
ESTIMATING HETEROGENEOUS EFFECTS: 
APPLICATIONS TO LABOR ECONOMICS 2024

Stéphane Bonhomme and Angela Denis

Documentos de Trabajo
N.º 2414



ESTIMATING HETEROGENEOUS EFFECTS: APPLICATIONS TO LABOR 

ECONOMICS



Stéphane Bonhomme

UNIVERSITY OF CHICAGO 

Angela Denis

BANCO DE ESPAÑA

ESTIMATING HETEROGENEOUS EFFECTS: APPLICATIONS 
TO LABOR ECONOMICS (*)

(*) We thank Evan Rose for helpful comments. The views expressed in this paper are those of the authors and do 
not necessarily reflect the position of the Banco de España or the Eurosystem.

Documentos de Trabajo. N.º 2414

May 2024

https://doi.org/10.53479/36556

https://doi.org/10.53479/36556


The Working Paper Series seeks to disseminate original research in economics and finance. All papers 
have been anonymously refereed. By publishing these papers, the Banco de España aims to contribute 
to economic analysis and, in particular, to knowledge of the Spanish economy and its international 
environment. 

The opinions and analyses in the Working Paper Series are the responsibility of the authors and, therefore, 
do not necessarily coincide with those of the Banco de España or the Eurosystem. 

The Banco de España disseminates its main reports and most of its publications via the Internet at the 
following website: http://www.bde.es.

Reproduction for educational and non-commercial purposes is permitted provided that the source is 
acknowledged.  

© BANCO DE ESPAÑA, Madrid, 2024

ISSN: 1579-8666 (on line)

http://www.bde.es


Abstract

A growing number of applications involve settings where, in order to infer heterogeneous 

effects, a researcher compares various units. Examples of research designs include 

children moving between different neighborhoods, workers moving between firms, patients 

migrating from one city to another, and banks offering loans to different firms. We present 

a unified framework for these settings, based on a linear model with normal random 

coefficients and normal errors. Using the model, we discuss how to recover the mean and 

dispersion of effects, other features of their distribution, and how to construct predictors of 

the effects. We provide moment conditions on the model’s parameters, and outline various 

estimation strategies. One of the main objectives of the paper is to clarify some of the 

underlying assumptions by highlighting their economic content, and to discuss and inform 

some of the key practical choices.

Keywords: heterogeneity, neighborhoods, firms, workers, variance components, shrinkage.

JEL classification: C10, C50. 



Resumen

Un número creciente de aplicaciones utilizan escenarios en los que, para inferir efectos 

heterogéneos, un investigador compara distintas unidades. Ejemplos de diseños de 

investigación son aquellos que incluyen a niños que se mudan de barrio, trabajadores que 

cambian de empresa, pacientes que migran de una ciudad a otra y bancos que ofrecen 

préstamos a diferentes empresas. En este trabajo presentamos un marco unificado para 

estos escenarios, basado en un modelo lineal con coeficientes aleatorios normales 

y errores normales. Con ayuda del modelo, analizamos cómo recuperar la media y la 

dispersión de los efectos, así como otras características de su distribución, y cómo 

construir predictores de los efectos. Proporcionamos condiciones de momentos que 

dependen de los parámetros del modelo y describimos diversas estrategias de estimación. 

Uno de los principales objetivos de este documento es aclarar algunos de los supuestos 

subyacentes destacando su contenido económico, además de examinar e informar sobre 

algunas de las principales decisiones prácticas.

Palabras clave: heterogeneidad, barrios, empresas, trabajadores, componentes de la 

varianza, regularización.

Códigos JEL: C10, C50.
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1 Introduction

Documenting heterogeneity across individuals, firms, or space, has become a central theme

in applied economics. In earlier research, heterogeneous parameters used to be treated as a

nuisance, and “differenced out” by means of fixed-effects regressions. Increasingly, however,

estimating and studying heterogeneous effects has become the main goal of the analysis.

This focus on heterogeneity is enabled by the availability of richer data sets. A leading

example is given by administrative data sets that feature many units (such as firms, workers,

or neighborhoods), and at the same time provide information about each unit (such as multiple

workers in a firm, multiple time periods on a worker, or multiple individuals in a neighborhood).

Settings with heterogeneous parameters are often studied using panel data techniques. How-

ever, traditional panel data methods treat units, such as firms or neighborhoods, independently

of each other. A growing number of applications instead involve settings where, in order to in-

fer heterogeneous effects, the researcher specifies a research design that compares various units.

For example, to estimate firm or neighborhood effects, researchers exploit workers who move

between firms or children who move to a new neighborhood, respectively.

We will refer to three leading examples as illustrations. In the first one, Kline et al. (2022)

send multiple job applications to several large firms, and estimate firm-specific call-back rates as

a function of applicants’ characteristics. Documenting differences across firms in call-back rates

allows the researchers to study hiring discrimination at the firm level, hence complementing

the literature using résumé correspondence experiments (e.g., Bertrand and Duflo, 2017) by

providing firm-level estimates. In this application, discrimination parameters can be estimated

independently, firm by firm. Hence, this setting is akin to a traditional panel data or grouped

data setting.

In the second example that we analyze, Chetty and Hendren (2018b) study how the income

at adulthood of children depends on the place where they grew up. To estimate the effects

of neighborhoods on income, the researchers exploit mobility of families across neighborhoods.

Hence, the effect of neighborhood j on income at adulthood is constructed by comparing the

incomes of individuals who grew up in various neighborhoods j�. This setting has been studied

by a large subsequent literature, including Chetty and Hendren (2018a), Laliberté (2021),

Bergman et al. (2019), and Aloni and Avivi (2023).

Our third leading example is the so-called AKM regression framework for matched employer-

employee data introduced by Abowd et al. (1999). The researchers’ goal is to estimate how

worker and firm effects contribute to wage dispersion. This setting similarly features compar-
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isons between multiple units, since the differences in wage premia offered by two firms j and

j� is informed by workers moving between j and j�. The AKM approach has become central

to the study of workers and firms, see among others Card et al. (2013), Card et al. (2018),

and Song et al. (2019). Moreover, the methodology in this example has been used to study

other questions, such as differences in health care utilization across space inferred from patients

moving between cities (Finkelstein et al., 2016), or the impacts of banks and firms on credit

growth inferred from banks’ loans to multiple firms (Amiti and Weinstein, 2018).

In these applications, the data sets are complex and the models are high-dimensional. Prac-

titioners need to make a large number of choices for modeling, practical specification, and

estimation. Since we have not seen any survey on the econometric analysis of these settings as

of yet,1 we have decided to write a paper on the topic. Our main goal is to lay out a framework

to analyze these settings, and to clarify some of the underlying assumptions and key practical

choices. While doing so, we will highlight the economic content behind the main assumptions.

The model that underlies most applications to these settings is a linear normal random

coefficients (RC) model. The “random coefficients” refer to the heterogeneous effects that are

the focus of the analysis, such as the effects of neighborhoods, or the worker and firm effects.

Those coefficients are associated with specific covariates: in Chetty and Hendren (2018b) the

effect of a neighborhood is simply the coefficient of the exposure to that neighborhood (i.e., of

how long the family stayed in that neighborhood), whereas in Abowd et al. (1999) the effect of

firm j is the coefficient of the j-th firm indicator. In both cases, the model involves a very large

number of such covariates (e.g., many thousands of firm and worker indicators or neighborhood

exposures).

The primitive parameters of the RC model are the means and variances of the coefficients

(e.g., the neighborhood effects, or the worker and firm effects), as well as the variance of the

errors. All of these parameters are potentially functions of all the covariates. They satisfy first

and second moment conditions that we present. These moment conditions, which remain valid

absent normality, build on moment conditions previously derived for panel data settings (e.g.,

Chamberlain, 1992, Arellano and Bonhomme, 2012).

While means and variances are useful to answer substantive questions, such as how much

dispersion in outcomes is explained by neighborhood, worker, or firm heterogeneity, other im-

portant questions require additional information. As we describe, higher-order moments (such

as skewness or kurtosis), nonlinear moments, as well as marginal and multivariate distributions,

1Abowd et al. (2008) and Bonhomme (2020) survey methods for bipartite networks and matched employer-

employee data.
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can all be inferred under the normality assumption of the RC model. For example, researchers

may be interested in the distribution of neighborhood effects across space, or in the densities

of worker and firm effects. In addition, the normal RC model can be used to construct opti-

mal predictors of the effects. Such predictors or “forecasts” are also of considerable interest in

various literatures outside our three leading examples, including in the work on teacher quality

(e.g., Kane and Staiger, 2008, Chetty et al., 2014).

