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Abstract

This paper develops a flexible, semi-structural framework to empirically quantify the 

non-linear transmission of income shocks to household portfolio choice decisions 

both at the extensive and intensive margins. I model stock market participation and 

portfolio allocation rules as age-dependent functions of persistent and transitory 

earnings components, wealth and unobserved taste shifters. I establish non-parametric 

identification and propose a tractable, simulation-based estimation algorithm, building on 

recent developments in the sample selection literature. Using recent waves of PSID data, 

I find heterogeneous income and wealth effects on both extensive and intensive margins, 

over the wealth and life-cycle dimensions. These results suggest that preferences are 

heterogeneous across the wealth distribution and over the life cycle. Moreover, in impulse 

response exercises, I find sizeable extensive margin responses to persistent income 

shocks. Finally, I find heterogeneity in participation costs across households in the wealth 

distribution.

Keywords: stock market participation, non-linear income persistence, sample selection, 

quantile selection models, latent variables.

JEL classification: C23, C24, D31, G50, J24.



Resumen

Este trabajo desarrolla un método flexible y semiestructural para cuantificar empíricamente 

la transmisión no lineal de los shocks de renta a las decisiones de elección de cartera de 

los hogares, tanto en el margen extensivo como en el intensivo. Modelizo la participación 

en el mercado de valores y las reglas de asignación de carteras como funciones 

dependientes de la edad de los componentes persistentes y transitorios de los ingresos, 

la riqueza y los cambios de gusto no observados. Establezco una identificación no 

paramétrica y propongo un algoritmo de estimación basado en la simulación, fundado 

en los recientes desarrollos de la literatura de selección de muestras. Utilizando olas 

recientes de datos de la PSID, observo efectos heterogéneos sobre la renta y la riqueza 

en los márgenes extensivo e intensivo, en las dimensiones de riqueza y ciclo vital. Estos 

resultados sugieren que las preferencias son heterogéneas a lo largo de la distribución de 

la riqueza y del ciclo vital. Además, en los ejercicios de respuesta al impulso, encuentro 

respuestas considerables del margen extensivo a las perturbaciones persistentes de la 

renta. Por último, advierto heterogeneidad en los costes de participación de los hogares 

en la distribución de la riqueza.

Palabras clave: participación en el mercado de valores, persistencia no lineal de los 

ingresos, selección de la muestra, modelos de selección cuantílica, variables latentes.

Códigos JEL: C23, C24, D31, G50, J24.
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1 Introduction

Households invest in financial assets, such as stocks, to transfer wealth across periods and

to pool risks, with the goal of smoothing consumption. When they make their investment

decisions, however, households encounter various idiosyncratic and aggregate risks. The

primary and most important source of idiosyncratic risk that they face, which they can

neither avoid nor fully insure themselves against, is on their labor income. As households

experience unique earnings histories, their savings decisions may differ depending on the

size and durability of the shocks they receive. In this paper, I empirically assess the

impact of earnings shocks on household stock market participation and portfolio choices

by developing a novel semi-structural framework, and find sizeable responses to large

income shocks.

An extensive literature in macroeconomics and finance has studied how uninsurable

labor income shocks affect household consumption, saving, and portfolio allocation deci-

sions over the life cycle, as well as its impact on asset prices (e.g., Gourinchas and Parker

(2002) and Storesletten et al. (2004b) in consumption, Constantinides and Duffie (1996)

in asset pricing, and Cocco et al. (2005) in portfolio choice). In these models, households

accumulate precautionary savings to smooth their consumption against adverse labor

market events. Moreover, they may reduce their exposure to avoidable risks by lower-

ing the amount of their wealth invested in equities. The margin of these adjustments,

however, depends on the precise nature of earnings dynamics. Previous literature has

relied on linear earnings processes as a workhorse model to analyze these decisions. A

consensus that has emerged from a wide body of empirical work is that the effect of labor

income risk on portfolio allocations, while consistent with theory, is quantitatively small.

As a result, earnings risk has seemingly lost its appeal as a candidate explanation for the

limited stock market participation puzzle (Guiso and Sodini (2013)).

Yet recent contributions to the earnings dynamics literature document that household

labor income substantially departs from the features that characterize these process along

two important dimensions (e.g., Arellano et al. (2017), Guvenen et al. (2015), De Nardi

et al. (2018)). First, household earnings display varying degrees of persistence that de-

pend on the size of past and current earnings shocks. Second, (log) earnings distributions

exhibit significant asymmetries. These features permit asymmetric transmissions of in-

come shocks that have a first-order effect on household portfolios, as shown by recent

literature on life cycle models (e.g., Catherine (2022) and Galvez and Paz-Pardo (2021)).

Although there is theoretical work that shows the implications of non-Gaussian earn-
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ings dynamics on household portfolio choices, existing empirical work is scarce. In this

regard, the first main contribution of this paper is to examine the role of uninsurable

income risk on household investment decisions over the life cycle under nonlinear income

persistence. The new survey redesign of the PSID allows me to have combined informa-

tion of income, wealth and consumption for a representative sample of US households.

Using the 1999 to 2009 panel survey waves, I estimate the nonlinear nature of income

shocks and its implications for the extensive margin of stock market participation and

the intensive margin of portfolio allocation.

The second main contribution of this paper is to propose an empirical framework to

study jointly both the extensive and intensive margins of household portfolio allocation.

To do so, I build on the nonlinear panel data framework proposed by Arellano et al.

(2017) by introducing non-random sample selection (Heckman (1974)). In this framework,

I model empirical portfolio and participation rules as age-specific, non-linear functions

of the latent earnings components and wealth. These, together with an equation that

governs the dynamics of household wealth, are derived from a general life-cycle model

of household portfolio choice with per-period participation costs. As such, the model I

propose is compatible with a wide class of structural models, and can be suitably extended

to incorporate additional components.

Because households self-select into stock market participation, I require additional

assumptions to establish the nonparametric identification of the joint distribution of

earnings, assets and portfolio choices that builds on the econometric literature on non-

linear models with latent variables reviewed by Hu (2015). First, the mapping between

the latent and observed distributions of risky asset shares must be known. Second, I

require an exclusion restriction, that is, a variable that shifts participation costs, but not

the subsequent portfolio decision. Provided that both assumptions hold, I identify the

empirical participation and portfolio rules from variation in earnings, assets, and partic-

ipation data. These, in turn, permit the recovery of empirical objects that can be used

to study the transmission of income shocks to portfolio choice, and in certain cases, test

implications of structural models. In particular, I recover extensive and intensive margins

of household portfolio choice, which can then be used to calculate aggregate effects of

income and wealth. I also recover impulse response-like functions that assess the extent

to which income shocks influence household’s participation and portfolio allocation deci-

sions. Finally, I obtain the latent distribution of risky asset shares, which I use to infer

participation cost bounds and distributions.

To estimate the empirical policy rules, I rely on a simulation-based algorithm that

2
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combines recent developments in sample selection models with sieve estimation approaches,

which represents the third main contribution of this paper. To estimate the nonparamet-

ric participation and portfolio rules under the presence of sample selection, I consider the

quantile selection model of Arellano and Bonhomme (2017a) and the censored quantile

regression estimator of Buchinsky and Hahn (1998). Moreover, to deal with the fact

that some of the state variables are unobserved to the empirical researcher, I combine

the following procedures with a stochastic EM algorithm adapted to time-varying latent

variables (Arellano et al. (2017)). The algorithm alternates between two steps: first,

simulation draws from the posterior distribution of the latent earnings components, and

second, a sequence of Probit and rotated quantile regressions for the policy rules. An

added advantage of this approach is its tractability, as the moment conditions for the

portfolio rule lead to a convex linear programming problem, one of the appealing features

of quantile regressions (Koenker (2005)).

I estimate the semi-structural model using the 1999 to 2009 waves of the US Panel

Study of Income Dynamics (PSID), focusing on working-age households. The descriptive

statistics indicate that around 40 percent of households re-enter the stock market at

least once. These households have higher labor income and wealth than those who never

participate in the stock market, but have lower labor income than those who always

participate in the stock market.

The estimation of the empirical participation and portfolio rules show that there are

heterogeneous effects of increases in income and wealth, respectively, across households

over the wealth distribution and the life-cycle, suggesting that there are important in-

teractions between wealth and age. In particular, the extensive margin responses of an

increase in wealth is positive and concave along the wealth distribution, while it is posi-

tive and monotonically increasing along the life cycle. This result suggests heterogeneities

in wealth thresholds that induce households to participate in the stock market. The in-

tensive margin responses, meanwhile of an increase in wealth are positive and increasing

along the wealth and age distributions. This result is consistent with the idea that house-

holds have heterogeneous preferences that are possibly of the DRRA type (Calvet and

Sodini (2014)), which change over the life cycle. I also find that increases in income re-

sult in increases in participation and portfolio allocation, although the effects are not as

strong. Meanwhile, the impulse response exercises show that introducing nonlinear earn-

ings dynamics into a model of household stock market participation and portfolio choice

result in asymmetric participation and portfolio allocation responses across households.

To illustrate, the difference in average participation rates for low income households hit

3
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by a very positive income shock relative to a median income shock goes up by as much

as 12 percentage points; in contrast, the average participation rates for high income

households hit by the same shock increases to only two percentage points. Likewise, low

income households hit by a very positive income shock increase their risky asset shares

by as much as three percentage points, compared to 0.5 percentage points from high

income households hit by the same shock. The results also suggest the presence of het-

erogeneity in participation costs, that range from around almost zero percent of total

wealth (for low wealth households) to around 2 percent of total wealth (for high wealth

households). Overall, my results highlight the interaction of wealth, income and age in

the determination of optimal portfolio choices.

This paper is related to an extensive literature that studies the impact of labor income

risk on household portfolio choices (e.g., Guiso et al. (1996), Heaton and Lucas (2000),

Vissing-Jørgensen (2002), Angerer and Lam (2009), Palia et al. (2014), and Fagereng et al.

(2017b)). Research in this literature has traditionally relied on linear earnings processes

and standard econometric methods to investigate the relationship I study here. Relative

to these papers, my main contribution is to develop a novel empirical framework that

allows for the possibility of studying nonlinear relationships between income risk, stock

market participation, and household portfolio choices in a panel data setting. Moreover, I

focus on the implications of nonlinear income persistence over the life cycle on household

portfolio choices, which to the best of my knowledge, has not been studied.

There is empirical work that has looked at the impact of “unusual” labor market

events on stockholding and portfolio choice (Alan (2012), Betermier et al. (2012), Basten

et al. (2016), and Knüpfer et al. (2016)). These papers find that households adjust their

portfolios in response to events such as unemployment, job switches, and the probabil-

ity of a zero income realization, which can be considered as “microeconomic disasters”.

To the extent that a nonlinear earnings process can be thought of as a parsimonious

representation of such events, I complement this literature by considering how house-

holds’ portfolio choice decisions change in response to asymmetric earnings shocks over

the life-cycle.1

1Alan (2012) finds that a positive probability of a zero income realization is needed in order to
explain household portfolio decisions of younger, poorer households in a structural model. Betermier
et al. (2012), using a panel of Swedish households, find that the more volatile the wage is, the lower the
exposure of households to risky assets will be, and the less likely they participate in the stock market.
Basten et al. (2016), using Norwegian registry data, find some households who can anticipate job loss
prepare for unemployment by increasing their saving and shifting toward riskless assets leading up to
unemployment, and by depleting their savings after the job loss. Around two years after unemployment,
however, they begin to rebalance their portfolio toward risky assets. Finally, Knüpfer et al. (2016) find,
within the context of the Finnish Great Depression, that adverse labor market conditions affect both

4
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This paper is also related to a small but burgeoning literature that studies the implica-

tions of asymmetries and nonlinearities in earnings dynamics on household consumption

and savings behavior, and on asset prices. These papers argue that nonlinear features of

income result in asymmetries in how households insure their consumption against income

shocks (e.g., Guvenen et al. (2015) and Arellano et al. (2017)) or in their wealth accu-

mulation patterns (De Nardi et al. (2018)). Higher-order moments of income have also

been shown to be a key driver of asset prices (e.g., Schmidt (2015) and Constantinides

and Ghosh (2017)). There is some empirical work that studies the covariance between

the stock market and income skewness both in the cross-section (Catherine et al. (2022))

and the time series dimensions (Inkmann (2020)). By contrast, this paper focuses on the

impact of nonlinear income persistence on household portfolio choice decisions, which is

intimately linked to conditional skewness of household earnings (Arellano et al. (2017)).

