio between the MSFE of obtained with a particular model to the MSFE

obtained with the benchmark.

Results for the full sample point to a superior forecasting ability of the VAR-TV

model. Such model dominates the benchmark specifications over all the horizons with

an average improvement of about 35%. A relative good performance is observed also

for the univariate time varying specification (AR-TV) with improvements of about

10% over the horizons 3 to 7. The other specifications, univariate and multivariate

fail to improve the forecasts accuracy of the benchmark.

The analysis split for the two sub-samples shows that in the first sub-sample

(1970:Q1 to 1984:Q4), the VAR-TV model again displays a superior performance,

with sizeable improvements on the benchmark over all the horizons. The AR-TV

model also improves the forecast accuracy of the näıve model, with improvements

greater than 10% in the middle horizons; none of the other models does better than

the benchmark.

On the second sub-sample (1985:Q1 to 2007:Q4), results are somehow similar.

The VAR-TV model is once again the best performing model; its forecast accuracy

increases with the horizon. We observe an improvement of about 10% over the bench-

mark model, for horizon 4, which steadily increases to an outstanding 50% for the

three years predictions (horizon 12). On this sub-sample, the model displays a per-

formance similar to the benchmark for the shorter horizon. The other models fail to

improve upon the simple univariate specification, the only exception is the AR-TV

in the long run.

A visual inspection of the predictions can highlights the forecasting properties

of the different model. Figure 1, in appendix 3, plots, for the two years horizon,

the forecasts of three models, VAR-TV (green line), VAR-REC (dotted, red line)

and AR-TV (dashed, grey line) against the ex-post realized, true values (blue line).

The time varying VAR tracks extraordinarily well the persistent movements of the

two years changes in prices (blue line), both before and after the great moderation

period. Also the AR-TV model exhibits a good ability in tracking the underlying,

persistent movements in the trend, even if it is less accurate than the three variables

multivariate specifications. The VAR-REC model, on the other side, fails in tracking

such movements as quickly as the other models and the underlying trend is tracked
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only after a significant time delay.

4.2 Unemployment

Table 2 reports the results for unemployment. Over all the sample, all the models have

a good forecasting performance, especially in the long run, the only exception is the

AR-ROL model, which never beats the benchmark specification. Particularly good

is the performance of the VAR-REC and VAR-TV models. In the long run (horizon

12) their improvements on the näıve model are about 53% and 40% respectively.

On the first sub-sample (1970:Q1 to 1984:Q4), there is, in general, a good per-

formance of the multivariate models, while all the univariate specifications fails to

improve upon the benchmark model. On this sub-sample, unlike the inflation case, a

richer information set is more important than the richer dynamics, which is captured

by the drifting coefficients.

On the second sub-sample (1985:Q1 to 2007:Q4) results are quite similar. In

this case also the AR-TV and AR-ROL (in the long run) have a good forecasting

performance. Particularly, good are once again the performances of VAR-REC (es-

pecially in the long-run) and VAR-TV (both in the short and long-run) models, with

improvements, at horizon 12, of about 65% and 50% respectively.

Figure 2 displays the forecasts, at horizon 8, for the three models, AR-TV, VAR-

REC and AR-TV against the realized ex-post values of the unemployment rate. The

two VAR models have quite collinear forecasts. At the beginning of the 80s there is a

spike in the forecast path of the three models, which is more severe for the time varying

specification. The univariate specification does not track very well the unemployment

rate series in the pre-85 sample, while in the great moderation period its predictions

are comparable with those obtained with the multivariate specifications.

4.3 Interest Rate

Results for interest rate are shown in table 3. Over all the sample, the time varying

specifications improve the accuracy of the benchmark model, while the other models

perform worse. The improvements at three years horizon are of about 9% and 16%

respectively for AR-TV and VAR-TV.