Taking the RC model to data, however, is challenging in the settings that we study, given the

large number of covariates (such as neighborhood exposures, or worker and firm effects) and the

complex forms of dependence implied by the model. We show that commonly used specifications

effectively impose conditional independence assumptions that may be economically restrictive.

For example, common strategies in the analysis of neighborhood effects require location choice

to be independent of neighborhood heterogeneity conditional on a set of neighborhood-specific

covariates. Estimating flexible models of means, covariances, and distributions in these settings

is an important yet still relatively unexplored research area.

Lastly, while the normal RC model provides a unified, self-contained framework to estimate

heterogeneous parameters, normality and linearity may both be restrictive. In the last part of

the paper, we briefly explore how these assumptions could be relaxed.

Relation to the literature. The framework we present builds on a vast methodological lit-

erature in statistics and econometrics. This includes the statistical literature on mixed models

(e.g., Jiang and Nguyen, 2007, McCulloch and Searle, 2004), the literature on random coeffi-

cients models and correlated random-effects approaches in panel data (e.g., Chamberlain, 1992,

Arellano and Bonhomme, 2012) and related panel data work based on decision-theoretic ap-

proaches (Chamberlain and Moreira, 2009, Chamberlain, 2016), as well as the empirical Bayes

literature (e.g., Efron, 2012) and the Bayesian and frequentist interpretations of best linear

unbiased predictors (BLUP, e.g., Robinson, 1991).

2 Regressions with fixed effects

It is common in empirical work to focus on the relationship between some (typically scalar)

outcomes yi and some covariates xi and zi, and to specify a linear regression model of the form

yi 
 x�iβ � z�iη � ui, i 
 1, ..., n. (1)

We assume that the researcher has access to multiple observations i about some economic

4
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units j. The units may be firms, workers, or neighborhoods, depending on the application.

Our focus is on settings where zi contains unit-specific variables, as well as interactions of unit-

specific variables with other covariates. Let p denote the number of covariates in zi. Hence,

the coefficients ηj, j 
 1, ..., p, are unit-specific “fixed effects”.2 Let q denote the number of

covariates in xi. We will focus on settings where p is large, and, depending on the application

of interest, q may be small or large.

Estimating high-dimensional regressions as in (1) is made possible by the availability of

increasingly large and detailed data sets, and by the development of powerful computational

methods and software. This enables researchers to “zoom in” on the effects of particular units

in the sample.

Under the assumption that ui are uncorrelated with xi and zi in (1), researchers typically

estimate β and η using OLS. This regression delivers parameter estimates �β and �η. The re-

searcher’s goal is then to use the estimates �η1, ...,�ηp to learn about the true effects η1, ..., ηp.

We now describe three examples where this setup arises.

Example 1. (Firm-specific discrimination) Kline et al. (2022) construct firm-specific

measures of racial discrimination in hiring. They send various fictitious job applications with

randomized characteristics to some of the largest employers in the US. They then measure call-

back rates by race, for every firm in the sample. To map this setting to the current setup,

denote job applications as i and firms as j. The outcome yi is whether the firm calls back the

applicant, and zi contains the firm’s indicator and the interaction of the firm’s indicator with

the race of applicant (white or black). There are no additional covariates xi. The researchers

are interested in the coefficient in ηj of the interaction between firm j’s indicator with the race

of the applicant, which they interpret as reflecting firm j’s discrimination in hiring.

In this particular setting, the regression coefficient �ηj is constructed using the observations

from firm j only, not other firms’ observations. The data structure is analogous to panel (or

grouped) data, and indeed, in this application, model (1) can be interpreted as a grouped data

model with group-specific intercepts and slopes, where the slope coefficients are associated with

the applicant’s race.

Increasingly, researchers estimate regressions where learning about ηj requires comparing

various units. In that case, the estimate �ηj for unit j is constructed using the observations from

several (and possibly a large number of) other units j�. Our next two examples are in this vein.

2We will refer to the ηj ’s as “fixed effects”, in line with the usual terminology in applied economics. In

contrast, in the statistical literature on mixed models β are often referred to as “fixed effects”, and η as

“random effects”. See, e.g., the monograph by Jiang and Nguyen (2007).
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effectively impose conditional independence assumptions that may be economically restrictive.

For example, common strategies in the analysis of neighborhood effects require location choice

to be independent of neighborhood heterogeneity conditional on a set of neighborhood-specific

covariates. Estimating flexible models of means, covariances, and distributions in these settings

is an important yet still relatively unexplored research area.

Lastly, while the normal RC model provides a unified, self-contained framework to estimate

heterogeneous parameters, normality and linearity may both be restrictive. In the last part of

the paper, we briefly explore how these assumptions could be relaxed.
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cients models and correlated random-effects approaches in panel data (e.g., Chamberlain, 1992,

Arellano and Bonhomme, 2012) and related panel data work based on decision-theoretic ap-

proaches (Chamberlain and Moreira, 2009, Chamberlain, 2016), as well as the empirical Bayes

literature (e.g., Efron, 2012) and the Bayesian and frequentist interpretations of best linear

unbiased predictors (BLUP, e.g., Robinson, 1991).

2 Regressions with fixed effects

It is common in empirical work to focus on the relationship between some (typically scalar)

outcomes yi and some covariates xi and zi, and to specify a linear regression model of the form

yi 
 x�iβ � z�iη � ui, i 
 1, ..., n. (1)

We assume that the researcher has access to multiple observations i about some economic

4
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units j. The units may be firms, workers, or neighborhoods, depending on the application.

Our focus is on settings where zi contains unit-specific variables, as well as interactions of unit-

specific variables with other covariates. Let p denote the number of covariates in zi. Hence,

the coefficients ηj, j 
 1, ..., p, are unit-specific “fixed effects”.2 Let q denote the number of

covariates in xi. We will focus on settings where p is large, and, depending on the application

of interest, q may be small or large.

Estimating high-dimensional regressions as in (1) is made possible by the availability of

increasingly large and detailed data sets, and by the development of powerful computational

methods and software. This enables researchers to “zoom in” on the effects of particular units

in the sample.

Under the assumption that ui are uncorrelated with xi and zi in (1), researchers typically

estimate β and η using OLS. This regression delivers parameter estimates �β and �η. The re-

searcher’s goal is then to use the estimates �η1, ...,�ηp to learn about the true effects η1, ..., ηp.

We now describe three examples where this setup arises.

Example 1. (Firm-specific discrimination) Kline et al. (2022) construct firm-specific

measures of racial discrimination in hiring. They send various fictitious job applications with

randomized characteristics to some of the largest employers in the US. They then measure call-

back rates by race, for every firm in the sample. To map this setting to the current setup,

denote job applications as i and firms as j. The outcome yi is whether the firm calls back the

applicant, and zi contains the firm’s indicator and the interaction of the firm’s indicator with

the race of applicant (white or black). There are no additional covariates xi. The researchers

are interested in the coefficient in ηj of the interaction between firm j’s indicator with the race

of the applicant, which they interpret as reflecting firm j’s discrimination in hiring.

In this particular setting, the regression coefficient �ηj is constructed using the observations

from firm j only, not other firms’ observations. The data structure is analogous to panel (or

grouped) data, and indeed, in this application, model (1) can be interpreted as a grouped data

model with group-specific intercepts and slopes, where the slope coefficients are associated with

the applicant’s race.

Increasingly, researchers estimate regressions where learning about ηj requires comparing

various units. In that case, the estimate �ηj for unit j is constructed using the observations from

several (and possibly a large number of) other units j�. Our next two examples are in this vein.

2We will refer to the ηj ’s as “fixed effects”, in line with the usual terminology in applied economics. In

contrast, in the statistical literature on mixed models β are often referred to as “fixed effects”, and η as

“random effects”. See, e.g., the monograph by Jiang and Nguyen (2007).
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Example 2. (Neighborhood effects and intergenerational mobility) Chetty and Hen-

dren (2018b) estimate the effects of neighborhoods in the US (such as counties or commuting

zones) on income at adulthood. In the setting they propose, i are children, the outcome yi is the

income of a child at age 26 (specifically, her rank in the overall income distribution at age 26),

zi contains the time spent by the child in every neighborhood when young as well as its interac-

tion with parental income, and xi contains origin times destination indicators, also interacted

with parental income, as well as interactions between children’s cohort indicators and parental

income. The times spent by the child in every neighborhood, which the authors refer to as the

“exposures” to the neighborhoods, are key covariates in the model. Note that, in this case, both

zi and xi are high-dimensional.