My impulse response analyses also reinforce some of the results in this literature. For in-

stance, I find that a very negative income shock results in high-income households leaving

the stock market, which is consistent with Schmidt (2015)’s result that investing in stocks

is a poor hedge against adverse labor market events. Moreover, my results also speak

to the finding of Catherine et al. (2022) of the importance of per-period participation

costs. I go further by quantifying empirically the cost bounds for different households

with different wealth levels.

Finally, this paper is related to recent developments in the panel data literature (see

the survey of Arellano and Bonhomme (2017b)) that proposes nonlinear reduced forms

for a wide class of dynamic economic models. With respect to this literature, I propose

an estimation framework that takes into account situations in which sample selection

is paramount, which to the best of my knowledge, has not been done. As such, the

framework I propose here can also be used to analyze other economic models that exhibit

similar features such as models of labor supply (e.g., Heckman (1974)) and occupational

choice (e.g., Adda et al. (2017)).

The rest of the paper is structured as follows. Section 2 discusses the semi-structural

model that I take to the data. I describe the data and some descriptive evidence in Section

3. In Section 4, I provide details on the nonparametric identification and estimation of

the semi-structural model of portfolio choice. Section 5 presents the estimation results.

Finally, Section 6 concludes. Additional material is gathered in the online appendices.

stock market participation and household portfolio choice.
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model that I take to the data. I describe the data and some descriptive evidence in Section

3. In Section 4, I provide details on the nonparametric identification and estimation of

the semi-structural model of portfolio choice. Section 5 presents the estimation results.

Finally, Section 6 concludes. Additional material is gathered in the online appendices.

stock market participation and household portfolio choice.

5

2 A semi-structural, life-cycle portfolio choice model

The goal of this section is to develop a flexible empirical framework that is consistent

with a wide class of dynamic structural models of life-cycle portfolio choice under several

models of earnings dynamics. In particular, for the empirical question at hand, the model

is flexible to accommodate both canonical and non-linear models of income risk.

As a motivation for the empirical analysis, I briefly discuss the implications of both

earnings processes in a life-cycle portfolio choice model, which draws on Galvez and Paz-

Pardo (2021). In the second subsection, I outline the nonparametric model of household

portfolio choice. I begin with a description of the standard life cycle model with per-

period participation costs, following several papers in the household finance literature

(see e.g., Alan (2012), Briggs et al. (2015), and Fagereng et al. (2017b)). I then specify

the empirical portfolio and participation rules, and illustrate the objects of interest I can

recover from the resulting nonlinear reduced form system.

In what follows, I consider a cohort of households i = 1, . . . , N , and denote by t =

1, . . . , T the age of the household head.

2.1 Nonlinear earnings dynamics and their implications for port-
folio choice

Nonlinear household earnings dynamics. Let yit denote (log) residual household

labor income, which I decompose into the following two components:

yit = ηit + εit , i = 1, . . . , N, t = 1, . . . , T. (1)

in which η and ε are continuous distributions. The first component ηit is persistent, and

follows a first-order Markov process. The second component εit is transitory, and has

zero mean, is independent over time and of all realizations of the persistent component.

In most structural models, the usual specification for the persistent component is that

of an AR(1) with normal shocks, which I will refer to as the canonical process. Recent

empirical literature has uncovered three facts that are inconsistent with this assumption:

nonlinearity in persistence, non-normality of shocks, and age-dependence of the persistent

component of income and higher-order moments (De Nardi et al. (2018)). In this light,

Arellano et al. (2017) propose a quantile-based method to model flexibly richer earnings

dynamics. Letting Qt(ηit−1, uit) denote the τ th conditional quantile of ηit given ηit−1 for

all τ ∈ (0, 1), the process for ηit as:

ηit = Qt(ηit−1, uit) (2)
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where (uit|ηit−1, ηit−2, . . .) ∼ U [0, 1] for all t. Clearly, the quantile function Qt(·, ·) maps

random draws from the uniform distribution (i.e., the cumulative probabilities) to the

corresponding quantile draws for η. Meanwhile, the canonical model can be seen as a

special case of model (2) above. In particular, assuming that the cumulative distribution

function of ηit is Gaussian, the canonical earnings process has the following representation:

Qt(ηit−1, uit) = ρηit−1 + Φ−1(uit).

The quantile-based specification in Arellano et al. (2017) permits the computation of

a generalized notion of persistence, which can be summarized as the following quantity:

ρ(ηit−1, τ) =
∂Qt(ηit−1, τ)

∂τ
, (3)

where persistence is a function of the past component ηit−1 and the shock received with

rank τ . In comparison, the canonical earnings model imposes ρ(ηit−1, τ) = ρ, regardless

of the past realization ηit−1 and of the shock quantile τ . The nonlinear earnings process,

hence, allows for the possibility of current shocks to wipe out the memory of past shocks,

or equivalently, for the future persistence of a current shock to depend on future shocks.

This notion of persistence, as Arellano et al. (2017) argue, is the persistence of earnings

histories. In addition, the quantile-based earnings process permits conditional skewness

in ηit.
2 In comparison, the canonical linear earnings process does not allow for the

possibility of non-normality in the shock distributions. As is clear, I can also write

a similar unrestricted representation for the transitory component εit and the initial

condition η1, with the only difference being that they are not persistent.

The nonlinear earnings process of Arellano et al. (2017) is compatible with structural

models of the labor market. In particular, one can think of the model as a reduced-form

representation of job ladder models of occupational mobility, such as that in Lise (2013).

In these models, workers look for good matches with firms while unemployed and while

employed. A worker ends employment with a firm when he finds a better opportunity

(“climbing up the ladder”), or when he loses a job (“falling off the ladder”). Therefore,

on-the-job search and job-to-job transitions generate asymmetries that are captured by

the features of the nonlinear earnings process.

I discuss the estimation of both the nonlinear and canonical earnings processes, and

compare the differences between the two processes in Appendix A.

Implications for household portfolio choice. As a guide for the empirical analy-

sis, I discuss the implications of nonlinear and canonical earnings dynamics on household

2Specifically, I can define conditional skewness via the following equation, for a given τ ∈ (0.5, 1):

skt(ηit−1, τ) =
Qt(ηit−1,τ)+Qt(ηit−1,1−τ)−2Qt(ηit−1,

1
2 )

Qt(ηit−1,τ)−Qt(ηit−1,1−τ) .
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portfolio choices, as in Galvez and Paz-Pardo (2021)3. In their model, they consider a

discrete-time, life cycle model of households with CRRA utility that decide on optimal

consumption and savings. Households in their framework have access to a risk-free and a

risky asset, and face participation costs to the stock market. To facilitate the discussion,

I reproduce some of the results from their calibrated structural model.4.

Figure 1 show the optimal portfolio rules from their estimated structural model. Pan-

els 1a and 1b show the optimal policy rule at age 30. In both economies, low-wealth

households do not invest at all in the stock market, as they find it optimal not to pay the

participation cost. Once they reach the threshold at which stock market participation is

optimal, the resulting policy rules are decreasing functions of wealth. The key driver is

the importance of human capital (discounted stream of future labor income) relative to

accumulated wealth. However, there are noticeable differences between the model under

the two earnings processes. The first difference is related to wealth thresholds, that is, the

amount of wealth households believe makes it worthwhile to invest in stocks. In particu-

lar, under the canonical process, all households, regardless of their position in the income

distribution, start investing in the stock market around the same threshold. Households

in the nonlinear process, by contrast, have different thresholds of wealth that depend on

their position in the income distribution. The second difference occurs in the portfolio

rules at age 55. Under the economy with the canonical earnings process, the uncertainty

with respect to their labor income is resolved, leading them to become more aggressive

in their stock investments. Under the nonlinear earnings process, the considerable uncer-

tainty with respect to their labor income leads households to remain conservative with

respect to their portfolio investments.

In sum, both results underscore the idea that under a more flexible earnings process,

income becomes more “stock-like” than before, which implies different wealth thresholds

and asset demands.

2.2 Semi-structural model of portfolio choice

I now describe the household optimization problem, and the corresponding empirical

policy functions that I will take to the data.

Consider a household with utility function u(·), which is assumed to be concave. It is

3In Appendix B, I describe a two-period model based on Campbell and Viceira (2002), and discuss
how the features of a more flexible earnings process can influence portfolio choices.

4Galvez and Paz-Pardo (2021) find that the structural model under the nonlinear earnings process
yields a lower estimate of relative risk aversion and a different structure of participation costs than the
model under the canonical earnings process. They also find that the model under nonlinear dynamics
fits the profile of stock market participation better.

8

portfolio choices, as in Galvez and Paz-Pardo (2021)3. In their model, they consider a

discrete-time, life cycle model of households with CRRA utility that decide on optimal

consumption and savings. Households in their framework have access to a risk-free and a

risky asset, and face participation costs to the stock market. To facilitate the discussion,

I reproduce some of the results from their calibrated structural model.4.

Figure 1 show the optimal portfolio rules from their estimated structural model. Pan-

els 1a and 1b show the optimal policy rule at age 30. In both economies, low-wealth

households do not invest at all in the stock market, as they find it optimal not to pay the

participation cost. Once they reach the threshold at which stock market participation is

optimal, the resulting policy rules are decreasing functions of wealth. The key driver is

the importance of human capital (discounted stream of future labor income) relative to

accumulated wealth. However, there are noticeable differences between the model under

the two earnings processes. The first difference is related to wealth thresholds, that is, the

amount of wealth households believe makes it worthwhile to invest in stocks. In particu-

lar, under the canonical process, all households, regardless of their position in the income

distribution, start investing in the stock market around the same threshold. Households

in the nonlinear process, by contrast, have different thresholds of wealth that depend on

their position in the income distribution. The second difference occurs in the portfolio

rules at age 55. Under the economy with the canonical earnings process, the uncertainty

with respect to their labor income is resolved, leading them to become more aggressive

in their stock investments. Under the nonlinear earnings process, the considerable uncer-

tainty with respect to their labor income leads households to remain conservative with

respect to their portfolio investments.

In sum, both results underscore the idea that under a more flexible earnings process,

income becomes more “stock-like” than before, which implies different wealth thresholds

and asset demands.

2.2 Semi-structural model of portfolio choice

I now describe the household optimization problem, and the corresponding empirical

policy functions that I will take to the data.

Consider a household with utility function u(·), which is assumed to be concave. It is

3In Appendix B, I describe a two-period model based on Campbell and Viceira (2002), and discuss
how the features of a more flexible earnings process can influence portfolio choices.

4Galvez and Paz-Pardo (2021) find that the structural model under the nonlinear earnings process
yields a lower estimate of relative risk aversion and a different structure of participation costs than the
model under the canonical earnings process. They also find that the model under nonlinear dynamics
fits the profile of stock market participation better.

8

Figure 1: Policy rules from the portfolio choice model of Galvez and Paz-Pardo (2021)
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(b) Age 30, nonlinear model
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(c) Age 55, canonical model
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(d) Age 55, nonlinear model
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Note: Panels (a) and (b) show the policy rules from the life-cycle portfolio choice model with the canonical
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portfolio choice model with the canonical process and the nonlinear process at age 55. Results are from

Galvez and Paz-Pardo (2021). The different lines correspond to the portfolio rules at different percentiles

of the income distribution.
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portfolio choices, as in Galvez and Paz-Pardo (2021)3. In their model, they consider a

discrete-time, life cycle model of households with CRRA utility that decide on optimal

consumption and savings. Households in their framework have access to a risk-free and a

risky asset, and face participation costs to the stock market. To facilitate the discussion,

I reproduce some of the results from their calibrated structural model.4.

Figure 1 show the optimal portfolio rules from their estimated structural model. Pan-

els 1a and 1b show the optimal policy rule at age 30. In both economies, low-wealth

households do not invest at all in the stock market, as they find it optimal not to pay the

participation cost. Once they reach the threshold at which stock market participation is

optimal, the resulting policy rules are decreasing functions of wealth. The key driver is

the importance of human capital (discounted stream of future labor income) relative to

accumulated wealth. However, there are noticeable differences between the model under

the two earnings processes. The first difference is related to wealth thresholds, that is, the

amount of wealth households believe makes it worthwhile to invest in stocks. In particu-

lar, under the canonical process, all households, regardless of their position in the income

distribution, start investing in the stock market around the same threshold. Households

in the nonlinear process, by contrast, have different thresholds of wealth that depend on

their position in the income distribution. The second difference occurs in the portfolio

rules at age 55. Under the economy with the canonical earnings process, the uncertainty

with respect to their labor income is resolved, leading them to become more aggressive

in their stock investments. Under the nonlinear earnings process, the considerable uncer-

tainty with respect to their labor income leads households to remain conservative with

respect to their portfolio investments.

In sum, both results underscore the idea that under a more flexible earnings process,

income becomes more “stock-like” than before, which implies different wealth thresholds

and asset demands.