During the first period (1970:Q1 to 1984:Q4), none of the models provide forecasts

more accurate than the näıve specification. The VAR-TV displays, on average, the

same forecasting performance.
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The second sub-sample (1985:Q1 to 2007:Q4) is characterized by an accurate

forecasting performance of VAR-TV, VAR-REC and AR-TV. The other models do

not improve on the accuracy of the benchmark specification (AR-ROL shows some

improvements only on the longer horizons). Those results confirm the findings of

D’Agostino Giannone and Surico (2006). They find that predictability of interest rates

have increased during the great moderation period. The interpretation of this result

is consistent with the new course of the monetary policy management undertaken by

the Federal Reserve during those years. The improved transparency and the better

communication strategy policies have probably contributed to enlarge the information

set of the agents, who more easily might have predicted the future path of interest

rates.

Figure 3 below displays the two years ahead forecasts for interest rates. The three

models (VAR-TV, AR-TV and VAR-REC) deliver quite collinear forecasts. At the

beginning of the 80s however the VAR-REC does not track very well the movements

of interest rates and it takes some time before the forecasts of this model realign to

those of the time varying specifications to capture the persistent movements in the

interest rate’s trend.

4.4 Discussion

The forecasting results described in the previous section highlights some important

features which is worth stressing. Time varying specifications, especially the VAR one,

offer valid alternatives to traditional models the literature and the practitioners have

used so far for forecasting purposes. In fact, the VAR-TV model, calibrated with pri-

ors as in CPS8, provides outstanding forecasts for inflation over all the sample. Results

are very good especially over the post-85 sample, where the improvements on the AO

benchmark, which is hard to beat *[see][]AO, SWJMBC2007arequiteremarkable.

Good predictions are also provided for the interest rate series, which displays

dynamic properties, such as the persistence, similar to inflation. In the pre-85 sample

the forecast accuracy is comparable, on average, to that of the benchmark model and

on the post-85 sample it is much better.

Finally, results for unemployment are very good as well. This series however ex-

hibits movements which are less persistent than those of the other two series; therefore

8Results are robust to alternative priors specifications and are available upon request from the
authors

11



also the other time series models, which are designed to describe more stationary dy-

namics, have a good forecasting performance.

5 Conclusions
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Appendix 1

Estimation is done using Bayesian methods. We refer the reader to the Appendix for the
detail, while here we describe the general line of the procedure. We make the following
assumptions for priors densities. x̂ denotes the OLS estimate of parameter x obtained in
the initial sample.

P (θ0) = N(θ̂, V̂θ)

P (φi0) = N(φ̂i, V̂φi
)

P (log σ0) = N(log σ̂, In)

P (Ω) = IW (Ω−1
0 , ρ1)

P (Ξ) = IW (Ξ−1
0 , ρ2)

P (Ψi) = IW (Ψ−1
0 , ρ3i)

where Ω̄−1
0 = (λ1ρ1V̂θ)−1, Ξ−1

0 = λ2ρ2In and Ψ−1
0 = λ3iρ3iφ̂i, V̂φi

.
Discuss parameters λ...
To draw from the joint posterior distribution of model parameters we use a Gibbs

sampling algorithm along the lines described in Primiceri (2005). The basic idea of the
algorithm is to draw sets of coefficients from known conditional posterior distributions.
The algorithm is initialized9 at some values and, under some regularity conditions, the
draws converge to a draw from the joint posterior after a burn in period. Let z be (q × 1)
vector, we denote zT the sequence [z′1, ..., z′T ]′. Each repetition is composed of the following
steps:

1. p(σT |xT , θT , φT , Ω,Ξ, Ψ, sT )

2. p(sT |xT , θT , σT , φT , Ω, Ξ,Ψ)10

3. p(φT |xT , θT , σT , Ω,Ξ, Ψ, sT )

4. p(θT |xT , σT , φT , Ω,Ξ, Ψ, sT )

5. p(Ω|xT , θT , σT , φT ,Ξ, Ψ, sT )

6. p(Ξ|xT , θT , σT , φT , Ω, Ψ, sT )

7. p(Ψ|xT , θT , σT , φT , Ω,Ξ, sT )

9

10See below the definition of sT .
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Gibbs sampling algorithm