The researchers are interested in neighborhood j’s effect on adult outcomes at some particular

level of parental income p. This neighborhood-specific parameter is a linear combination of the

ηj parameters that pertain to neighborhood j. The exposure-time research design, which builds

on Chetty and Hendren (2018a), implies that the estimate of neighborhood j’s effect depends

on the outcome data on other neighborhoods j�. The authors rely on this design to estimate the

causal effect of neighborhoods, under the assumption that the age at which children move across

neighborhoods does not directly affect adult outcomes.

Example 3. (Firm and worker effects in wage determination) Abowd et al. (1999)

study how worker and firm heterogeneity contribute to wage dispersion. In the setup they pro-

pose, yi are log wages in a given period, xi includes age and time indicators as well as other

demographics, and zi includes worker indicators and firm indicators. The worker and firm in-

dicators are key covariates in the model. The researchers are interested in the coefficients ηj

associated with workers and firms. A first question of interest is how dispersed are those worker

and firm effects? By answering this question, the AKM model sheds light into how much of

wage dispersion can be attributed to workers earning different wages irrespective of where they

work, versus firms paying similar workers differently. A second question is how correlated are

worker and firm effects? By answering this second question, the model sheds light on the nature

of sorting patterns and how sorting contributes to wage dispersion.

Recovering worker and firm effects requires exploiting movements between firms. Intuitively,

if workers remain in the same firms over time it is not possible to tell whether a high wage

reflects a high worker effect or a high firm effect. Hence, the estimates of the effects depend on

the network of employment relationships between workers and firms. Indeed, identification of

the effects requires the network to be connected (Abowd et al., 2002).

6
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3 Quantities of interest and noisy estimates

In the three applications that we have outlined, the researcher’s goal is to use the estimates

�η1, ...,�ηp to learn about the true effects η1, ..., ηp. We now provide examples of quantities of

interest taken from the literature.

Throughout the paper we will treat η1, ..., ηp as random. Our goal will be to estimate

features of the joint distribution of η1, ..., ηp, and construct predictors of those effects, without

imposing a priori that the ηj’s are independent of each other or independent of the xi’s and

zi’s. When the conditional distribution of η1, ..., ηp given x1, ..., xn, z1, ..., zn is left unrestricted,

proceeding in this way does not materially differ from a setup where the ηj’s are treated as

fixed parameters (i.e., as “fixed effects”). The model we will present in Section 4 will impose

restrictions on this conditional distribution, however.

3.1 Quantities of interest

Researchers may have various objectives. A first goal may be to estimate some moments of ηj.

For simplicity we will focus on the case where ηj is scalar, although the expressions below are

easily adapted to the case of vector-valued ηj’s.

Moments that are expectations of linear combinations of the ηj’s can be written as

mc 
 E �c�η� , (2)

where c is a p� 1 vector. An example is the mean of the ηj’s,

E

�

1

p

p
�

j�1

ηj

�

.

Consider the coefficient in the linear regression of ηj on some covariates Wj. For example,

one may be interested in regressing firm effects on firm size or industry indicators in Example

3, or in regressing neighborhood effects on average income in the neighborhood in Example 2.

The regression coefficient can be written as
�

E
�

WjW
�

j

�!

�1 E
�

Wjηj
�

, which takes the form (2)

for c 

�

E
�

WjW
�

j

�!

�1
Wj.

Moments that are quadratic in η can be written as

vQ 
 E �η�Qη� , (3)

where Q is a p� p matrix. For example, the variance of the ηj’s,

Var�ηj� 
 E

�

�

1

p

p
�

j�1

�

ηj �
1

p

p
�

j�

�1

ηj�

�2
�

� ,
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Moments that are quadratic in η can be written as
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 E �η�Qη� , (3)

where Q is a p� p matrix. For example, the variance of the ηj’s,
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7can be written in this form for a suitable matrix Q. In Example 3, interest often centers on the

variances of worker and firm effects and on the covariance between worker and firm effects, all

of which can be written as (3).

Alternatively, one may be interested in the coefficient in the linear regression of some scalar

variable Wj on ηj. For example, in Example 3 one may be interested in regressing promotion

opportunities in a firm on the firm effects. The regression coefficient is
�

E
�

η2j
�!

�1 E
�

ηjWj

�

,

which can be written as the ratio between some mc in (2) and some vQ in (3), for suitable c

vector and Q matrix.

More general, nonlinear moments can be written as

wH 
 E �H�η�� , (4)

for some function H : Rp
� R. For example, one may be interested in the skewness or kurtosis

of the ηj’s, which can be written as ratios of quantities of the form (4) for suitable H functions.

Learning about distributions of effects, beyond their means and variances, is important in

all the examples we have mentioned. In Example 1, Kline et al. (2022) report estimates of the

distribution of racial discrimination in hiring across firms. In Example 2, researchers are often

interested in documenting the distribution of neighborhood effects. In Example 3, an increase

in the variance of firm effects, say, has different implications for inequality whether it comes

from a deepening of the left tail, an expansion of the right tail, or a symmetric increase in

spread.

The weighted cumulative distribution function, for some weights ωj that sum up to one,

can be written as the following nonlinear moment

Fω�a� 
 E

�

p
�

j�1

ωj1
�

ηj � a
�

�

. (5)

One may also be interested in the (weighted) density of the ηj’s, fω�a� 

�Fω�a�
�a

. Bivariate

counterparts to Fω�a� and fω�a�, which reflect the bivariate distribution of workers and firms,

are of interest in Example 3 in order to document sorting patterns along the worker and firm

distributions.

Another common goal in applications is to construct predictors of the ηj’s. The optimal

predictor that minimizes the expected sum of squared errors is a set of functions φ1, ..., φp that

solves

min
φ1,...,φp

E

�

p
�

j�1

�

ηj � φj�y1, ..., yn, x1, ..., xn, z1, ..., zn�
!2

�

, (6)
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the solution of which is the set of conditional means

φj�y1, ..., yn, x1, ..., xn, z1, ..., zn� 
 E
�

ηj 	 y1, ..., yn, x1, ..., xn, z1, ..., zn
�

, j 
 1, ..., p. (7)

In Example 2, Chetty and Hendren (2018a) and Chetty and Hendren (2018b) construct pre-

dictors of neighborhood-specific income effects. Bergman et al. (2019) use effect predictors to

select the top census tracts for income mobility.3 A key input to answering these questions is

the set of conditional means given by (7).

3.2 Noisy estimates

The data is not directly informative about the ηj’s, but delivers estimates

�ηj 
 ηj � vj, j 
 1, ..., p, (8)

where vj 
 �ηj � ηj reflects estimation noise. In many applications involving large data sets

(large n) and many unit-specific parameters (large p), the noise vj is substantial enough to

be of practical concern. Inferring ηj from �ηj then requires solving a filtering (or “de-noising”)

problem.

It is important to note that directly using the estimates �ηj in place of ηj may be misleading.

The noise vj in (8) reflects the presence of a form of measurement error. When the quantity of

interest is nonlinear in ηj, such as a variance, a higher-order moment, a cumulative distribution

function, or a density, the presence of measurement error often leads to unreliable, biased

estimates of the quantities of interest.

As an example, suppose the researcher is interested in the variance of the ηj’s, and that she

reports the following “plug in” estimate based on the �ηj’s,

�Var��ηj� 

1

p

p
�

j�1

�

�ηj �
1

p

p
�

j�

�1

�ηj�

�2

. (9)

Does a large estimate�Var��ηj� indicate that the variance of the true effects ηj, Var�ηj�, is large?

Or does the presence of measurement error vj artificially inflate the dispersion in the estimates

�ηj?

As another example, suppose the researcher uses �ηj as a predictor of ηj. Since the p param-

eters η1, ..., ηp are estimated in the available sample and p is large (or, alternatively, the noise

3See Gu and Koenker (2023) for a broad account of ranking problems and selection of groups of units based

on noisy estimates.
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in (8) is substantial), it is likely that �ηj “overfits”, in the sense that it reflects too much of the

noise vj and too little of the true effect ηj. In such cases, one may wish to construct predictors

that lead to a lower expected sum of squared errors in (6).

To illustrate these points, consider a simple setting inspired by Example 1, where ηj and vj

in (8) are independent, i.i.d. across j, and N �µη, σ
2
η� and N �0, σ2

v�, respectively. In this case,

we have

E
�

�Var��ηj�
�


 Var�ηj� �
p� 1

p
σ2
v, (10)

which shows that the variance of the estimates �ηj is upward-biased for the variance of the true

ηj’s. Moreover, while the expected sum of squared errors of �ηj is equal to pσ2
v, the expected

sum of squared errors of the conditional means

E�ηj 	�ηj� 

σ2
η

σ2
η � σ2

v

�ηj �
σ2
v

σ2
η � σ2

v

µη (11)

is smaller, equal to
pσ2

vσ
2
η

σ2
η�σ2

v
. This shows that the “shrunk” quantities E�ηj 	�ηj� in (11) have a

lower expected sum of squared errors than the original estimates �ηj. The difference between

the two is greater when the noise variance σ2
v is large relative to the variance σ2

η of the true

effects. Bias-correction methods for variance components based on equations in the spirit of

(10), and linear shrinkage predictors akin to (11), are now widespread in applied economics.