2.2 Semi-structural model of portfolio choice

I now describe the household optimization problem, and the corresponding empirical

policy functions that I will take to the data.

Consider a household with utility function u(·), which is assumed to be concave. It is

3In Appendix B, I describe a two-period model based on Campbell and Viceira (2002), and discuss
how the features of a more flexible earnings process can influence portfolio choices.

4Galvez and Paz-Pardo (2021) find that the structural model under the nonlinear earnings process
yields a lower estimate of relative risk aversion and a different structure of participation costs than the
model under the canonical earnings process. They also find that the model under nonlinear dynamics
fits the profile of stock market participation better.

8

endowed with wealth wit, and makes an asset allocation decision at time t. The household

earns (log) labor income yit, which can be decomposed into deterministic and stochastic

parts. The stochastic components of income can be decomposed following equation (1),

while the model for the persistent component can be any general first-order Markov

process, for example, equation (2). The household cannot borrow against future labor

income, thereby making it non tradable. It has access to two assets for investment: a

riskless asset that earns a certain return Rf , and a risky asset with a constant expected

excess return Et(Rt+1 − Rf ) = µ. However, there is a probability that the household

might suffer a loss in its investment in risky assets, which can be represented by the

unexpected return on the risky asset that has a distribution with mean zero and variance

σ2
u.

Finally, the household faces some frictions in financial markets. First, if the household

wants to invest in stocks, it must pay a per-period participation cost F . One can rational-

ize this cost as a way of capturing several explanations proposed for limited participation

in financial markets. These include the presence of trading costs (e.g., Vissing-Jørgensen

(2002)), financial sophistication and financial literacy, or the lack of it (e.g., Calvet et al.

(2007), Van Rooij et al. (2011)), and trust in financial markets (e.g., Guiso et al. (2008)).

Second, the household can neither borrow nor short-sell, constraining its risky share to be

between zero and one, as is typical in household portfolio choice problems (Cocco et al.

(2005)).

To make its decision, the household solves two maximization subproblems. In the

first, called the participation subproblem, it maximizes the following objective function

by choosing optimal consumption cit and risky share αit given the state variables wit, ηit

and εit:

Vp,t(wit, ηit, εit) = max
cit,0<αit≤1

u(cit) + βEt(Vt+1(wit+1, ηit+1, εit+1))

subject to the following intertemporal budget constraint:

wit+1 = [αitRt+1 + (1− αit)Rf ][wit + yit − cit − F ] + yit+1.

In the second subproblem, called the non-participation subproblem, the household

computes optimal consumption by solving the following Bellman equation:

Vnp,t(wit, ηit, εit) = max
cit

u(cit) + βEt(Vt+1(wit+1, ηit+1, εit+1))

subject to the following intertemporal budget constraint:

wit+1 = Rf [wit + yit − cit].

10

portfolio choices, as in Galvez and Paz-Pardo (2021)3. In their model, they consider a

discrete-time, life cycle model of households with CRRA utility that decide on optimal

consumption and savings. Households in their framework have access to a risk-free and a

risky asset, and face participation costs to the stock market. To facilitate the discussion,

I reproduce some of the results from their calibrated structural model.4.

Figure 1 show the optimal portfolio rules from their estimated structural model. Pan-

els 1a and 1b show the optimal policy rule at age 30. In both economies, low-wealth

households do not invest at all in the stock market, as they find it optimal not to pay the

participation cost. Once they reach the threshold at which stock market participation is

optimal, the resulting policy rules are decreasing functions of wealth. The key driver is

the importance of human capital (discounted stream of future labor income) relative to

accumulated wealth. However, there are noticeable differences between the model under

the two earnings processes. The first difference is related to wealth thresholds, that is, the

amount of wealth households believe makes it worthwhile to invest in stocks. In particu-

lar, under the canonical process, all households, regardless of their position in the income

distribution, start investing in the stock market around the same threshold. Households

in the nonlinear process, by contrast, have different thresholds of wealth that depend on

their position in the income distribution. The second difference occurs in the portfolio

rules at age 55. Under the economy with the canonical earnings process, the uncertainty

with respect to their labor income is resolved, leading them to become more aggressive

in their stock investments. Under the nonlinear earnings process, the considerable uncer-

tainty with respect to their labor income leads households to remain conservative with

respect to their portfolio investments.

In sum, both results underscore the idea that under a more flexible earnings process,

income becomes more “stock-like” than before, which implies different wealth thresholds

and asset demands.

2.2 Semi-structural model of portfolio choice

I now describe the household optimization problem, and the corresponding empirical

policy functions that I will take to the data.

Consider a household with utility function u(·), which is assumed to be concave. It is

3In Appendix B, I describe a two-period model based on Campbell and Viceira (2002), and discuss
how the features of a more flexible earnings process can influence portfolio choices.

4Galvez and Paz-Pardo (2021) find that the structural model under the nonlinear earnings process
yields a lower estimate of relative risk aversion and a different structure of participation costs than the
model under the canonical earnings process. They also find that the model under nonlinear dynamics
fits the profile of stock market participation better.

8

portfolio choices, as in Galvez and Paz-Pardo (2021)3. In their model, they consider a

discrete-time, life cycle model of households with CRRA utility that decide on optimal

consumption and savings. Households in their framework have access to a risk-free and a

risky asset, and face participation costs to the stock market. To facilitate the discussion,

I reproduce some of the results from their calibrated structural model.4.

Figure 1 show the optimal portfolio rules from their estimated structural model. Pan-

els 1a and 1b show the optimal policy rule at age 30. In both economies, low-wealth

households do not invest at all in the stock market, as they find it optimal not to pay the

participation cost. Once they reach the threshold at which stock market participation is

optimal, the resulting policy rules are decreasing functions of wealth. The key driver is

the importance of human capital (discounted stream of future labor income) relative to

accumulated wealth. However, there are noticeable differences between the model under

the two earnings processes. The first difference is related to wealth thresholds, that is, the

amount of wealth households believe makes it worthwhile to invest in stocks. In particu-

lar, under the canonical process, all households, regardless of their position in the income

distribution, start investing in the stock market around the same threshold. Households

in the nonlinear process, by contrast, have different thresholds of wealth that depend on

their position in the income distribution. The second difference occurs in the portfolio

rules at age 55. Under the economy with the canonical earnings process, the uncertainty

with respect to their labor income is resolved, leading them to become more aggressive

in their stock investments. Under the nonlinear earnings process, the considerable uncer-

tainty with respect to their labor income leads households to remain conservative with

respect to their portfolio investments.

In sum, both results underscore the idea that under a more flexible earnings process,

income becomes more “stock-like” than before, which implies different wealth thresholds

and asset demands.

2.2 Semi-structural model of portfolio choice

I now describe the household optimization problem, and the corresponding empirical

policy functions that I will take to the data.

Consider a household with utility function u(·), which is assumed to be concave. It is

3In Appendix B, I describe a two-period model based on Campbell and Viceira (2002), and discuss
how the features of a more flexible earnings process can influence portfolio choices.

4Galvez and Paz-Pardo (2021) find that the structural model under the nonlinear earnings process
yields a lower estimate of relative risk aversion and a different structure of participation costs than the
model under the canonical earnings process. They also find that the model under nonlinear dynamics
fits the profile of stock market participation better.

8



BANCO DE ESPAÑA 16 DOCUMENTO DE TRABAJO N.º 2327

endowed with wealth wit, and makes an asset allocation decision at time t. The household

earns (log) labor income yit, which can be decomposed into deterministic and stochastic

parts. The stochastic components of income can be decomposed following equation (1),

while the model for the persistent component can be any general first-order Markov

process, for example, equation (2). The household cannot borrow against future labor

income, thereby making it non tradable. It has access to two assets for investment: a

riskless asset that earns a certain return Rf , and a risky asset with a constant expected

excess return Et(Rt+1 − Rf ) = µ. However, there is a probability that the household

might suffer a loss in its investment in risky assets, which can be represented by the

unexpected return on the risky asset that has a distribution with mean zero and variance

σ2
u.

Finally, the household faces some frictions in financial markets. First, if the household

wants to invest in stocks, it must pay a per-period participation cost F . One can rational-

ize this cost as a way of capturing several explanations proposed for limited participation

in financial markets. These include the presence of trading costs (e.g., Vissing-Jørgensen

(2002)), financial sophistication and financial literacy, or the lack of it (e.g., Calvet et al.

(2007), Van Rooij et al. (2011)), and trust in financial markets (e.g., Guiso et al. (2008)).

Second, the household can neither borrow nor short-sell, constraining its risky share to be

between zero and one, as is typical in household portfolio choice problems (Cocco et al.

(2005)).

To make its decision, the household solves two maximization subproblems. In the

first, called the participation subproblem, it maximizes the following objective function

by choosing optimal consumption cit and risky share αit given the state variables wit, ηit

and εit:

Vp,t(wit, ηit, εit) = max
cit,0<αit≤1

u(cit) + βEt(Vt+1(wit+1, ηit+1, εit+1))

subject to the following intertemporal budget constraint:

wit+1 = [αitRt+1 + (1− αit)Rf ][wit + yit − cit − F ] + yit+1.

In the second subproblem, called the non-participation subproblem, the household

computes optimal consumption by solving the following Bellman equation:

Vnp,t(wit, ηit, εit) = max
cit

u(cit) + βEt(Vt+1(wit+1, ηit+1, εit+1))

subject to the following intertemporal budget constraint:

wit+1 = Rf [wit + yit − cit].

10

Finally, to make its optimal choice, the household compares the utility gained from each

scenario and chooses optimal consumption, and the share of wealth in risky assets that

maximizes utility:

Vt = max{Vp,t(wit, ηit, εit), Vnp,t(wit, ηit, εit)} (4)

Deriving empirical portfolio and participation rules. The life-cycle model I

described earlier results in the following portfolio rule that corresponds to the solution of

the participation subproblem:

α∗
it = gt(wit, ηit, εit, ξit) (5)

where gt is an age-specific function of wealth and the stochastic components of income.

To take the portfolio rule to the data, I introduce an unobserved argument ξit, which can

be thought of as a taste shifter (e.g., risk aversion) that affects household portfolio choice

decisions. In the baseline model, ξit is an unobserved preference shifter that increases

households’ marginal utility; this implies that gt is monotone in ξit.
5

However, the portfolio rule above is latent. That is, the empirical researcher only

observes the solution of the complete portfolio choice problem, which is given by the

following equation:

αit = α∗
it · dit, (6)

wherein the observed portfolio rule is the interaction of the latent portfolio rule solved

in the participation subproblem, and the participation rule of the households, which is

represented by the indicator dit. A reduced form version of the indirect utility comparison

in (4) can be written as:

dit =

{
1, if mt(wit, ηit, εit) ≤ χit

0, otherwise
. (7)

Similar to the portfolio rule (5), to take the participation rule to the data, I introduce

an unobserved argument χit that corresponds to participation cost shifters. It is crucial

to note that while the unobserved arguments ξit and χit are different, they are correlated

to each other, given the nature of the household problem. In this sense, I can stack

them into a vector vit = (ξit, χit)
′, that represents the unobserved errors of the portfolio

choice problem.6 Allowing for correlation between the error terms suggests the presence

of sample selection bias, an issue that I will resolve in section 4. Moreover, the presence of

5This will be true in the participation subproblem if ∂u(C,u′)
∂u′ > ∂u(C,u)

∂u where u′ > u. This implies,
hence, that the Bellman equation of the participation subproblem is monotonic.

6One can also plausibly think that ξit = χit, as it is highly likely that the same unobserved shifters
drive both participation costs and portfolio choice decisions.
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while the model for the persistent component can be any general first-order Markov

process, for example, equation (2). The household cannot borrow against future labor

income, thereby making it non tradable. It has access to two assets for investment: a

riskless asset that earns a certain return Rf , and a risky asset with a constant expected

excess return Et(Rt+1 − Rf ) = µ. However, there is a probability that the household

might suffer a loss in its investment in risky assets, which can be represented by the

unexpected return on the risky asset that has a distribution with mean zero and variance
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Finally, to make its optimal choice, the household compares the utility gained from each

scenario and chooses optimal consumption, and the share of wealth in risky assets that

maximizes utility:

Vt = max{Vp,t(wit, ηit, εit), Vnp,t(wit, ηit, εit)} (4)

Deriving empirical portfolio and participation rules. The life-cycle model I

described earlier results in the following portfolio rule that corresponds to the solution of

the participation subproblem:

α∗
it = gt(wit, ηit, εit, ξit) (5)

where gt is an age-specific function of wealth and the stochastic components of income.