• Step 1: sample from p(σT |yT , θT , φT ,Ω, Ξ,Ψ, sT )
To draw σT we use the algorithm of Kim, Shephard and Chibb (KSC) (1998). Consider

the system of equations y∗t ≡ F−1
t (yt −X ′

tθt) = D
1/2
t ut, where ut ∼ N(0, I), Xt = (In ⊗ x′

t),
and xt = [1n, yt−1...yt−p]. Conditional on yT , θT , and φT , y∗t is observable. Squaring and
taking the logarithm, we obtain

y∗∗t = 2rt + υt (11)

rt = rt−1 + ξt (12)

where y∗∗i,t = log((y∗i,t)2 + 0.001) - the constant (0.001) is added to make estimation more
robust - υi,t = log(u2

i,t) and rt = log σi,t. Since, the innovation in (11) is distributed as
log χ2(1), we use, following KSC, a mixture of 7 normal densities with component proba-
bilities qj , means mj − 1.2704, and variances v2

j (j=1,...,7) to transform the system in a
Gaussian one, where {qj ,mj , v

2
j } are chosen to match the moments of the log χ2(1) distri-

bution. The values are:

j qj mj v2
j

1.0000 0.0073 -10.1300 5.7960
2.0000 0.1056 -3.9728 2.6137
3.0000 0.0000 -8.5669 5.1795
4.0000 0.0440 2.7779 0.1674
5.0000 0.3400 0.6194 0.6401
6.0000 0.2457 1.7952 0.3402
7.0000 0.2575 -1.0882 1.2626

Let sT = [s1, ..., sT ]′ be a matrix of indicator variables selecting at each point in time the
member of the mixture to be used for each element of υt. Conditional on sT , (υi,t|si,t = j) ∼
N(mj − 1.2704, v2

j ). Therefore we can use the algorithm of Carter and R.Kohn (1994) to
draw rt (t=1,...,T) from N(rt|t+1, Rt|t+1), where rt|t+1 = E(rt|rt+1, y

t, θT , φT , Ω, Ξ,Ψ, sT , )
and Rt|t+1 = V ar(rt|rt+1, y

t, θT , φT , Ω, Ξ, Ψ, sT ).

• Step 2: sample from p(sT |yT , θT , σT , φT , Ω,Ξ, Ψ)
Conditional on y∗∗i,t and rT , we independently sample each si,t from the discrete density

defined by Pr(si,t = j|y∗∗i,t , ri,t) ∝ fN (y∗∗i,t |2ri,t + mj − 1.2704, v2
j ), where fN (y|μ, σ2) denotes

a normal density with mean μ and variance σ2.

• Step 3: sample from p(φT |yT , θT , σT , Ω, Ξ, Ψ, sT )

15



Consider again the system of equations F−1
t (yt −X ′

tθt) = F−1
t ŷt = D

1/2
t ut. Conditional

on θT , ŷt is observable. Since F−1
t is lower triangular with ones in the main diagonal, each

equation in the above system can be written as

ŷ1,t = σ1,tu1,t (13)

ŷi,t = −ŷ[1,i−1],tφi,t + σi,tui,t i = 2, ..., n (14)

where σi,t and ui,t are the ith elements of σt and ut respectively, ŷ[1,i−1],t = [ŷ1,t, ..., ŷi−1,t].
Under the block diagonality of Ψ, the algorithm of Carter and R.Kohn (1994) can be
applied equation by equation, obtaining draws for φi,t from a N(φi,t|t+1, Φi,t|t+1), where
φi,t|t+1 = E(φi,t|φi,t+1, y

t, θT , σT , Ω, Ξ, Ψ) and Φi,t|t+1 = V ar(φi,t|φi,t+1, y
t, θT , σT , Ω, Ξ, Ψ).