This simple example is too stylized to accurately describe the situations in Examples 2

and 3, however. In such settings, estimates �ηj are constructed using observations from other

units j� � j. Hence, the �ηj’s are not independent. This gives rise to more complex forms

for the estimation noise vj in (8), and complicates the way the noise affects the quantities of

interest. Jochmans and Weidner (2019) study how, in settings where the matrix of covariates

zi has a network structure (such as Example 3, where zi represent worker and firm employment

relationships), the properties of the network, such as how connected it is, affect the precision

of the estimates �ηj. Moreover, in the settings of Examples 2 and 3, unit-specific parameters ηj

may not be independent. We next present a framework that applies to an arbitrary matrix of

covariates zi and allows for dependence between units.

4 The normal random coefficients model

In this section we describe a normal Random Coefficients (RC) model, which allows researchers

to answer the questions introduced in the previous section.
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4.1 Model and assumptions

For the presentation we will remove the term x�iβ from equation (1). Depending on the setting,

β can be estimated using OLS or differenced out, see Remark 1 below. We then write (1) in

vector form, removing x�iβ from the equation, as follows,

Y 
 Zη � U, (12)

where Y is an n � 1 vector with generic element yi, Z is an n � p matrix with generic row z�i,

and U is an n� 1 vector with generic element ui.

The form of the design matrix Z differs across applications. In Example 1, Z takes the form
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where Zj contains two columns, the first one being a column of 1’s, and the second one being

a column of 0’s and 1’s, depending on the race of the applicant. This block-diagonal structure

characterizes panel data and grouped data settings.

In Examples 2 and 3, Z takes more complex forms. To present Example 2, let us abstract

from the dependence on parental income for simplicity. Then, zij in (1) is the exposure of i

to neighborhood j. In every row of the n � p matrix with elements zij, all but a handful of

elements are equal to zero.4 However, the matrix does not have a block-diagonal form. Then,

differencing out the origin-and-destination indicators xi (as explained in Remark 1 below) leads
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where �zij is equal to zij minus the mean of zi�j for all individuals i� who experience the same

neighborhood moves in childhood as individual i (though the time i� and i stay in each neigh-

borhood may differ). Z is sparse, and not block-diagonal.

4For example, Chetty and Hendren (2018b) focus on families that move exactly once, so every row in the

matrix has exactly two non-zero elements.

11

4.1 Model and assumptions

For the presentation we will remove the term x�iβ from equation (1). Depending on the setting,

β can be estimated using OLS or differenced out, see Remark 1 below. We then write (1) in

vector form, removing x�iβ from the equation, as follows,

Y 
 Zη � U, (12)

where Y is an n � 1 vector with generic element yi, Z is an n � p matrix with generic row z�i,

and U is an n� 1 vector with generic element ui.

The form of the design matrix Z differs across applications. In Example 1, Z takes the form

Z 


�

 

 

 

 

 

 

 

�

Z1 0 0 ... 0

0 Z2 0 ... 0

0 0 Z3 ... 0

... ... ... ... ...

0 0 0 ... Zp

�






















	

,

where Zj contains two columns, the first one being a column of 1’s, and the second one being

a column of 0’s and 1’s, depending on the race of the applicant. This block-diagonal structure

characterizes panel data and grouped data settings.

In Examples 2 and 3, Z takes more complex forms. To present Example 2, let us abstract

from the dependence on parental income for simplicity. Then, zij in (1) is the exposure of i

to neighborhood j. In every row of the n � p matrix with elements zij, all but a handful of

elements are equal to zero.4 However, the matrix does not have a block-diagonal form. Then,

differencing out the origin-and-destination indicators xi (as explained in Remark 1 below) leads

to the matrix

Z 


�

 

 

 

 

 

 

 

�

�z11 �z12 �z13 ... �z1J

�z21 �z22 �z23 ... �z2J

�z31 �z32 �z33 ... �z3J

... ... ... ... ...

�zn1 �zn2 �zn3 ... �znJ

�






















	

, (13)

where �zij is equal to zij minus the mean of zi�j for all individuals i� who experience the same

neighborhood moves in childhood as individual i (though the time i� and i stay in each neigh-

borhood may differ). Z is sparse, and not block-diagonal.

4For example, Chetty and Hendren (2018b) focus on families that move exactly once, so every row in the

matrix has exactly two non-zero elements.

11

In Example 3, Z stacks worker and firm indicators together. For example, with two periods,

K workers, and J firms, Z reads
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where f j
kt 
 1 if worker k is employed in firm j in period t, and f j

kt 
 0 otherwise. Note that

Z is not block-diagonal in this case. However, it is typically a sparse matrix since each row

has exactly two non-zero elements. The form of Z reflects the network of workers’ and firms’

employment relationships (Andrews et al., 2008, Jochmans and Weidner, 2019).

Throughout, we assume that Z has full column rank, so �Z �Z� is non-singular. When p

is large, this assumption may be restrictive. In Example 3, ensuring non-singularity requires

imposing a normalization on the parameters ηj (e.g., that the firm-specific effects sum up to

zero), and focusing on a connected component of the firm-worker network (Abowd et al., 2002).

Similarly, in Example 2, a normalization is needed since neighborhood effects are identified

relative to the national average (Chetty and Hendren, 2018b).

The defining assumptions for the normal random coefficients model are as follows.

Assumption 1. (normal RC model)

(i) U 	Z, η � N �0,Ω�Z��.

(ii) η 	Z � N �µ�Z�,Σ�Z��.

In part (i) of Assumption 1 we assume that the error terms ui in (1) are normally distributed,

with zero mean and some n � n covariance matrix Ω�Z�, independent of η. In part (ii) we

specify a normal model for η given Z, with mean µ�Z� (a p � 1 vector) and variance Σ�Z� (a

p � p matrix). Hence, we treat the parameters ηj as random coefficients, and we specify their

conditional distribution given Z. This modeling device is often used in panel data and complex

data settings. Note that Assumption 1 implies that the conditional distribution of Y given Z

is fully specified, and normal, given the parameters Ω�Z�, µ�Z�, and Σ�Z�,

Y 	Z � N �Zµ�Z�, ZΣ�Z�Z �

� Ω�Z�� .

12
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12Assumption 1 requires the following strict exogeneity assumption: E�U 	Z, η� 
 0. This

assumption imposes substantive restrictions on the economic environment. In Example 2, it

requires that the times families spend in every neighborhoods are unrelated to the unobserved

determinants of adult outcomes. In Example 3, it imposes an assumption of so-called “ex-

ogenous mobility”, through which workers’ decisions to change jobs may be driven by worker

and firm effects ηj but not by idiosyncratic time-varying shocks ui. Although some authors

have attempted to relax strict exogeneity in the setting of Example 3 (e.g., Abowd et al., 2019,

Bonhomme et al., 2019), most research to date relying on model (1) makes this assumption.

The concrete specification of µ�Z�, Σ�Z�, and Ω�Z� will depend on the application. In

panel or grouped data settings, such as in Example 1, a common assumption is that �ηj, Zj�

are independent across j, where Zj denotes the subset of observations zi that pertain to unit j.

In that case, µj�Z� depends on Z only through Zj, Σ�Z� is diagonal, and Σj,j�Z� only depends

on Zj as well.

However, in Examples 2 and 3, it may be more plausible to allow for a rich dependence

of µj�Z� and Σj,j�

�Z� on the elements of Z, and to allow Σ�Z� to be a general, non-diagonal

symmetric matrix. Indeed, in Example 2, the de-meaned exposures �zij� to other neighborhoods

j� � j in (13) are unlikely to be independent of neighborhood effects ηj, unless mobility across

neighborhoods is unrelated to neighborhood heterogeneity. Likewise, in Example 3, indicators

of firms j� � j in (14) will generally correlate with the effect of firm j unless workers’ sorting

patterns are independent of firm heterogeneity. We will return to specification issues in the

next section.

Given Assumption 1, the OLS estimator of η in (12) satisfies

�η 
 η � V, (15)

where, denoting the variance-covariance matrix of the OLS estimates �η as

S�Z� 
 �Z �Z��1Z �Ω�Z�Z�Z �Z��1, (16)

we have

V 
 �Z �Z��1Z �U 	Z, η � N �0, S�Z��.