To take the portfolio rule to the data, I introduce an unobserved argument ξit, which can

be thought of as a taste shifter (e.g., risk aversion) that affects household portfolio choice

decisions. In the baseline model, ξit is an unobserved preference shifter that increases

households’ marginal utility; this implies that gt is monotone in ξit.
5

However, the portfolio rule above is latent. That is, the empirical researcher only

observes the solution of the complete portfolio choice problem, which is given by the

following equation:

αit = α∗
it · dit, (6)

wherein the observed portfolio rule is the interaction of the latent portfolio rule solved

in the participation subproblem, and the participation rule of the households, which is

represented by the indicator dit. A reduced form version of the indirect utility comparison

in (4) can be written as:

dit =

{
1, if mt(wit, ηit, εit) ≤ χit

0, otherwise
. (7)

Similar to the portfolio rule (5), to take the participation rule to the data, I introduce

an unobserved argument χit that corresponds to participation cost shifters. It is crucial

to note that while the unobserved arguments ξit and χit are different, they are correlated

to each other, given the nature of the household problem. In this sense, I can stack

them into a vector vit = (ξit, χit)
′, that represents the unobserved errors of the portfolio

choice problem.6 Allowing for correlation between the error terms suggests the presence

of sample selection bias, an issue that I will resolve in section 4. Moreover, the presence of

5This will be true in the participation subproblem if ∂u(C,u′)
∂u′ > ∂u(C,u)

∂u where u′ > u. This implies,
hence, that the Bellman equation of the participation subproblem is monotonic.

6One can also plausibly think that ξit = χit, as it is highly likely that the same unobserved shifters
drive both participation costs and portfolio choice decisions.
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equation (7) permits the mapping of the semi-structural model to the Bellman equation

of the entire economic problem.

As is clear from the household problem, wealth wit is endogenous. To ensure iden-

tification of the portfolio and participation rules, I assume that wit is predetermined.7

Specifically, I write the following equation:

wit = ht(wit−1, ηit−1, εit−1, αit−1, υit) (9)

in which household wealth is an age-dependent function of lagged assets, the lagged

persistent and transitory components of income, and the lagged portfolio choice decision

of the household. The unobserved argument υit can be thought of as a catch-all that

captures two important aspects of the problem that I do not model explicitly. The first

is that of the return process for risky assets.8 The second, meanwhile, is that of the

consumption rule. Finally, to close the model, I specify the initial wealth distribution wi0

as unrestricted.

Together with the income process (2), equations (5)-(9) constitute a system that

describes the life-cycle model of portfolio choice for a wide class of structural models,

as it does not impose a specific functional form9. One can use this model to estimate

directly households’ stock market participation and portfolio rules under several models

of earnings dynamics. Moreover, the model’s flexibility permits interactions between

the different state variables of the economic problem at hand. This stands in contrast

to reduced-form models, which come from first-order approximations of the economic

model. A drawback of the semi-structural model that I outlined here, compared to

dynamic structural models, is that it cannot be used to analyze counterfactual scenarios.

However, the model permits the recovery of objects of interest that can be useful targets

for structural estimation, and provide some suggestive evidence on the nature of stock

market participation, or the nature of preferences, and in particular, whether they are of

the CRRA or DRRA type.

7An alternative to introducing the wealth accumulation rule is the introduction of the empirical
consumption rule as in Arellano et al. (2017):

cit = ht(ηit, εit, wit, uit) (8)

wherein consumption is a function of the stochastic components of income, wealth and an unobserved
taste shifter. If one introduces this in the estimation, though, one must include the imposition of the
budget constraint.

8It could be the case that there is some correlation between the persistent earnings component, and
the returns to the risky asset. The flexibility of the wealth accumulation, as shown by the interaction of
the income components, wealth, and the share of wealth in risky assets, allows for this correlation to be
captured.

9A clear exception, however, are models that feature ambiguity aversion (Peijnenburg (2018)). One
would need a suitable modification of the dynamic programming problem to incorporate these models.
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to each other, given the nature of the household problem. In this sense, I can stack

them into a vector vit = (ξit, χit)
′, that represents the unobserved errors of the portfolio

choice problem.6 Allowing for correlation between the error terms suggests the presence

of sample selection bias, an issue that I will resolve in section 4. Moreover, the presence of

5This will be true in the participation subproblem if ∂u(C,u′)
∂u′ > ∂u(C,u)

∂u where u′ > u. This implies,
hence, that the Bellman equation of the participation subproblem is monotonic.

6One can also plausibly think that ξit = χit, as it is highly likely that the same unobserved shifters
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equation (7) permits the mapping of the semi-structural model to the Bellman equation

of the entire economic problem.

As is clear from the household problem, wealth wit is endogenous. To ensure iden-

tification of the portfolio and participation rules, I assume that wit is predetermined.7

Specifically, I write the following equation:

wit = ht(wit−1, ηit−1, εit−1, αit−1, υit) (9)

in which household wealth is an age-dependent function of lagged assets, the lagged

persistent and transitory components of income, and the lagged portfolio choice decision

of the household. The unobserved argument υit can be thought of as a catch-all that

captures two important aspects of the problem that I do not model explicitly. The first

is that of the return process for risky assets.8 The second, meanwhile, is that of the

consumption rule. Finally, to close the model, I specify the initial wealth distribution wi0

as unrestricted.

Together with the income process (2), equations (5)-(9) constitute a system that

describes the life-cycle model of portfolio choice for a wide class of structural models,

as it does not impose a specific functional form9. One can use this model to estimate

directly households’ stock market participation and portfolio rules under several models

of earnings dynamics. Moreover, the model’s flexibility permits interactions between

the different state variables of the economic problem at hand. This stands in contrast

to reduced-form models, which come from first-order approximations of the economic

model. A drawback of the semi-structural model that I outlined here, compared to

dynamic structural models, is that it cannot be used to analyze counterfactual scenarios.

However, the model permits the recovery of objects of interest that can be useful targets

for structural estimation, and provide some suggestive evidence on the nature of stock

market participation, or the nature of preferences, and in particular, whether they are of

the CRRA or DRRA type.

7An alternative to introducing the wealth accumulation rule is the introduction of the empirical
consumption rule as in Arellano et al. (2017):

cit = ht(ηit, εit, wit, uit) (8)

wherein consumption is a function of the stochastic components of income, wealth and an unobserved
taste shifter. If one introduces this in the estimation, though, one must include the imposition of the
budget constraint.

8It could be the case that there is some correlation between the persistent earnings component, and
the returns to the risky asset. The flexibility of the wealth accumulation, as shown by the interaction of
the income components, wealth, and the share of wealth in risky assets, allows for this correlation to be
captured.

9A clear exception, however, are models that feature ambiguity aversion (Peijnenburg (2018)). One
would need a suitable modification of the dynamic programming problem to incorporate these models.
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Objects of interest. The semi-structural model of portfolio choice allows me to

recover the following objects of interest. To fix ideas, I calculate all objects with respect

to the persistent component of income ηit, though I can also calculate these with respect

to wealth wit and the transitory component εit.

First, the average stock market participation rate, for a specific value of wealth and

the stochastic components of income is:

E[(1(mt(wit, ηit, εit) ≤ χit)|wit, ηit, εit] = Pr(dit = 1|wit, ηit, εit).

From this, I can recover the extensive margin of stock market participation, which is

simply:

ϕE(w, η, ε) =
∂ Pr(dit = 1|w, η, ε)

∂ηit
(10)

Meanwhile, the average share of wealth in risky assets for stock market participants can

be written as:

E(α∗
it|w, η, ε, dit = 1) = E[gt(wit, ηit, εit, ξit)|w, η, ε, dit = 1]

Given this, I can then recover the intensive margin of household portfolio choice, which

can then be written as:

ϕI(w, η, ε) = E
(
∂gt(wit, ηit, εit, ξit)

∂η

∣∣∣∣ dit = 1

)
(11)

The extensive and intensive margins of portfolio choice can then be combined to compute

the aggregate effect of income on portfolio choice:

ϕA(w, η, ε) =
∂ Pr(dit = 1|w, η, ε)

∂ηit
× E

(
∂gt(wit, ηit, εit, ξit)

∂η

∣∣∣∣ dit = 1

)
, (12)

which after taking logs on both sides, can then be interpreted as the elasticity of partic-

ipation and portfolio choice with respect to labor income, respectively.

Apart from the derivative effects, I can also recover other objects of interest. In

particular, to study the dynamic effects of a persistent income shock, I can compute

“impulse response”-like functions:

∆E(η + η′, η) = Pr(dit = 1|η + η′, ε, w, z)− Pr(dit = 1|η, ε, w, z)

and

∆I(η + η′, η) = E(α∗
it|η + η′, ε, w,x, dit = 1)− E(α∗

it|η, ε, w,x, dit = 1)

which can be thought of as finite difference counterparts of the average derivative effects

(10) and (11) with respect to a shock uit to persistent labor income. Finally, I can recover

the latent distribution of risky asset shares F (α∗
it|wit, ηit, εit) and utilize this object to

compute participation cost distributions.
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3 Data and descriptive evidence

3.1 Dataset description and sample selection

The main dataset for my empirical analysis is a balanced panel of households from the

1999 to 2009 waves of the Panel Study of Income Dynamics (PSID). The primary aim of

the survey was to study the dynamics of income and poverty of US households. Hence, the

original 1968 study was drawn from two independent subsamples: 2,000 poor families that

were under the Survey of Economic Opportunity (SEO), and a nationally representative

sample of approximately 3,000 families. The survey waves were annual from 1968 until

1997, when the data was collected biennially. A distinct advantage of the PSID is that

since the 1999 wave, it has collected detailed data on consumption expenditures and asset

holdings, in addition to information on household earnings. This makes it one of the few

longitudinal surveys in the US with comprehensive information on assets, consumption,

and earnings for a representative sample of households. As I need continuous information

on labor earnings and portfolio choices over the life cycle, I focus on the 1999 to 2009

waves, which correspond to calendar years 1998 to 2008. I deflate all of the variables with

2000 as the base year.

Sample selection criteria. I focus on non-SEO households with participating and

married household heads between 25 to 60 years old. I exclude households that have

missing information on key demographic variables (age, race, education, and state of

residence) and on the main variables in the study, in logs or in levels. To reduce the

influence of measurement error, I remove households that have more than $20 million

in total household assets, following Blundell et al. (2016). I also drop households that

have “extreme jumps” in their earnings and implied hourly wages10, and those who have

transfer incomes that are more than twice household labor income. The sample selection

criteria results in a balanced panel of 661 households. A detailed description of the data

cleaning process is in Appendix C.1.11

10A jump is defined as an extremely positive (negative) change from year t − 2 to t, followed by an
extremely negative (positive) change from year t to t + 2. Formally, for each variable, I construct the
biennial log difference ∆2 log(xt) and drop the relevant variables for observation in the bottom 0.25
percentile of the product ∆2 log(xt)∆

2 log(xt−2), following Blundell et al. (2016).
11I also calculate summary statistics to compare my baseline sample with a sample of all married

household heads (independently of work status) and with a sample of all household heads headed by a
male recorded at least once in the 1998 to 2008 period (again, independently of work status), which are
also shown in Appendix C. The results indicate that there does not seem to be substantial differences
across samples.
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which after taking logs on both sides, can then be interpreted as the elasticity of partic-

ipation and portfolio choice with respect to labor income, respectively.

Apart from the derivative effects, I can also recover other objects of interest. In

particular, to study the dynamic effects of a persistent income shock, I can compute

“impulse response”-like functions:
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which can be thought of as finite difference counterparts of the average derivative effects

(10) and (11) with respect to a shock uit to persistent labor income. Finally, I can recover

the latent distribution of risky asset shares F (α∗
it|wit, ηit, εit) and utilize this object to

compute participation cost distributions.
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3.2 Main variables

Earnings Yit is total pre-tax household labor earnings. I construct yit as the residuals

from regressing log household earnings on a set of demographics, which include cohort

dummies interacted with education categories for both husband and wife, race, state, and

large city dummies, a family size indicator, number of kids, a dummy for income recipient

other than husband and wife, and a dummy for kids out of the household.

I consider risky assets as the sum of two components: (i.) the value of stockholdings

held in publicly traded corporations, mutual funds or investment in trusts, and (ii.) the

part of Individual Retirement Accounts (IRAs) that are held in stocks.12 To identify the

part of the IRA allocated in stocks, I follow the treatment of Vissing-Jørgensen (2002),

Malmendier and Nagel (2011) and Palia et al. (2014). Specifically, the PSID asks a

household about the allocation of its pension account, if it has any. I assume that all

investments in IRAs are in stocks if the household reports that most of the money is

allocated in them. If the household reports that the money in the IRA is split between

stocks and interest-earning assets, I assume that half the value is in stocks and half the

value is in bonds.