• Step 4: sample from p(θT |yT , σT , φT , Ω, Ξ, Ψ, sT )
Conditional on all other parameters and the observables we have

yt = X ′
tθt + εt (15)

θt = θt−1 + ωt (16)

Draws for θt can be obtained from a N(θt|t+1, Pt|t+1), where θt|t+1 = E(θt|θt+1, y
T , σT , φT , Ω,Ξ, Ψ)

and Pt|t+1 = V ar(θt|θt+1, y
T , σT , φT , Ω,Ξ, Ψ) are obtained with the algorithm of Carter and

R.Kohn (1994).

• Step 5: sample from p(Ω|yT , θT , σT , φT , Ξ, Ψ, sT )
Conditional on the other coefficients and the data, Ω has an Inverse-Wishart posterior

density with scale matrix Ω−1
1 = (Ω0 +

∑T
t=1 Δθt(Δθt)′)−1 and degrees of freedom dfΩ1 =

dfΩ0 +T , where Ω−1
0 is the prior scale matrix, dfΩ0 are the prior degrees of freedom and T is

length of the sample use for estimation. To draw a realization for Ω make dfΩ1 independent
draws zi (i=1,...,dfΩ1) from N(0, Ω−1

1 ) and compute Ω = (
∑dfΩ1

i=1 ziz
′
i)
−1 (see Gelman et. al.,

1995).

• Step 6: sample from p(Ξi,i|yT , θT , σT , φT , Ω,Ψ, sT )
Conditional the other coefficients and the data, Ξ has an Inverse-Wishart posterior

density with scale matrix Ξ−1
1 = (Ξ0 +

∑T
t=1 Δlog σt(Δ log σt)′)−1 and degrees of freedom

dfΞ1 = dfΞ0 + T where Ξ−1
0 is the prior scale matrix and dfΞ0 the prior degrees of freedom.

Draws are obtained as in step 5.

• Step 7: sample from p(Ψ|yT , θT , σT , φT , Ω, Ξ, sT ).
Conditional on the other coefficients and the data, Ψi has an Inverse-Wishart posterior

density with scale matrix Ψ−1
i,1 = (Ψi,0 +

∑T
t=1 Δφi,t(Δφi,t)′)−1 and degrees of freedom

dfΨi,1 = dfΨi,0 + T where Ψ−1
i,0 is the prior scale matrix and dfΨi,0 the prior degrees of

freedom. Draws are obtained as in step 5 for all i.
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6 Appendix 2: Tables
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ä
ıv

e
0.

27
0.

74
1.

37
2.

09
2.

82
3.

61
4.

39
5.

16
5.

82
6.

47
7.

15
7.

69

A
R

-R
E
C

3.
64

2.
52

1.
94

1.
74

1.
66

1.
67

1.
63

1.
53

1.
47

1.
47

1.
46

1.
44

A
R

-R
O

L
1.

08
1.

13
1.

16
1.

17
1.

16
1.

13
1.

09
1.

05
1.

00
0.

96
0.

92
0.

89

A
R

-T
V

0.
83

0.
81

0.
81

0.
81

0.
79

0.
77

0.
76

0.
74

0.
73

0.
70

0.
67

0.
63

V
A

R
-R

E
C

0.
87

0.
81

0.
79

0.
78

0.
75

0.
72

0.
70

0.
67

0.
65

0.
66

0.
67

0.
70

V
A

R
-R

O
L

1.
02

0.
96

1.
11

1.
20

1.
23

1.
22

1.
21

1.
20

1.
24

1.
21

1.
15

1.
13

V
A

R
-T

V
0.

82
0.

80
0.

81
0.

81
0.

80
0.

78
0.

76
0.

74
0.

72
0.

69
0.

64
0.

61

20



7 Figures

Figure 1: Inflation Predictions: Two Years Ahead

Q1−1980 Q1−1990 Q1−2000 Q1−2010

Actual Values
VAR−TV
VAR−REC
AR−TV

Figure 2: Unemployment Predictions: Two Years Ahead

Q1−1980 Q1−1990 Q1−2000 Q1−2010

Actual Values
VAR−TV
VAR−REC
AR−TV

Figure 3: Interest Rate Predictions: Two Years Ahead

Q1−1980 Q1−1990 Q1−2000 Q1−2010
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