Model (12) under Assumption 1 is a normal linear mixed model (see, e.g., Jiang and Nguyen,

2007 and McCulloch and Searle, 2004). As we will review below, normality is not needed to

obtain informative moment conditions on µ�Z�, Σ�Z�, and Ω�Z�, and the following restrictions

on first and second moments suffice.

13



BANCO DE ESPAÑA 17 DOCUMENTO DE TRABAJO N.º 2414

Assumption 1 requires the following strict exogeneity assumption: E�U 	Z, η� 
 0. This

assumption imposes substantive restrictions on the economic environment. In Example 2, it

requires that the times families spend in every neighborhoods are unrelated to the unobserved

determinants of adult outcomes. In Example 3, it imposes an assumption of so-called “ex-

ogenous mobility”, through which workers’ decisions to change jobs may be driven by worker

and firm effects ηj but not by idiosyncratic time-varying shocks ui. Although some authors

have attempted to relax strict exogeneity in the setting of Example 3 (e.g., Abowd et al., 2019,

Bonhomme et al., 2019), most research to date relying on model (1) makes this assumption.

The concrete specification of µ�Z�, Σ�Z�, and Ω�Z� will depend on the application. In

panel or grouped data settings, such as in Example 1, a common assumption is that �ηj, Zj�

are independent across j, where Zj denotes the subset of observations zi that pertain to unit j.

In that case, µj�Z� depends on Z only through Zj, Σ�Z� is diagonal, and Σj,j�Z� only depends

on Zj as well.

However, in Examples 2 and 3, it may be more plausible to allow for a rich dependence

of µj�Z� and Σj,j�

�Z� on the elements of Z, and to allow Σ�Z� to be a general, non-diagonal

symmetric matrix. Indeed, in Example 2, the de-meaned exposures �zij� to other neighborhoods

j� � j in (13) are unlikely to be independent of neighborhood effects ηj, unless mobility across

neighborhoods is unrelated to neighborhood heterogeneity. Likewise, in Example 3, indicators

of firms j� � j in (14) will generally correlate with the effect of firm j unless workers’ sorting

patterns are independent of firm heterogeneity. We will return to specification issues in the

next section.

Given Assumption 1, the OLS estimator of η in (12) satisfies

�η 
 η � V, (15)

where, denoting the variance-covariance matrix of the OLS estimates �η as

S�Z� 
 �Z �Z��1Z �Ω�Z�Z�Z �Z��1, (16)

we have

V 
 �Z �Z��1Z �U 	Z, η � N �0, S�Z��.

Model (12) under Assumption 1 is a normal linear mixed model (see, e.g., Jiang and Nguyen,

2007 and McCulloch and Searle, 2004). As we will review below, normality is not needed to

obtain informative moment conditions on µ�Z�, Σ�Z�, and Ω�Z�, and the following restrictions

on first and second moments suffice.

13

Assumption 2. (RC model)

(i) E�U 	Z, η� 
 0, Var�U 	Z� 
 Ω�Z�.

(ii) E�η 	Z� 
 µ�Z�, Var�η 	Z� 
 Σ�Z�.

Note that, while Assumption 2 relaxes normality, it does maintain the strict exogeneity

condition E�U 	Z, η� 
 0. If the researcher is only interested in means, variances or covariances

of the ηj’s, or alternatively in coefficients of regressions where ηj appears on the left- or right–

hand side, then Assumption 1 can be replaced by the weaker Assumption 2 that only restricts

first and second moments. However, normality is needed to answer questions related to the

higher-order and nonlinear moments of the ηj’s, their distributions, and to construct optimal

predictors of the ηj’s.

Remark 1. In (12) we have removed the term x�iβ. In applications with covariates xi, there are

two common ways of handling the presence of the unknown parameter β. When the dimension

q of β is low, one can often reliably estimate �β jointly with �η using OLS in (1), and then replace

Y 
 �yi� with Y 


�

yi � x�i
�β
"

in (12). The analysis below is then essentially unchanged relative

to the case without xi’s. This approach is commonly used to handle the presence of age, time,

and other demographics in Example 3.

In applications where q is large, the parameter β can be differenced out as follows. Write

model (1) in vector form, as

Y 
 Xβ � Zη � U, (17)

where X is an n� q matrix with generic row x�i. Let M be an n� n matrix such that MX 
 0

(e.g., a projection matrix). Left-multiplying (17) by M then gives

MY 
 MZη �MU, (18)

which takes the same form as (12). In Example 2, taking the within-group transformation

as matrix M , this differencing approach provides a way to handle the presence of the high-

dimensional origin-and-destination indicators in xi.
5

4.2 Quantities of interest in the normal RC model

Suppose that the normal RC model (12) holds and Assumption 1 is satisfied, and suppose the

covariance and mean functions Ω�Z�, µ�Z�, and Σ�Z� are known. Then the model implies

closed-form expressions for all the quantities that we mentioned in Section 3.

5Also, in Example 3, if one includes worker indicators in X, and Z contain only firm indicators, then first-

differencing yields an equation of the form (18).

14
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For example, the first and second moments mc in (2) and vQ in (3) are given, respectively,

by

mc 
 E �c�µ�Z�� (19)

and

vQ 
 E �µ�Z��Qµ�Z� � Trace �QΣ�Z��� . (20)

The expressions (19) and (20) do not rely on normality, and hold under the weaker Assumption

2.

Under Assumption 1, we further can write the nonlinear moment wH in (4), and the cumu-

lative distribution function Fω�a� in (5), in closed form as, respectively,

wH 
 E

�

�

Rp

H�η�
1

�2π�
p
2
	Σ�Z�	

1
2

exp

�

�

1

2
�η � µ�Z��� �Σ�Z���1

�η � µ�Z��

�

dη

�

, (21)

and

Fω�a� 
 E

�

p
�

j�1

ωjΦ

�

a� µj�Z�
#

Σj,j�Z�

��

, (22)

where µj�Z� is the j-th element of µ�Z�, Σj,j�Z� is the j-th diagonal element of Σ�Z�, and Φ

denotes the standard normal cumulative distribution function. Note that, while the conditional

distribution of η 	Z is normal under Assumption 1, the unconditional distribution of η is not

normal.

Lastly, under Assumption 1, one can also derive a closed-form expression for the conditional

mean of the vector η given the data �Y, Z�, as

E �η 	Y, Z� 
 G�Z�
�

S�Z��1
�η � Σ�Z��1µ�Z�

!

, (23)

where S�Z� is given by (16), and

G�Z� 

�

S�Z��1
� Σ�Z��1

!

�1

is the conditional variance of η given �Y, Z�. The conditional density of η 	Y, Z is then

η 	Y, Z � N �E �η 	Y, Z� , G�Z�� . (24)

5 Specification choices

In this section, we discuss several possibilities to specify Ω�Z�, µ�Z�, and Σ�Z�.

15
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5.1 Specification of Ω�Z�

The simplest specification for Ω�Z� is independent homoskedastic, that is,

Ω�Z� 
 σ2In,

for a constant variance parameter σ2. In Example 3, Andrews et al. (2008) rely on this assump-

tion and construct an unbiased estimator of σ2 for applications to matched employer-employee

data.

However, both homoskedasticity and independence can be restrictive. To relax homoskedas-

ticity, one can introduce covariates W 
 �wi� (for example, some functions of the elements of

Z), and model

Ω�Z� 
 diag
�

σ2
θ�w1�, ..., σ

2
θ�wn�

!

,

where σ2
θ�wi� is a parametric function of wi indexed by some parameter θ.6 In Example 2,

Chetty and Hendren (2018b) assume that S�Z� in (16) is a diagonal matrix, i.e., that the

estimates �ηj are uncorrelated across neighborhoods. Under independence, Kline et al. (2020)

model Ω�Z� as a diagonal matrix with unrestricted diagonal elements. They propose a leave-out

method that provides unbiased estimates of these diagonal variance elements.

To relax independence, one can model Ω�Z� as a parametric, matrix-valued, non-diagonal

function of the covariates wi. In panel data settings, Arellano and Bonhomme (2012) propose

parametric ARMA specifications to allow for serial correlation. Relaxing independence has been

shown to be important in Example 3, where assuming serial independence within employment

spells is often empirically restrictive.

Lastly, it is worth noting that one cannot leave the matrix Ω�Z� fully unrestricted while at

the same time identifying moments of the effects ηj. This is because ηj and vj in (8) are both

unobserved random variables. As a result, there is an essential trade-off between heterogeneity

(the ηj’s) and the dependence of errors (the matrix Ω�Z�).

5.2 Specification of µ�Z� and Σ�Z�

Turning now to µ�Z� and Σ�Z�, a possible approach in applications is to specify µ�Z� as a

function of some covariates W (e.g., as a linear function of W ), and to model Σ�Z� similarly

(e.g., as a constant diagonal matrix). However, the cost of such an approach is that it implicitly
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depending on the application.
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imposes a conditional independence assumption that may be economically restrictive. We now

illustrate this important point through the help of examples.