Wealth Wit is constructed as the sum of financial assets, real estate value, pension

funds, and car value, net of mortgage and other debt. I define financial assets as the

sum of: stocks; cash, defined as checking or savings accounts, money market accounts,

or Treasury bills, including those held in IRAs; and bonds, which includes bonds, the

cash value in life insurance policies, valuable collections, rights in trusts or estates. All of

the estimations that I present use the log of total household wealth, wit, as the relevant

independent variable. Finally, the risky share αit is computed as the proportion of risky

assets to total household wealth.

12Albeit some papers in the empirical literature (such as Brunnermeier and Nagel (2008) and Chiappori
and Paiella (2011)) include home equity in the definition of risky wealth, as it can be interpreted as
such (see Flavin and Yamashita (2002)), doing so requires a more involved estimation framework in
which I would also need to model homeownership, and the evolution of house prices, an aggregate state
variable (see Hahn et al. (2015) for a discussion on the challenges of estimating models with aggregate
shocks). Moreover, empirically disentangling the effects of house price risk from labor income risk is
an arduous task, as underscored by Chetty et al. (2017). This definition of wealth recognizes, however,
that households indeed have most of their wealth in housing. In this sense, I can also interpret the error
term in the evolution of wealth equation as one that also captures the return process of housing value.
Moreover, my sample selection criteria is such that almost all households in my sample are homeowners
at any given point in time.
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3 Data and descriptive evidence

3.1 Dataset description and sample selection

The main dataset for my empirical analysis is a balanced panel of households from the

1999 to 2009 waves of the Panel Study of Income Dynamics (PSID). The primary aim of

the survey was to study the dynamics of income and poverty of US households. Hence, the

original 1968 study was drawn from two independent subsamples: 2,000 poor families that

were under the Survey of Economic Opportunity (SEO), and a nationally representative

sample of approximately 3,000 families. The survey waves were annual from 1968 until

1997, when the data was collected biennially. A distinct advantage of the PSID is that

since the 1999 wave, it has collected detailed data on consumption expenditures and asset

holdings, in addition to information on household earnings. This makes it one of the few

longitudinal surveys in the US with comprehensive information on assets, consumption,

and earnings for a representative sample of households. As I need continuous information

on labor earnings and portfolio choices over the life cycle, I focus on the 1999 to 2009

waves, which correspond to calendar years 1998 to 2008. I deflate all of the variables with

2000 as the base year.

Sample selection criteria. I focus on non-SEO households with participating and

married household heads between 25 to 60 years old. I exclude households that have

missing information on key demographic variables (age, race, education, and state of

residence) and on the main variables in the study, in logs or in levels. To reduce the

influence of measurement error, I remove households that have more than $20 million

in total household assets, following Blundell et al. (2016). I also drop households that

have “extreme jumps” in their earnings and implied hourly wages10, and those who have

transfer incomes that are more than twice household labor income. The sample selection

criteria results in a balanced panel of 661 households. A detailed description of the data

cleaning process is in Appendix C.1.11

10A jump is defined as an extremely positive (negative) change from year t − 2 to t, followed by an
extremely negative (positive) change from year t to t + 2. Formally, for each variable, I construct the
biennial log difference ∆2 log(xt) and drop the relevant variables for observation in the bottom 0.25
percentile of the product ∆2 log(xt)∆

2 log(xt−2), following Blundell et al. (2016).
11I also calculate summary statistics to compare my baseline sample with a sample of all married

household heads (independently of work status) and with a sample of all household heads headed by a
male recorded at least once in the 1998 to 2008 period (again, independently of work status), which are
also shown in Appendix C. The results indicate that there does not seem to be substantial differences
across samples.
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3.3 Descriptive evidence

Table 1 presents pooled cross-section/time-series summary statistics for all relevant vari-

ables, grouped by income quartiles. The table is divided into two panels. The first panel

corresponds to all households that satisfy the sample selection criteria. The second panel,

meanwhile, corresponds to the subset of risky asset market participants.

The table indicates a wide dispersion across households in their earnings and assets.

The average participation rate in risky wealth is around 59.1 percent for the households

in my sample, slightly higher from those in other observational studies, such as the US

Survey of Consumer Finances (SCF)13. Furthermore, once I condition on the subset of

risky asset market participants, I find that household assets are not monotonic in income.

In fact, households at the lowest and highest income quartiles have higher liquid wealth

and stockholdings than households at the middle income quintiles. While there may be

a host of other reasons why this could be the case, one can surmise that differences in

the income risks that these households face could possibly drive this phenomenon.

Table 1: Sample means of main variables, by income quartiles

Income quartile
TOTAL First Second Third Fourth

All participants
Household income 111,612.60 42,206.75 71,354.16 99,518.06 222,091.50
Total assets 371,189.60 184,597.80 212,898.20 332,963.40 719,382.40
Liquid wealth 95,529.77 43,204.98 48,433.76 73,681.34 206,119.10
Risky wealth 81,353.17 35,366.25 36,714.01 60,835.09 182,757.20
Stocks 51,547.79 23,514.87 19,774.00 34,475.20 121,831.80
Share of stocks in total wealth 0.077 0.048 0.057 0.073 0.124
Share of risky assets in total wealth 0.148 0.087 0.120 0.154 0.224
Ownership of risky assets 0.591 0.372 0.526 0.649 0.793

Risky market participants
Household income 130,668.70 44,692.65 71,214.30 99,955.57 226,578.30
Total assets 512,872.20 317,459.30 289,769.80 399,048.60 818,180.50
Liquid wealth 145,598.80 101,981.00 73,786.93 97,593.12 244,521.50
Risky wealth 137,676.70 95,196.34 69,818.05 93,735.98 230,589.40
Stocks 87,236.05 63,295.65 37,603.70 53,120.10 153,718.30
Ownership of stocks 0.695 0.621 0.653 0.684 0.759
Share of risky assets in total wealth 0.250 0.233 0.229 0.237 0.283

Note: Data from 1999 to 2009 PSID waves. This table presents sample means of the main economic

variables (in 2000 US dollars) related to this empirical study, calculated across income quartiles. The

first column calculates the mean across all households in the sample, while the second to fifth columns

calculate the mean for different income quartiles. The first panel presents results across all households.

The second panel presents results for risky market participants, defined as households who have direct

and indirect stockholdings in stocks, and who have part of their pension funds invested in stocks.

Figure 2 presents the average stock market participation rate and conditional risky

13The proportions in the SCF are 48.9 (1998), 52.2 (2001), 50.2 (2003), and 51.1 (2007). (Bucks et al.
(2009))
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other than husband and wife, and a dummy for kids out of the household.

I consider risky assets as the sum of two components: (i.) the value of stockholdings

held in publicly traded corporations, mutual funds or investment in trusts, and (ii.) the

part of Individual Retirement Accounts (IRAs) that are held in stocks.12 To identify the

part of the IRA allocated in stocks, I follow the treatment of Vissing-Jørgensen (2002),

Malmendier and Nagel (2011) and Palia et al. (2014). Specifically, the PSID asks a

household about the allocation of its pension account, if it has any. I assume that all

investments in IRAs are in stocks if the household reports that most of the money is

allocated in them. If the household reports that the money in the IRA is split between

stocks and interest-earning assets, I assume that half the value is in stocks and half the

value is in bonds.

Wealth Wit is constructed as the sum of financial assets, real estate value, pension

funds, and car value, net of mortgage and other debt. I define financial assets as the

sum of: stocks; cash, defined as checking or savings accounts, money market accounts,

or Treasury bills, including those held in IRAs; and bonds, which includes bonds, the

cash value in life insurance policies, valuable collections, rights in trusts or estates. All of

the estimations that I present use the log of total household wealth, wit, as the relevant

independent variable. Finally, the risky share αit is computed as the proportion of risky

assets to total household wealth.

12Albeit some papers in the empirical literature (such as Brunnermeier and Nagel (2008) and Chiappori
and Paiella (2011)) include home equity in the definition of risky wealth, as it can be interpreted as
such (see Flavin and Yamashita (2002)), doing so requires a more involved estimation framework in
which I would also need to model homeownership, and the evolution of house prices, an aggregate state
variable (see Hahn et al. (2015) for a discussion on the challenges of estimating models with aggregate
shocks). Moreover, empirically disentangling the effects of house price risk from labor income risk is
an arduous task, as underscored by Chetty et al. (2017). This definition of wealth recognizes, however,
that households indeed have most of their wealth in housing. In this sense, I can also interpret the error
term in the evolution of wealth equation as one that also captures the return process of housing value.
Moreover, my sample selection criteria is such that almost all households in my sample are homeowners
at any given point in time.
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3.3 Descriptive evidence

Table 1 presents pooled cross-section/time-series summary statistics for all relevant vari-

ables, grouped by income quartiles. The table is divided into two panels. The first panel

corresponds to all households that satisfy the sample selection criteria. The second panel,

meanwhile, corresponds to the subset of risky asset market participants.

The table indicates a wide dispersion across households in their earnings and assets.

The average participation rate in risky wealth is around 59.1 percent for the households

in my sample, slightly higher from those in other observational studies, such as the US

Survey of Consumer Finances (SCF)13. Furthermore, once I condition on the subset of

risky asset market participants, I find that household assets are not monotonic in income.

In fact, households at the lowest and highest income quartiles have higher liquid wealth

and stockholdings than households at the middle income quintiles. While there may be

a host of other reasons why this could be the case, one can surmise that differences in

the income risks that these households face could possibly drive this phenomenon.

Table 1: Sample means of main variables, by income quartiles

Income quartile
TOTAL First Second Third Fourth

All participants
Household income 111,612.60 42,206.75 71,354.16 99,518.06 222,091.50
Total assets 371,189.60 184,597.80 212,898.20 332,963.40 719,382.40
Liquid wealth 95,529.77 43,204.98 48,433.76 73,681.34 206,119.10
Risky wealth 81,353.17 35,366.25 36,714.01 60,835.09 182,757.20
Stocks 51,547.79 23,514.87 19,774.00 34,475.20 121,831.80
Share of stocks in total wealth 0.077 0.048 0.057 0.073 0.124
Share of risky assets in total wealth 0.148 0.087 0.120 0.154 0.224
Ownership of risky assets 0.591 0.372 0.526 0.649 0.793

Risky market participants
Household income 130,668.70 44,692.65 71,214.30 99,955.57 226,578.30
Total assets 512,872.20 317,459.30 289,769.80 399,048.60 818,180.50
Liquid wealth 145,598.80 101,981.00 73,786.93 97,593.12 244,521.50
Risky wealth 137,676.70 95,196.34 69,818.05 93,735.98 230,589.40
Stocks 87,236.05 63,295.65 37,603.70 53,120.10 153,718.30
Ownership of stocks 0.695 0.621 0.653 0.684 0.759
Share of risky assets in total wealth 0.250 0.233 0.229 0.237 0.283

Note: Data from 1999 to 2009 PSID waves. This table presents sample means of the main economic

variables (in 2000 US dollars) related to this empirical study, calculated across income quartiles. The

first column calculates the mean across all households in the sample, while the second to fifth columns

calculate the mean for different income quartiles. The first panel presents results across all households.

The second panel presents results for risky market participants, defined as households who have direct

and indirect stockholdings in stocks, and who have part of their pension funds invested in stocks.

Figure 2 presents the average stock market participation rate and conditional risky

13The proportions in the SCF are 48.9 (1998), 52.2 (2001), 50.2 (2003), and 51.1 (2007). (Bucks et al.
(2009))
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Figure 2: Participation and the conditional risky share, by income and wealth quartiles
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Note: Data from 1999 to 2009 PSID waves. The following figures show the average stock market

participation rates and the average conditional risky shares for households of different income and wealth

quartiles. The x-axis corresponds to the income quartiles, while the y-axis corresponds to the average

participation rate or risky share. The blue line corresponds to households in the poorest wealth quartile;

the red line corresponds to households in the second wealth quartile; the green line corresponds to

households in the third wealth quartile; and the orange line corresponds to households in the richest

wealth quartile.

share for households of different income and wealth quartiles. As the graphs indicate,

with the exception of the highest wealth quartile, participation rates increase as income

increases. For households in the highest wealth quartile, however, the graphs suggest

that those at the extreme income quartiles have slightly higher participation rates than

those in the middle income quartiles. The conditional risky shares, meanwhile, reveal

non-monotonic patterns across income and wealth quartiles. The graphs also indicate

that among households in the lowest income quartile, those in the highest wealth quartile

tend to be the most aggressive in their risky asset investment. At the same time, among

households in the highest income quartile, those in the lowest wealth quartile tend to

invest the most in risky assets, on average. Overall, these plots suggest an interaction

between wealth and income in terms of risky asset market investment.

Table 2 presents the frequency distribution of household risky market participation

sequences disaggregated by age quartiles. I distinguish between the following groups

of households: (i.) those who have never participated; (ii.) those who have always

participated; (iii.) “pure entry” and “pure exit” households, that is, those who, after

observing a stock market entry after nonparticipation, choose to remain in the stock

market and likewise, those who, after observing a stock market exit after an entry, remain
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Note: Data from 1999 to 2009 PSID waves. The following figures show the average stock market

participation rates and the average conditional risky shares for households of different income and wealth

quartiles. The x-axis corresponds to the income quartiles, while the y-axis corresponds to the average

participation rate or risky share. The blue line corresponds to households in the poorest wealth quartile;

the red line corresponds to households in the second wealth quartile; the green line corresponds to

households in the third wealth quartile; and the orange line corresponds to households in the richest

wealth quartile.

share for households of different income and wealth quartiles. As the graphs indicate,

with the exception of the highest wealth quartile, participation rates increase as income

increases. For households in the highest wealth quartile, however, the graphs suggest

that those at the extreme income quartiles have slightly higher participation rates than

those in the middle income quartiles. The conditional risky shares, meanwhile, reveal

non-monotonic patterns across income and wealth quartiles. The graphs also indicate

that among households in the lowest income quartile, those in the highest wealth quartile

tend to be the most aggressive in their risky asset investment. At the same time, among

households in the highest income quartile, those in the lowest wealth quartile tend to

invest the most in risky assets, on average. Overall, these plots suggest an interaction

between wealth and income in terms of risky asset market investment.

Table 2 presents the frequency distribution of household risky market participation

sequences disaggregated by age quartiles. I distinguish between the following groups

of households: (i.) those who have never participated; (ii.) those who have always

participated; (iii.) “pure entry” and “pure exit” households, that is, those who, after

observing a stock market entry after nonparticipation, choose to remain in the stock

market and likewise, those who, after observing a stock market exit after an entry, remain
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Note: Data from 1999 to 2009 PSID waves. The following figures show the average stock market

participation rates and the average conditional risky shares for households of different income and wealth

quartiles. The x-axis corresponds to the income quartiles, while the y-axis corresponds to the average

participation rate or risky share. The blue line corresponds to households in the poorest wealth quartile;

the red line corresponds to households in the second wealth quartile; the green line corresponds to

households in the third wealth quartile; and the orange line corresponds to households in the richest

wealth quartile.
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calculate the mean for different income quartiles. The first panel presents results across all households.

The second panel presents results for risky market participants, defined as households who have direct

and indirect stockholdings in stocks, and who have part of their pension funds invested in stocks.

Figure 2 presents the average stock market participation rate and conditional risky

13The proportions in the SCF are 48.9 (1998), 52.2 (2001), 50.2 (2003), and 51.1 (2007). (Bucks et al.
(2009))
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to be out14; and (iv.) households who move from one participation state to another more

than once. Looking at the panel of risky market participation sequences, households

with at least one re-entry comprise the majority in the sample, at 39.03 percent. This

is followed by households who have always participated, who are approximately 30.10

percent of the sample. Households who have never participated in the stock markets

comprise 16.64 percent, and the rest are the “pure entry” and “pure exit” households.

Finally, Table 3 presents summary statistics according to participation status. House-

holds who have never participated tend to be less educated, have lower household incomes,

and have lower household wealth. The rest of the households in my sample tend to have

studied at least a year of university education and are roughly of the same age category.

Interestingly, those who have re-entered the stock market have labor incomes that are

less than those of who have always participated in the stock markets. Arguably, this

result suggests that these households are at the margin between participation and non-

participation in the stock markets. Furthermore, the labor incomes these households have

suggest that they face substantial earnings risk.

Table 2: Frequency distribution of risky market participation sequences

Age quartile
TOTAL First Second Third Fourth

Never participated 110 15 32 52 11
Always participated 199 11 40 108 40
Pure entry households 51 9 9 29 4
Pure exit households 43 1 15 25 2
Households with re-entries 258 17 70 141 30
TOTAL 53 166 365 87

Note: Data from 1999 to 2009 PSID waves. This table presents the frequency distribution of household

stock market participation sequences disaggregated by age quartiles. In this table, households who have

never bought stocks are those who have participation sequences (0,0,0,0,0,0), while households who have

always participated are those who have participation sequences (1,1,1,1,1,1). Pure entry and pure exit

households are those who have the sequences that are described in the text. Households with re-entries

are those who have had more than one re-entry in the stock market.

14A pure entry household is one with a participation sequence of (0,1,1,1,1,1), (0,0,1,1,1,1), etc. Mean-
while, a pure exit household is one with a participation sequence of (1,0,0,0,0,0), (1,1,0,0,0,0), etc.
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to be out14; and (iv.) households who move from one participation state to another more

than once. Looking at the panel of risky market participation sequences, households

with at least one re-entry comprise the majority in the sample, at 39.03 percent. This

is followed by households who have always participated, who are approximately 30.10

percent of the sample. Households who have never participated in the stock markets

comprise 16.64 percent, and the rest are the “pure entry” and “pure exit” households.

Finally, Table 3 presents summary statistics according to participation status. House-

holds who have never participated tend to be less educated, have lower household incomes,

and have lower household wealth. The rest of the households in my sample tend to have

studied at least a year of university education and are roughly of the same age category.

Interestingly, those who have re-entered the stock market have labor incomes that are

less than those of who have always participated in the stock markets. Arguably, this

result suggests that these households are at the margin between participation and non-

participation in the stock markets. Furthermore, the labor incomes these households have

suggest that they face substantial earnings risk.

Table 2: Frequency distribution of risky market participation sequences

Age quartile
TOTAL First Second Third Fourth

Never participated 110 15 32 52 11
Always participated 199 11 40 108 40
Pure entry households 51 9 9 29 4
Pure exit households 43 1 15 25 2
Households with re-entries 258 17 70 141 30
TOTAL 53 166 365 87

Note: Data from 1999 to 2009 PSID waves. This table presents the frequency distribution of household

stock market participation sequences disaggregated by age quartiles. In this table, households who have

never bought stocks are those who have participation sequences (0,0,0,0,0,0), while households who have
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Figure 2: Participation and the conditional risky share, by income and wealth quartiles
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Note: Data from 1999 to 2009 PSID waves. The following figures show the average stock market

participation rates and the average conditional risky shares for households of different income and wealth

quartiles. The x-axis corresponds to the income quartiles, while the y-axis corresponds to the average

participation rate or risky share. The blue line corresponds to households in the poorest wealth quartile;

the red line corresponds to households in the second wealth quartile; the green line corresponds to

households in the third wealth quartile; and the orange line corresponds to households in the richest

wealth quartile.

share for households of different income and wealth quartiles. As the graphs indicate,
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Table 3: Summary statistics, by risky market participation sequence

Participation sequence status
Never Always Pure entry Pure exit Re-entries

Age of household head 43.32 46.55 43.88 44.16 44.91
Education of household head 12.24 15.23 14.94 13.81 14.24
Household income 61,808.22 145,525.20 96,973.63 152,104.60 95,064.78
Net household wealth 110,145.50 640,761.60 191,249.00 435,548.50 247,425.80
Liquid wealth 8,921.91 202,606.90 30,637.71 95,406.39 44,432.09
Risky wealth - 196,810.00 25,291.58 59,151.12 25,136.02
Ownership of risky assets - 1.00 0.58 0.60 0.48
Share of wealth in risky assets - 0.29 0.11 0.13 0.10

Note: Data from 1999 to 2009 PSID waves. This table presents summary statistics of the main variables

in the PSID subsample that I consider, disaggregated by stock market participation status. The first

column corresponds to households who have never participated in the stock market. The second column

corresponds to households who have always participated in the stock market. The third and foruth

columns correspond to households who have either “purely entered” or “purely exited” the stock market.

Finally, the last column corresponds to households who have at least one stock market re-entry.

4 Identification and estimation strategy

There are two main challenges to overcome in identifying and estimating the semi-

structural model of portfolio choice. First, households select themselves into stock market

participation, which implies dealing with the well-known sample selection problem (Heck-

man (1974)). Second, the stochastic components of income are also unobserved, and the

way it translates to stock market participation and portfolio choice can be highly nonlin-

ear. I address these two concerns in this section.

4.1 Nonparametric identification

In the current setting, the goal is to recover the empirical portfolio and participation rules,

and the latent distribution of risky asset shares. Because the semi-structural model of

portfolio choice takes the form of a nonlinear state-space model, I leverage techniques

used in the literature that studies nonparametric identification of the joint dynamic dis-

tributions of the observed and latent variables in these nonlinear models (surveyed in Hu

(2017)) to outline a formal argument in Appendix D.

As I show, the empirical participation and portfolio rules, the average derivative

effects, and the impulse response functions are non-parametrically identified given at

least two periods of earnings, assets, and the observed participation and portfolio choices,

provided that two assumptions are satisfied. First, the mapping between the latent and
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observed distributions of risky asset shares must be known. Second, there should be a

variable that affects participation, but not the subsequent portfolio allocation. Within

the context of the model, the exclusion restriction can be thought of as a cost shifter.

It is crucial that both assumptions must be satisfied. Knowledge of the mapping

between the latent and observed distributions, which is represented by the conditional

copula, permits the calculation of the latent quantiles of risky asset shares from the ob-

served data. However, this function will not be informative of the extent of participation

in the stock market without the presence of an exclusion restriction. Otherwise, the

quantiles, and subsequently, the distribution of risky asset shares, are only set identified

(Arellano and Bonhomme (2017a)).

The intuition behind the identification argument comes from the connection to non-

parametric instrumental variable problems (see, e.g., Newey and Powell (2003) and Blun-

dell et al. (2007)). In my set-up, the endogenous variable is the persistent component of

income, which is unobserved. As I argue in appendix D, given the assumptions of the

model, the “excluded instruments” are the lagged portfolio choices, participation indi-

cators, assets, and the leads and lags of earnings. The availability of these instruments

allows me to identify average derivative effects of the persistent component of income,

and participation and portfolio choice responses with respect to an income shock.

Using leads and lags of earnings is a common strategy in identifying consumption

responses (see, e.g., Blundell et al. (2008)) with respect to an income shock. To the

best of my knowledge, this strategy has not been used to identify the impact of income

shocks on portfolio allocation. The usual approach is to estimate measures of income risk

(commonly the variance of labor income) (as in Angerer and Lam (2009) and Fagereng

et al. (2017b)) or to use information on subjective income expectations (as in Guiso et al.

(1996) and Hochguertel (2003)), and use these as an independent variable in a linear

regression. The approach taken here provides the possibility of directly estimating these

responses from the available data on earnings, assets and participation.

4.2 Model specification

As the goal is to estimate a flexible life-cycle model that is compatible with a wide class

of structural models, I rely on sieve estimation approaches (Chen (2007)) that allow

me to specify the empirical portfolio rules as semiparametric, age-dependent, nonlinear

functions of the latent earnings components and of wealth. In the rest of this subsection,

I discuss the specifications I use. In what follows, let φk(·), k = 1, . . . , K denote a

dictionary of functions, with φ0 = 1.
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Portfolio rule. I first discuss the specification for the portfolio rule (5). Letting

ageit denote the age of the household head i at period t, I specify the empirical portfolio

rule as:

Λ−1(α∗
it) =

K∑
k=0

bak(τ)φk(ηit, εit, wit, ageit) + γa(τ)′Xit (13)

in which I introduce a logit transformation Λ−1(·) to constrain the risky asset shares to be

in between zero and one; this reflects the fact that in the economic problem, households

can neither borrow nor can they short sell. This does not affect the recovery of the latent

distribution of risky asset shares, as quantiles are invariant to monotonic transformations

(Koenker (2005)).15 In practice, φk(·) is a product of Hermite polynomials. The function

depends on the quantiles of the distribution of risky shares, which implies that I consider

a series quantile model.

The empirical specification is composed of two parts: a nonparametric function that

corresponds to the state variables of the economic model, and a linear function that

corresponds to variables that proxy for preference shifters/life-cycle controls. It is con-

ceptually straightforward to allow all variables to interact with each other, but this would

result to a less parsimonious specification. Moreover, as I am interested in the average

derivative effects of the state variables, I reduce the dimensions of the nonlinear function

I aim to approximate by introducing the life-cycle controls linearly, which are contained

in the vector Xit. I allow for flexibility by specifying γa(τ) as a function of τ .

Participation rule. I specify the participation rule given current earnings compo-

nents, assets, age and life-cycle controls as follows:

Pr(dit = 1|ηit, εit, wit, ageit,Zit) = Φ

(
K∑
k=0

bpkφk(ηit, εit, wit, ageit) + γpZit

)
(14)

in which Φ(·) is the Normal CDF16. As opposed to the portfolio rule, the vector of life-cycle

controls/preference shifters is in Zit = (Xit, bit)
′, in which bit is an exclusion restriction,

i.e., a variable that affects participation, but not the subsequent portfolio decision. In

the next subsection, I discuss the variable I use as an exclusion restriction.