Suppose that, in Example 2, the mean and variance of neighborhood effects are specified

as functions of a handful of covariates, for instance some variables measuring the racial and

economic composition of the neighborhoods. In that case, the researcher is effectively assuming

that the de-meaned neighborhood exposures in Z, see (13), are independent of the location-

specific effects ηj conditional on those covariates. This assumption may be hard to reconcile with

an economic model of location choice, and mobility across locations, where families’ decisions

are in part determined by neighborhood heterogeneity.

Similarly, in Example 3, assuming that the means, variances, and covariances of worker

and firm effects only depend on some worker and firm characteristics restricts job mobility

to be independent of the worker and firm effects ηj conditional on those characteristics. This

assumption may be at odds with economic models of sorting where workers’ and firms’ decisions

are in part determined by worker and firm heterogeneity.

To state the argument formally, let W denote some covariates. Then a specification where

µ�Z� and Σ�Z� only depend on W amounts to assuming the following:

η 	Z,W � N �µ�W �,Σ�W ��,

which in particular imposes that:

Z and η are independent given W.

Likewise, assuming that µj�Z� 
 µj�Wj�, where Wj denotes the covariates of unit j, imposes

that:

ηj are mean of independent �W1, ...,Wj�1,Wj�1, ...,Wp� given Wj.

To illustrate that such conditional independence assumptions may be economically restric-

tive, let us consider two models of firm choice for Example 3. The first model assumes that

workers maximize utility among all firms in a market, period-by-period (Card et al., 2018,

Lamadon et al., 2022). Suppose that worker k’s indirect utility in firm ℓ at time t is

Vkℓt 
 ρWkℓt � εkℓt,

where εkℓt are i.i.d. type I extreme value preference shocks, independent of log wages Wkℓt,

and we abstract from non-wage amenities for simplicity. Then the probability that worker k

chooses firm ℓ, given all wages W 
 �Wk�ℓ�t�, is

Pr �ℓ 	 k,W � 


exp �ρWkℓt�


ℓ��M�k� exp �ρWkℓ�t�
, (25)
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17where M�k� is the market that k considers when looking for a job. Therefore, the elements

in the Z matrix depend on the log wages Wkℓt. If, further, log wages are a function of worker

heterogeneity αk and firm heterogeneity ψℓ,
7 then (25) implies that the ηj’s, which here are the

αk’s and ψℓ’s, are not independent of Z, even conditional on observed characteristics.

Consider next a dynamic model of workers’ mobility across firms, as proposed by Lentz et al.

(2023) (see Sorkin, 2018 for a related model). The probability that worker k moves between

firms ℓ and ℓ�, conditional on worker heterogeneity α 
 �αk� and firm heterogeneity ψ 
 �ψℓ�,

is specified as

Pr �ℓ� 	 ℓ, k, α, ψ� 
 λkℓ�
γkℓ�

γkℓ � γkℓ�
, (26)

where λkℓ� is the probability that k meets firm ℓ�, and γkℓ is interpreted as worker k’s value of

working in firm ℓ. If the value γkℓ 
 γ�αk, ψℓ� depends on worker heterogeneity αk and firm

heterogeneity ψℓ, then neither αk nor ψℓ are independent of Z, even conditional on observed

characteristics.

We now discuss several examples of specifications for µ�Z� and Σ�Z� used in practice. In

Example 2, a common approach is to model µj�Z� to be a linear function of some covariates

Wj, and Σ�Z� to be a diagonal matrix, independent of Z and W . The model then assumes

independence across j’s, and rules out dependence between the true effects (ηj) and location

choice and mobility (Z) conditional on the covariates. Recently, Chen (2023) proposes an

extension of this approach that allows for dependence between the true effects ηj and the

precision of their estimates �ηj (as measured by the diagonal elements of S�Z� in (16)), while

maintaining independence across units.

In Example 3, Woodcock (2015) postulates a normal RC model where neither µ�Z� nor

Σ�Z� depend on Z, and Σ�Z� is a diagonal matrix. However, these assumptions impose that

workers’ sorting patterns, which are encoded in Z, do not depend on the worker and firm effects

ηj. Bonhomme et al. (2023) refine the Woodcock (2015) model by allowing µ�Z� and Σ�Z� to

depend on Z. To model the dependence, they cluster firms into a small number of groups using

the k-means algorithm based on their wage distributions (as in Bonhomme et al., 2019). Given

this grouping, they allow the means and variances of worker and firm effects to depend on the

groups, but not on the worker and firm identities within these groups. Similarly, they allow

the covariances in Σ�Z�, which they do not assume to be diagonal, to depend on the groups.

Generalizing such approaches to accommodate structural economic models of workers’ mobility

across firms is a promising area for future investigation.

7For example, if log wages are given by the additive specification Wkℓt � αk � ψℓ � Ukℓt of Abowd et al.

(1999), in which case Pr �ℓ � k,W � in (25) does not depend on k.
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6 Estimation

In this section we describe various estimation strategies for the parameters of the normal RC

model and the quantities of interest introduced in Section 3.

6.1 Estimating the model’s parameters

We start by providing moment conditions on the primitive parameters of the normal RC model:

the error variance Ω�Z�, and the mean and variance of the unit-specific effects µ�Z� and Σ�Z�.

Moment conditions. Let Assumption 2 hold. Then we have

E �Y Y �

	Z� 
 ZE �ηη� 	Z�Z �

� Ω�Z�, (27)

where the cross-product term is zero since E�U 	Z, η� 
 0. This is a system of n � n moment

conditions. Following Arellano and Bonhomme (2012), we can construct a suitable n2
� n2

matrix M�Z� that “differences out” the first term on the right-hand side of (27),8 to obtain

E �M�Z� vec �Y Y �

� Ω�Z�� 	Z� 
 0. (28)

where the vec operator stacks together the n columns of an n� n matrix into a n2
� 1 vector.

(28) provides a system of conditional moment conditions on the elements of Ω�Z�. Note that,

depending on the specification of Ω�Z�, the moment conditions (28) do not necessarily guarantee

that the elements of Ω�Z� are identified. Note also that M�Z� in (28) being singular implies

that the system of equations has multiple solutions in the absence of restrictions on Ω�Z�.

Next, taking the conditional mean in (15), we obtain

E��η � µ�Z� 	Z� 
 0, (29)

which provide conditional moment conditions on µ�Z�. These moment conditions depend nei-

ther on Ω�Z� nor on Σ�Z�.

Lastly, using (15) we obtain

Var��η 	Z� 
 Σ�Z� � S�Z�,

8Let A
B denote the Kronecker product between A and B, and let In2 be the n2
	 n2 identity matrix. A

possible choice is M�Z� � In2
�

�

Z�Z �Z��1Z �

�




�

Z�Z �Z��1Z �

�

. The key property is that M�Z��Z 
 Z� � 0,

which implies that M�Z� vec �ZE �ηη� �Z�Z �

� � M�Z��Z 
 Z� vec �E �ηη� �Z�� � 0.
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where S�Z� given by (16) is a function of Ω�Z�. This gives the following moment conditions

on Σ�Z�, Ω�Z�, and µ�Z�,

E���η � µ�Z�� ��η � µ�Z��� � S�Z� � Σ�Z� 	Z� 
 0. (30)

Remark 2. In general, (28)-(29)-(30) do not exhaust all the information about Ω�Z�, µ�Z�,

and Σ�Z�. The complete set of first- and second-moment conditions implied by Assumption 2

consists of (29) and

E �Y Y �

	Z� 
 Z �Σ�Z� � µ�Z�µ�Z���Z �

� Ω�Z�. (31)

An advantage of the moment conditions in (28) is that they are robust to possible misspecification

of µ�Z� and Σ�Z�.

Parameter estimation. Given a parametric or semi-parametric specification for Ω�Z�, µ�Z�,

and Σ�Z�, a possible estimation approach is to exploit the moment conditions (28)-(29)-(30)

using method-of-moments or minimum-distance estimation. This strategy is used in Bonhomme

et al. (2023) in Example 3, for instance. Let θ be a parameter vector indexing µθ�Z�, Σθ�Z�,

and Ωθ�Z�, possibly adding other conditioning covariates W . This estimation step delivers

an estimate �θ, as well as estimates �µ�Z� 
 µ
�θ�Z�,

�Σ�Z� 
 Σ
�θ�Z�, and

�Ω�Z� 
 Ω
�θ�Z�. An

alternative is to perform (quasi-) maximum likelihood estimation, as in the following remark.