Evolution of wealth. I specify the initial distribution of wealth wi1 conditional on

the persistent component ηi1, age at the start of the period agei1 and life-cycle controls

15Chamberlain (1994) and Buchinsky (1995) apply Box-Cox transformations in a censored quantile
model where they study female wage distributions, while Bottai et al. (2010) use the logistic transfor-
mation in the context of studying adolescent depression.

16In estimations that are not shown here, I also consider a situation wherein I use a logistic cdf. The
results are quite similar.
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during the initial period when I observe them as follows:

Qw(ηi1, agei1) =
K∑
k=0

bwk (τ)φ̃k(ηi1, agei1) + γw(τ)′Xi1 (15)

for different choices of K and φ̃k. As in the empirical specification of the portfolio rule,

I consider a series quantile model.

Meanwhile, I specify household wealth dynamics17 via the following equation:

wit = ht(ηit−1, εit−1, wit−1, αit−1,Xit, τ)

= h(ηit−1, εit−1, wit−1, αit−1,Xit, ageit, τ)

=
K∑
k=1

bmk φ̃k(ηit−1, εit−1, wit−1, αit−1, ageit) + γmXit + bm0 (τ) (16)

for someK and φ̃k. In contrast with (15), I specify equation (16) as a nonlinear regression

model. Notice as well that the model is additive in τ . In principle, it can also be specified

as a series quantile model; in light of sample size, I resort to this model specification.

Implementation. The functions bak, γa, bwk , γw and bm0 are indexed by a finite

dimensional parameter vector θ, which also contains the coefficients bpk’s, b
m
k ’s, γ

p’s, and

γm’s. I model the functions bak as piecewise-polynomial interpolating splines on a grid

[τ1, τ2], [τ2, τ3], . . ., [τL−1, τL], contained in the unit interval. I extend the specification of

the intercept coefficient ba0 on (0, τ1] and [τL, 1) with a parametric model indexed by λa.

All other bak for k ≥ 1 are constant on these two intervals. Thus, denoting bakl = bak(τl),

the functions bak depend on {ba11, . . . , baKL, λ
a}. I implement the same modelling for the

other functions.

I estimate the portfolio rule by defining a grid from τ1 = 0.20 to τL = 0.80, with a step

size equal to 0.10. The functions bak are piecewise-linear, which allows the likelihood to

be specified in closed form. In addition, bQ0 is specified as the quantile of an exponential

distribution on [0, τ1) (with parameter λa
−) and [τL, 1) (with parameter λa

+).
18

17Implicit in this model of wealth dynamics are two components of the portfolio choice model: first, the
empirical consumption rule, and second, the returns on the stock market. In the case of the consumption
function, modelling it explicitly would require me to explicitly impose the budget constraint. Meanwhile,
as I do not observe individual returns, I do not model them explicitly here, but control for them by
introducing time fixed effects. However, the average derivative effect of wealth with respect to income
can provide information on the correlation between income and the stock return.

18More specifically,

bQ0 =
1

λQ
−
log

(
τ

τ1

)
1{0 < τ < τl}+

L−1∑
l=1

(
bQkl +

bQkl+1 − bQkl
τl+1 − τl

(τ − τl)

)
1{τl ≤ τ < τl+1}

− 1

λQ
+

log

(
1− τ

1− τL

)
1{τL ≤ τ < 1}
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distribution of risky asset shares, as quantiles are invariant to monotonic transformations

(Koenker (2005)).15 In practice, φk(·) is a product of Hermite polynomials. The function

depends on the quantiles of the distribution of risky shares, which implies that I consider

a series quantile model.

The empirical specification is composed of two parts: a nonparametric function that
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corresponds to variables that proxy for preference shifters/life-cycle controls. It is con-
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result to a less parsimonious specification. Moreover, as I am interested in the average

derivative effects of the state variables, I reduce the dimensions of the nonlinear function

I aim to approximate by introducing the life-cycle controls linearly, which are contained

in the vector Xit. I allow for flexibility by specifying γa(τ) as a function of τ .
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nents, assets, age and life-cycle controls as follows:

Pr(dit = 1|ηit, εit, wit, ageit,Zit) = Φ

(
K∑
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bpkφk(ηit, εit, wit, ageit) + γpZit

)
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in which Φ(·) is the Normal CDF16. As opposed to the portfolio rule, the vector of life-cycle

controls/preference shifters is in Zit = (Xit, bit)
′, in which bit is an exclusion restriction,

i.e., a variable that affects participation, but not the subsequent portfolio decision. In

the next subsection, I discuss the variable I use as an exclusion restriction.

Evolution of wealth. I specify the initial distribution of wealth wi1 conditional on

the persistent component ηi1, age at the start of the period agei1 and life-cycle controls

15Chamberlain (1994) and Buchinsky (1995) apply Box-Cox transformations in a censored quantile
model where they study female wage distributions, while Bottai et al. (2010) use the logistic transfor-
mation in the context of studying adolescent depression.

16In estimations that are not shown here, I also consider a situation wherein I use a logistic cdf. The
results are quite similar.
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Meanwhile, I define τl = l/L and L = 10 for the functions that correspond to the

initial wealth distribution. I set the wealth accumulation functions bm0 equal to µ +

σΦ−1(τ), where (µ, σ) are parameters to be estimated. I use tensor products of Hermite

polynomials for φk and φ̃k, although in practice, other specifications could be used, such

as B-splines or wavelets. Each component of the product takes a standardized variable

as an argument.19 Lastly, the life-cycle controls in all of the empirical specifications are

cohort and geographical dummies, family size, number of children, and education. I also

control for time dummies to take into account aggregate effects.

4.3 Estimation strategy

From the point of estimation, I need to overcome two key challenges. These are: (i.)

the well-known sample selection problem and (ii.) the fact that both the persistent and

transitory components of labor income, ηit and εit, are unobserved. I discuss how I deal

with each of these problems separately. A more technical treatment of the estimation

strategy is outlined in Appendix E.

Sample selection. To deal with sample selection, I consider a quantile generalization of

the sample selection model (Arellano and Bonhomme (2017a)) and a randomly censored

quantile model (Buchinsky and Hahn (1998)) as an alternative estimation strategy. The

main idea of the quantile selection model is to suitably shift the percentile ranks from

the latent to the observed quantiles of risky asset shares. Through this, I will be able

to recover the latent distribution of risky asset shares, and consequently, the empirical

portfolio and participation rules. The quantile selection model is appealing in that it does

not require a distributional assumption on the error terms, which yields consistency with

a wide class of structural models. In order to describe the conditional distribution of the

error terms, Arellano and Bonhomme (2017a) resort to a conditional copula model.20

The estimation procedure of the quantile selection model consists of three steps. To

illustrate, I will first assume that the persistent and transitory components are observable.

The first step consists of estimating the empirical participation rule (7) via sieve maximum

19For example, the portfolio rule arguments are (ηit −mean(η))/sd(η),(εit −mean(ε))/sd(ε), (wit −
mean(w))/sd(w)and (ageit −mean(age))/sd(age).

20Formally, a copula is a joint distribution function that permits the characterization of dependence
between two or more variables. Specifically, in the bivariate case, the joint c.d.f. between two variables
x and y is: FX,Y (x, y) = C(FX(x), FY (y)).
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for someK and φ̃k. In contrast with (15), I specify equation (16) as a nonlinear regression

model. Notice as well that the model is additive in τ . In principle, it can also be specified

as a series quantile model; in light of sample size, I resort to this model specification.

Implementation. The functions bak, γa, bwk , γw and bm0 are indexed by a finite

dimensional parameter vector θ, which also contains the coefficients bpk’s, b
m
k ’s, γ

p’s, and

γm’s. I model the functions bak as piecewise-polynomial interpolating splines on a grid

[τ1, τ2], [τ2, τ3], . . ., [τL−1, τL], contained in the unit interval. I extend the specification of

the intercept coefficient ba0 on (0, τ1] and [τL, 1) with a parametric model indexed by λa.

All other bak for k ≥ 1 are constant on these two intervals. Thus, denoting bakl = bak(τl),

the functions bak depend on {ba11, . . . , baKL, λ
a}. I implement the same modelling for the

other functions.

I estimate the portfolio rule by defining a grid from τ1 = 0.20 to τL = 0.80, with a step

size equal to 0.10. The functions bak are piecewise-linear, which allows the likelihood to

be specified in closed form. In addition, bQ0 is specified as the quantile of an exponential

distribution on [0, τ1) (with parameter λa
−) and [τL, 1) (with parameter λa

+).
18

17Implicit in this model of wealth dynamics are two components of the portfolio choice model: first, the
empirical consumption rule, and second, the returns on the stock market. In the case of the consumption
function, modelling it explicitly would require me to explicitly impose the budget constraint. Meanwhile,
as I do not observe individual returns, I do not model them explicitly here, but control for them by
introducing time fixed effects. However, the average derivative effect of wealth with respect to income
can provide information on the correlation between income and the stock return.
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Meanwhile, I define τl = l/L and L = 10 for the functions that correspond to the

initial wealth distribution. I set the wealth accumulation functions bm0 equal to µ +

σΦ−1(τ), where (µ, σ) are parameters to be estimated. I use tensor products of Hermite

polynomials for φk and φ̃k, although in practice, other specifications could be used, such

as B-splines or wavelets. Each component of the product takes a standardized variable

as an argument.19 Lastly, the life-cycle controls in all of the empirical specifications are

cohort and geographical dummies, family size, number of children, and education. I also

control for time dummies to take into account aggregate effects.

4.3 Estimation strategy

From the point of estimation, I need to overcome two key challenges. These are: (i.)

the well-known sample selection problem and (ii.) the fact that both the persistent and

transitory components of labor income, ηit and εit, are unobserved. I discuss how I deal

with each of these problems separately. A more technical treatment of the estimation

strategy is outlined in Appendix E.

Sample selection. To deal with sample selection, I consider a quantile generalization of

the sample selection model (Arellano and Bonhomme (2017a)) and a randomly censored

quantile model (Buchinsky and Hahn (1998)) as an alternative estimation strategy. The

main idea of the quantile selection model is to suitably shift the percentile ranks from

the latent to the observed quantiles of risky asset shares. Through this, I will be able

to recover the latent distribution of risky asset shares, and consequently, the empirical

portfolio and participation rules. The quantile selection model is appealing in that it does

not require a distributional assumption on the error terms, which yields consistency with

a wide class of structural models. In order to describe the conditional distribution of the

error terms, Arellano and Bonhomme (2017a) resort to a conditional copula model.20

The estimation procedure of the quantile selection model consists of three steps. To

illustrate, I will first assume that the persistent and transitory components are observable.

The first step consists of estimating the empirical participation rule (7) via sieve maximum

19For example, the portfolio rule arguments are (ηit −mean(η))/sd(η),(εit −mean(ε))/sd(ε), (wit −
mean(w))/sd(w)and (ageit −mean(age))/sd(age).

20Formally, a copula is a joint distribution function that permits the characterization of dependence
between two or more variables. Specifically, in the bivariate case, the joint c.d.f. between two variables
x and y is: FX,Y (x, y) = C(FX(x), FY (y)).
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Meanwhile, I define τl = l/L and L = 10 for the functions that correspond to the

initial wealth distribution. I set the wealth accumulation functions bm0 equal to µ +

σΦ−1(τ), where (µ, σ) are parameters to be estimated. I use tensor products of Hermite

polynomials for φk and φ̃k, although in practice, other specifications could be used, such

as B-splines or wavelets. Each component of the product takes a standardized variable

as an argument.19 Lastly, the life-cycle controls in all of the empirical specifications are

cohort and geographical dummies, family size, number of children, and education. I also

control for time dummies to take into account aggregate effects.

4.3 Estimation strategy

From the point of estimation, I need to overcome two key challenges. These are: (i.)

the well-known sample selection problem and (ii.) the fact that both the persistent and

transitory components of labor income, ηit and εit, are unobserved. I discuss how I deal

with each of these problems separately. A more technical treatment of the estimation

strategy is outlined in Appendix E.

Sample selection. To deal with sample selection, I consider a quantile generalization of

the sample selection model (Arellano and Bonhomme (2017a)) and a randomly censored

quantile model (Buchinsky and Hahn (1998)) as an alternative estimation strategy. The

main idea of the quantile selection model is to suitably shift the percentile ranks from

the latent to the observed quantiles of risky asset shares. Through this, I will be able

to recover the latent distribution of risky asset shares, and consequently, the empirical

portfolio and participation rules. The quantile selection model is appealing in that it does

not require a distributional assumption on the error terms, which yields consistency with

a wide class of structural models. In order to describe the conditional distribution of the

error terms, Arellano and Bonhomme (2017a) resort to a conditional copula model.20

The estimation procedure of the quantile selection model consists of three steps. To

illustrate, I will first assume that the persistent and transitory components are observable.