Remark 3. An alternative approach to estimation of µ, Σ and Ω is to rely on the log-likelihood

function conditional on Z,

L�µ,Σ,Ω� 
 �

n

2
log �2π� �

1

2
log �	ZΣ�Z�Z �

� Ω�Z�	�

�

1

2
�Y � Zµ�Z��� �ZΣ�Z�Z �

� Ω�Z��
�1
�Y � Zµ�Z�� . (32)

In the absence of normality, i.e., under Assumption 2, L�µ,Σ,Ω� can be interpreted as a quasi

log-likelihood function.9

6.2 Estimating the quantities of interest: three strategies

We now present three types of estimators for the quantities of interest introduced in Section 3.

9Moreover, when based on A�Y and A�Z, where M � AA� is the Cholesky decomposition of the matrix M

of Remark 1, (32) is the basis for restricted maximum likelihood (REML) estimation, and the resulting REML

estimator does not depend on the choice of A (see, e.g., Jiang and Nguyen, 2007).
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 0. (30)
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	Z� 
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� Ω�Z�. (31)

An advantage of the moment conditions in (28) is that they are robust to possible misspecification
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Parameter estimation. Given a parametric or semi-parametric specification for Ω�Z�, µ�Z�,

and Σ�Z�, a possible estimation approach is to exploit the moment conditions (28)-(29)-(30)

using method-of-moments or minimum-distance estimation. This strategy is used in Bonhomme

et al. (2023) in Example 3, for instance. Let θ be a parameter vector indexing µθ�Z�, Σθ�Z�,

and Ωθ�Z�, possibly adding other conditioning covariates W . This estimation step delivers

an estimate �θ, as well as estimates �µ�Z� 
 µ
�θ�Z�,

�Σ�Z� 
 Σ
�θ�Z�, and

�Ω�Z� 
 Ω
�θ�Z�. An

alternative is to perform (quasi-) maximum likelihood estimation, as in the following remark.
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#1 Bias-corrected fixed-effects estimators. Suppose first that the researcher is only

interested in estimating linear combinations of the ηj’s or quadratic forms. In that case, she

does not need to estimate µ�Z� and Σ�Z�. Indeed, linear combinations mc 
 E �c�η� and, given
knowledge of Ω�Z�, quadratic forms vQ 
 E�η�Qη�, are nonparametrically identified under

Assumption 2 (without the need for normality), as

mc 
 E�c��η� (33)

and

vQ 
 E��η�Q�η� � E �Trace �QS�Z��� , (34)

respectively. By (33), linear combinations of the elements in �η are unbiased. Moreover, (34)

shows that, while quadratic forms in �η are biased, the bias is a known function of the variance-

covariance matrix S�Z� of �η.

Then, a fixed-effects estimator of mc is

�mFE
c 
 c��η. (35)

Moreover, given an estimator �Ω�Z� and an associated estimator �S�Z� given by

�S�Z� 
 �Z �Z��1Z �

�Ω�Z�Z�Z �Z��1, (36)

a bias-corrected fixed-effects estimator of vQ is

�vFEQ 
 �η�Q�η � Trace
�

Q�S�Z�
"

. (37)

Under Assumption 2, the estimator �vFEQ is unbiased whenever �Ω�Z�, and hence �S�Z�, are

themselves unbiased.

In Example 3, Andrews et al. (2008) assume that Ω�Z� 
 σ2In. In this case, (28) is

equivalent to

E
��

In � Z�Z �Z��1Z �

!

Y Y �

�

In � Z�Z �Z��1Z �

!

	Z
�


 σ2
�

In � Z�Z �Z��1Z �

!

.

So, by taking the trace and expectation with respect to Z, it follows that

σ2

 E

�

Y �

�In � Z�Z �Z��1Z �

�Y

n� p

�

. (38)

The formula (38) is the well-known degree of freedom correction for variance estimation. In

Example 3, Andrews et al. (2008) propose the estimators

�σ2



Y �

�In � Z�Z �Z��1Z �

�Y

n� p
(39)
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and

�vFEQ 
 �η�Q�η � �σ2 Trace
�

Q�Z �Z��1
!

, (40)

which are unbiased for σ2 and vQ, respectively. Kline et al. (2020) generalize their approach to

the case where Ω�Z� is a diagonal matrix with unrestricted diagonal elements.

#2 Model-based estimators. Suppose now that the researcher wishes to estimate not

only linear combinations and quadratic forms but also other quantities, such as distributions,

nonlinear moments, or predictors. In that case, she first needs to produce estimates �Ω�Z�,

�µ�Z�, and �Σ�Z�. Given those, the researcher can produce estimates of all the quantities of

interest we listed in Section 3, as follows:

�mc 
 c��µ�Z�, (41)

�vQ 
 �µ�Z��Q�µ�Z� � Trace
�

Q�Σ�Z�
"

, (42)

�wH 


�

Rp

H�η�
1

�2π�
p
2
	

�Σ�Z�	
1
2

exp

�

�

1

2
�η � �µ�Z���

�

�Σ�Z�
�

�1

�η � �µ�Z��

�

dη, (43)

�Fω�a� 

p
�

j�1

ωjΦ

�

�

a� �µj�Z�
$

�Σj,j�Z�

�

	, (44)

including estimates of the posterior mean and variance of η:

�E �η 	Y, Z� 
 �G�Z�
�

�S�Z��1
�η � �Σ�Z��1

�µ�Z�
"

, (45)

�G�Z� 

�

�S�Z��1
�

�Σ�Z��1
"

�1

, (46)

where �S�Z� is given by (36).

#3 Posterior estimators. To motivate the third type of estimators, consider a generic

nonlinear moment of η, wH 
 E �H�η��, and note that, by the law of iterated expectations,

wH 
 E �E �H�η� 	Y, Z��


 E

�

�

Rp

H�η�
1

�2π�
p
2
	G�Z�	

1
2

exp

�

�

1

2
�η � E�η 	Y, Z��� �G�Z���1

�η � E�η 	Y, Z��
�

dη

�

,

(47)

where we have used the expression in (24) of the conditional density of η 	Y, Z.
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Equation (47) motivates the following posterior estimator of wH :

�wPOST
H 


�

Rp

H�η�
1

�2π�
p
2
	

�G�Z�	
1
2

exp

�

�

1

2

�

η � �E�η 	Y, Z�
"

�

�

�G�Z�
�

�1 �

η � �E�η 	Y, Z�
"

�

dη,

(48)

where �E�η 	Y, Z� and �G�Z� are given by (45) and (46), respectively.

To provide intuition about the posterior estimator, we note that, by a change in variables,

�wPOST
H 
 E

�

H
�

�E�η 	Y, Z� � �G�Z�
1
2 ε
"

	Y, Z
�

, (49)

where ε 	Y, Z � N �0, Ip�. Consider two special cases in (49). When the �ηj are poorly estimated

so �S�Z��1
 0, then (49) becomes

�wPOST
H  E

�

H
�

�µ�Z� � �Σ�Z�
1
2 ε
"

	Z
�

, (50)

which coincides with the model-based estimator (43). Now, when the �ηj are well estimated so

�S�Z�  0 (and S�Z�  0), then (49) becomes

�wPOST
H  H ��η�  H �η� , (51)

which means that the posterior estimator recovers the true quantity in this situation, irre-

spective of whether the normal RC model is well specified or not. This illustrates a robustness

property of posterior estimators, as studied by Arellano and Bonhomme (2009) and Bonhomme

and Weidner (2022), and provides a motivation for reporting such estimators in practice.

6.3 Remarks on asymptotic properties and inference

There are several challenges to deriving asymptotic properties for the estimators mentioned in

this section, in the type of settings we are focusing on in this paper. A first challenge is the

dimensionality of the data and model. Typically, the vector µ�Z� and the matrices Ω�Z� and

Σ�Z� are very large (i.e., both n and p are large). It is therefore necessary to work in a high-

dimensional asymptotic regime where both n and p tend to infinity. Moreover, the specifications

for Ω�Z�, µ�Z�, and Σ�Z� often depend on many parameters. Another challenge is the nature

of the matrix Z. In Examples 2 and 3, Z does not have a block-diagonal structure, which

further complicates the asymptotic analysis. Related to this, Σ�Z� is often non-diagonal, hence

creating complex forms of dependence among observations.

To give a simple example, suppose we are interested in the mean mc 
 E�1
p

p
j�1 ηj�. Con-

sistency of �mc 

1
p

p
j�1 �µj�Z� for mc is not immediate. To see this, consider first the case
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property of posterior estimators, as studied by Arellano and Bonhomme (2009) and Bonhomme
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There are several challenges to deriving asymptotic properties for the estimators mentioned in

this section, in the type of settings we are focusing on in this paper. A first challenge is the

dimensionality of the data and model. Typically, the vector µ�Z� and the matrices Ω�Z� and

Σ�Z� are very large (i.e., both n and p are large). It is therefore necessary to work in a high-

dimensional asymptotic regime where both n and p tend to infinity. Moreover, the specifications

for Ω�Z�, µ�Z�, and Σ�Z� often depend on many parameters. Another challenge is the nature

of the matrix Z. In Examples 2 and 3, Z does not have a block-diagonal structure, which

further complicates the asymptotic analysis. Related to this, Σ�Z� is often non-diagonal, hence

creating complex forms of dependence among observations.

To give a simple example, suppose we are interested in the mean mc 
 E�1
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j�1 ηj�. Con-

sistency of �mc 

1
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j�1 �µj�Z� for mc is not immediate. To see this, consider first the case
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where there is no estimation error and one can compute �mc 


1
p

p
j�1 µj�Z�. Consistency of �mc

for mc requires limiting the dependence of the µj�Z�’s across j. For instance, in Example 2,

this requires limiting the dependence of mean exposure effects across neighborhoods, while in

Example 3, this requires limiting the dependence of mean firm effects across different firms, for

example, allowing for dependence among “similar” firms only. Next, the addition of estimation

error further complicates the argument, since the �µj�Z�’s are dependent across j conditional

on Z.

Nevertheless, several results are available in the literature. For the case of fixed-effects

estimators of quadratic forms, as in (37), Kline et al. (2020) provide conditions for consistency,

as well as inference theory, in a setup that assumes Ω�Z� to be diagonal while leaving µ�Z� and

Σ�Z� unrestricted.

The mixed models literature in statistics (as reviewed by, e.g., Jiang, 2017) provides a variety

of asymptotic results for the quantities of interest we have listed here, including for estimators

of posterior means such as (45). However, the models studied in the theoretical literature on

mixed models impose specific assumptions on Ω�Z�, µ�Z�, and Σ�Z�. In particular, a typical

assumption is that Σ�Z� is a diagonal matrix, as in the so-called “mixed ANOVA” model. We

have argued here that such an assumption may be economically restrictive. For example, in

Example 3, Σ�Z� is not diagonal whenever the effects of two firms j and j � depend on each

other given Z, as happens in the model of Lentz et al. (2023) mentioned in Section 5.

Under Assumption 1, which imposes normality, Heijmans and Magnus (1986b) provide

conditions for consistency of the maximum likelihood estimator (as in Remark 3) in models

with general forms of dependence across observations induced by the matrices Ω�Z� and Σ�Z�.

Heijmans and Magnus (1986a) provide a further set of conditions under which the maximum

likelihood estimator is asymptotically normal. Importantly, however, while their setup allows

for general forms of dependence, it relies on the assumption that the dimension of the model’s

parameter θ is kept fixed as the sample size tends to infinity.

To make the model more flexible while keeping the number of parameters to estimate mod-

erate, a possibility is to assume that, while means and variances vary across observations, this

variation is driven by a small number of groups. For example, Bonhomme et al. (2023) assume

that the means and variances of worker and firm effects depend on firm groups. Grouping

methods, where group membership is estimated using methods akin to the k-means algorithm,

are theoretically justified under suitable conditions (Bonhomme and Manresa, 2015, Bonhomme

et al., 2022). Assuming a grouped structure reduces the dimension of the model, and can allow

for a simpler characterization of asymptotic distributions.
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Given the relevance of these high-dimensional, dependent settings for the applied economic

literature, more research needs to be done regarding the formal analysis of asymptotic properties

and inference methods, both in cases where normality is assumed to hold (as in Assumption 1)

and in cases where distributions may be non-normal. We next comment on the possibility that

normality may be violated.

7 Extensions

While the normal random coefficients model provides a simple and powerful tool to estimate

heterogeneous effects in high-dimensional settings, it relies on functional forms assumptions

that may be empirically restrictive. In this final section of the paper, we briefly explore some

strategies that could be used to relax some of those assumptions.

Non-normal effects. When it is suspected that the distribution of η 	Z is not truly normal,

that distribution is sometimes interpreted as a Bayesian prior. This interpretation is central to

the empirical Bayes approach, and it is often invoked in applications such as Example 2. In this

perspective, the conditional distribution of η 	Y, Z in (24) can be interpreted as the posterior

distribution of η. Linear shrinkage predictors as in (45) possess attractive robustness properties

under misspecification (James and Stein, 1961).10 Moreover, estimators of nonlinear moments

based on posterior distributions (see Subsection 6.2) are less sensitive to misspecification of the

normal model compared to estimators based on the prior distribution η 	Z. However, in many

applications the variance of the noise is substantial, and it is still important to correctly model

the distribution of η 	Z.

Suppose that we maintain the normality of U 	Z in Assumption 1, while leaving the con-

ditional distribution of η 	Z unrestricted. Then, (8) becomes a nonparametric deconvolution

model with normal errors. Identification and estimation strategies exist in a variety of settings.

In Example 1, Kline et al. (2022) use Efron’s deconvolution method (Efron, 2016) to estimate

the density of firm-specific discrimination under an independence assumption. Chen (2023)

proposes a location-scale model to handle situations where the precision of the estimates �ηj

predicts the true ηj, assuming independence across units. He shows that this modeling can im-

prove the prediction performance of conditional mean estimates. Relaxing independence across

units, thereby fitting the settings of Examples 2 and 3, is an important task for future work on

10In particular, the James-Stein linear shrinkage estimator in the normal means model achieves asymptotically

minimax expected sum-of-squares loss in Euclidean balls (see Theorem 7.48 in Wasserman, 2006).
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In Example 1, Kline et al. (2022) use Efron’s deconvolution method (Efron, 2016) to estimate

the density of firm-specific discrimination under an independence assumption. Chen (2023)

proposes a location-scale model to handle situations where the precision of the estimates �ηj

predicts the true ηj, assuming independence across units. He shows that this modeling can im-

prove the prediction performance of conditional mean estimates. Relaxing independence across

units, thereby fitting the settings of Examples 2 and 3, is an important task for future work on

10In particular, the James-Stein linear shrinkage estimator in the normal means model achieves asymptotically

minimax expected sum-of-squares loss in Euclidean balls (see Theorem 7.48 in Wasserman, 2006).
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these approaches.

Non-normal noise. One may also suspect that the distribution of U 	Z is not normal. In

applications to Examples 1 and 2, the error V in (15) may be approximately normal even when

U 	Z is not, due to the fact that V is an estimation error, hence asymptotically normal under

standard conditions as the relevant sample size tends to infinity. Approximate normality of V

will typically hold in grouped data settings as Example 1 provided that group sizes be large

enough.11 However, the normal approximation need not be accurate in other applications.12

Dealing with settings where V in (15) is not normal, and η 	Z is not normal either, is

challenging. This requires using the individual outcome model (1), while allowing for a non-

normal distribution of U 	 Z. In panel data settings, Arellano and Bonhomme (2012) show how

to identify and estimate the distribution of U under the assumption that it follows a linear

independent factor model (see also Kotlarski, 1967, Li and Vuong, 1998, and Bonhomme and

Robin, 2010). We are not aware of extensions of such generalized deconvolution approaches to

the settings of Examples 2 and 3, however.

Nonlinear mean. Lastly, an important assumption in the RC model is that the mean out-

come is linear in η, in the sense that

E �Y 	Z, η� 
 Zη. (52)

Equation (52) has empirical and economic content. In Example 2, assuming that neighbor-

hood exposures experienced by children have a separable, constant impact on outcomes may be

restrictive (Chetty and Hendren, 2018b). In Example 3, assuming away interactions between

worker and firm effects in wages implicitly imposes restrictive assumptions on input comple-

mentarity, which in turn drives the nature of sorting patterns in many economic models (e.g.,

Becker, 1973, Eeckhout and Kircher, 2011).

Within the context of Example 3, Bonhomme et al. (2019) show how to allow for comple-

mentarity patterns between firm and worker effects, in a setup where they assume that firm

heterogeneity is discrete.13 More work is needed in this direction.

11For example, V may be approximately normal even when Y is a vector of binary outcomes. In Kline et al.

(2022), the outcomes yi are binary call-back indicators, yet estimates �ηj may still be approximately normal with

variance S�Z�.
12When U �Z is not normal, the right-hand side in (23) remains unbiased whenever U has zero mean given Z

and η. However, it is no longer the best predictor of η in general.
13In that application, the presence of complementarity between worker and firm effects can alternatively be

interpreted as reflecting individual heterogeneity in the “treatment effect” of a firm, as studied in Hull (2018).
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