The first step consists of estimating the empirical participation rule (7) via sieve maximum

19For example, the portfolio rule arguments are (ηit −mean(η))/sd(η),(εit −mean(ε))/sd(ε), (wit −
mean(w))/sd(w)and (ageit −mean(age))/sd(age).
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This allows me to recover the conditional choice probabilities p(Zit) that will be used to

shift the percentile ranks.

In the second step, I estimate the correlation parameter of the conditional copula that

describes the joint distribution of the unobserved arguments of the empirical participation

and portfolio rules, ρc, by considering the following objective function:

ρc = argmin
c∈C


N
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(18)

where τ1, . . . , τL is a finite grid on (0,1), ∥ · ∥ is the Euclidean norm,

G(τl, p(zit); c) =
C(τl, p(zit); ρc)

p(zit)

is the conditional copula of the error terms of the portfolio and participation rules, Υ(·)
are instrument functions, and

bakl(c) = argmin
b∈B
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The objective function (18) is the result of the conditional moment restrictions that

permit the mapping of the distribution of latent outcomes to the distribution of observed

outcomes conditional on participation. In the context of the economic model, the la-

tent outcomes are the portfolio shares of the participation subproblem; meanwhile, the

observed outcomes are the observed portfolio shares, the solution of the entire problem.

More formally, the mapping is:

Pr(α∗
it ≤ gt(ηit, εit, wit, ageit)) = G(τl, p(zit); ρc). (20)

As can be observed from (20), G(τl, p(zit); ρc) is the function that maps the two distri-

butions.

Third, given the estimates of the conditional choice probabilities and the estimates of

the correlation parameter, I can then rotate the “check” (or asymmetric absolute loss)
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The objective function (18) is the result of the conditional moment restrictions that

permit the mapping of the distribution of latent outcomes to the distribution of observed

outcomes conditional on participation. In the context of the economic model, the la-

tent outcomes are the portfolio shares of the participation subproblem; meanwhile, the

observed outcomes are the observed portfolio shares, the solution of the entire problem.

More formally, the mapping is:

Pr(α∗
it ≤ gt(ηit, εit, wit, ageit)) = G(τl, p(zit); ρc). (20)

As can be observed from (20), G(τl, p(zit); ρc) is the function that maps the two distri-

butions.

Third, given the estimates of the conditional choice probabilities and the estimates of

the correlation parameter, I can then rotate the “check” (or asymmetric absolute loss)
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This allows me to recover the conditional choice probabilities p(Zit) that will be used to
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Meanwhile, I define τl = l/L and L = 10 for the functions that correspond to the

initial wealth distribution. I set the wealth accumulation functions bm0 equal to µ +

σΦ−1(τ), where (µ, σ) are parameters to be estimated. I use tensor products of Hermite

polynomials for φk and φ̃k, although in practice, other specifications could be used, such

as B-splines or wavelets. Each component of the product takes a standardized variable

as an argument.19 Lastly, the life-cycle controls in all of the empirical specifications are

cohort and geographical dummies, family size, number of children, and education. I also

control for time dummies to take into account aggregate effects.

4.3 Estimation strategy

From the point of estimation, I need to overcome two key challenges. These are: (i.)

the well-known sample selection problem and (ii.) the fact that both the persistent and

transitory components of labor income, ηit and εit, are unobserved. I discuss how I deal

with each of these problems separately. A more technical treatment of the estimation

strategy is outlined in Appendix E.

Sample selection. To deal with sample selection, I consider a quantile generalization of

the sample selection model (Arellano and Bonhomme (2017a)) and a randomly censored

quantile model (Buchinsky and Hahn (1998)) as an alternative estimation strategy. The

main idea of the quantile selection model is to suitably shift the percentile ranks from

the latent to the observed quantiles of risky asset shares. Through this, I will be able

to recover the latent distribution of risky asset shares, and consequently, the empirical

portfolio and participation rules. The quantile selection model is appealing in that it does

not require a distributional assumption on the error terms, which yields consistency with

a wide class of structural models. In order to describe the conditional distribution of the

error terms, Arellano and Bonhomme (2017a) resort to a conditional copula model.20

The estimation procedure of the quantile selection model consists of three steps. To

illustrate, I will first assume that the persistent and transitory components are observable.

The first step consists of estimating the empirical participation rule (7) via sieve maximum

19For example, the portfolio rule arguments are (ηit −mean(η))/sd(η),(εit −mean(ε))/sd(ε), (wit −
mean(w))/sd(w)and (ageit −mean(age))/sd(age).

20Formally, a copula is a joint distribution function that permits the characterization of dependence
between two or more variables. Specifically, in the bivariate case, the joint c.d.f. between two variables
x and y is: FX,Y (x, y) = C(FX(x), FY (y)).
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function, and estimate the parameters of the empirical portfolio rule (5) via nonpara-

metric quantile regression. More formally, for a given quantile τl, I solve the following

optimization problem:

min
(ba0 ,...,b

a
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′Xit

−

 (21)

The optimization problem (21) is equivalent to minimizing a rotated check function,

with an individual-specific perturbed τ (Arellano and Bonhomme (2017a)). The rotation

preserves the linear programming formulation, and thus, the computational simplicity,

of quantile regression. To correct for selection, I replace τ with the individual specific-

perturbed τ , G(τl, p(zit); ρc).
Notice that the model relies on an exclusion restriction to achieve identification of the

empirical participation and portfolio rules. In this regard, I consider the lagged value of

lifetime wealth, following Vissing-Jørgensen (2002), Bonaparte et al. (2014), and Fagereng

et al. (2017a). The motivation behind this can be easily seen in the portfolio rule of the

two-period model with CRRA risk preferences (Campbell and Viceira (2002)), which can

be written as:

αt =


1 +

H
Wt


Et(rt+1 − rf ) +

1
2
σ2
r

γσ2
r


,

in which H̃ is human wealth, or the discounted present value of future labor income, γ

is the risk aversion parameter, and σ2
r is the variance of the portfolio return. As can be

observed, the optimal portfolio rule is a function of the ratio between human and total

household wealth, and not on the level of lifetime wealth. I explain how to calculate this

variable in Appendix C. 21

Alternative identification scheme. A potential concern is the validity of the

exclusion restriction. In other words, it could be the case that the variables that determine

participation are the same ones that determine the portfolio rule. To address this issue,

I consider the censored quantile regression estimator of Buchinsky and Hahn (1998).

The choice of this estimator over similar estimation methods (e.g., Powell (1986),

Chernozhukov and Hong (2002), Honore et al. (2002), Khan and Tamer (2009)) is pri-

21In results that I do not present here, I examine the validity of the restriction by running Heckman
(1979)-type regressions on simulated data from the structural model in Galvez and Paz-Pardo (2021).
The results suggest that the exclusion restriction is valid, as the coefficient of the lagged value of lifetime
wealth is significant in the participation regression at a level of 8 percent, while insignificant in the asset
allocation regression.
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This allows me to recover the conditional choice probabilities p(Zit) that will be used to

shift the percentile ranks.

In the second step, I estimate the correlation parameter of the conditional copula that

describes the joint distribution of the unobserved arguments of the empirical participation

and portfolio rules, ρc, by considering the following objective function:
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where τ1, . . . , τL is a finite grid on (0,1), ∥ · ∥ is the Euclidean norm,
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The objective function (18) is the result of the conditional moment restrictions that

permit the mapping of the distribution of latent outcomes to the distribution of observed

outcomes conditional on participation. In the context of the economic model, the la-

tent outcomes are the portfolio shares of the participation subproblem; meanwhile, the

observed outcomes are the observed portfolio shares, the solution of the entire problem.

More formally, the mapping is:

Pr(α∗
it ≤ gt(ηit, εit, wit, ageit)) = G(τl, p(zit); ρc). (20)

As can be observed from (20), G(τl, p(zit); ρc) is the function that maps the two distri-

butions.

Third, given the estimates of the conditional choice probabilities and the estimates of

the correlation parameter, I can then rotate the “check” (or asymmetric absolute loss)
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lifetime wealth, following Vissing-Jørgensen (2002), Bonaparte et al. (2014), and Fagereng
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in which H̃ is human wealth, or the discounted present value of future labor income, γ

is the risk aversion parameter, and σ2
r is the variance of the portfolio return. As can be

observed, the optimal portfolio rule is a function of the ratio between human and total

household wealth, and not on the level of lifetime wealth. I explain how to calculate this

variable in Appendix C. 21

Alternative identification scheme. A potential concern is the validity of the

exclusion restriction. In other words, it could be the case that the variables that determine

participation are the same ones that determine the portfolio rule. To address this issue,

I consider the censored quantile regression estimator of Buchinsky and Hahn (1998).

The choice of this estimator over similar estimation methods (e.g., Powell (1986),

Chernozhukov and Hong (2002), Honore et al. (2002), Khan and Tamer (2009)) is pri-

21In results that I do not present here, I examine the validity of the restriction by running Heckman
(1979)-type regressions on simulated data from the structural model in Galvez and Paz-Pardo (2021).
The results suggest that the exclusion restriction is valid, as the coefficient of the lagged value of lifetime
wealth is significant in the participation regression at a level of 8 percent, while insignificant in the asset
allocation regression.
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variable in Appendix C. 21

Alternative identification scheme. A potential concern is the validity of the

exclusion restriction. In other words, it could be the case that the variables that determine

participation are the same ones that determine the portfolio rule. To address this issue,

I consider the censored quantile regression estimator of Buchinsky and Hahn (1998).

The choice of this estimator over similar estimation methods (e.g., Powell (1986),

Chernozhukov and Hong (2002), Honore et al. (2002), Khan and Tamer (2009)) is pri-

21In results that I do not present here, I examine the validity of the restriction by running Heckman
(1979)-type regressions on simulated data from the structural model in Galvez and Paz-Pardo (2021).
The results suggest that the exclusion restriction is valid, as the coefficient of the lagged value of lifetime
wealth is significant in the participation regression at a level of 8 percent, while insignificant in the asset
allocation regression.
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marily motivated by three reasons. First, the nonlinear semi-reduced form described by

equations (5)–(9) when Xit = Zit whittles down to a model with a random censoring

point, which can be considered as the household’s wealth threshold. This rules out Pow-

ell (1986) and Chernozhukov and Hong (2002), who both consider models with a fixed

censoring point. Second, Buchinsky and Hahn (1998) propose an estimation method

that is computationally tractable, as it also results in a convex optimization problem.

Though both Honore et al. (2002) and Khan and Tamer (2009) consider more general

models with random censoring, their proposed estimation methods are computationally

more demanding.22 Third, and most importantly, the estimator can be interpreted as the

limiting case of the more general quantile selection model of Arellano and Bonhomme

(2017a). A distinction between the two estimators is that the quantile selection model

allows the recovery of the latent distribution of risky shares, while the censored regression

model allows the recovery of the observed distribution. I outline the model specification

and the estimation algorithm in Appendix E.2.

Simulation-based algorithm. If the persistent and transitory components were

observable, I can recover the empirical participation and portfolio rules from the quantile

selection model I described earlier. Given that this is not the case, I rely on simulation-

based approaches to obtain consistent parameters of the empirical participation and port-

folio rules, plus the parameters of the wealth dynamics equations. In particular, I utilize

a stochastic-EM like algorithm for time-varying latent variables, which is a simulated

version of the classical EM algorithm (Dempster et al. (1977)).

Starting from an initial guess θ̂, the algorithm iterates on the following two steps until

convergence of the sequence of parameter estimates:

1. Stochastic E-step: Draw pseudo-data of the persistent component η
(m)
i , for m =

1, . . . ,M , from the posterior distribution of the latent persistent component of

earnings given the observed data, fi(·; θ̂(s)).

2. M-step: Estimate the parameters θ̂(s+1) of the empirical portfolio and participation

rules via the quantile selection model with moment conditions (17)–(21), and the

parameters of the wealth dynamics equations via nonlinear least squares. To see

how this is operationalized, the corresponding estimation for the conditional choice

22Honore et al. (2002) propose a procedure that does not yield a convex optimization problem, while
Khan and Tamer (2009) propose a moment inequality-based approach.
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probability (17) is:

max
(bP0 ,...,bPK ,γP )

N∑
i=1

T∑
t=1

M∑
m=1

dit log

[
Φ

(
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k=0

bpkφk(η
(m)
it , εit, wit, ageit) + γpZit

)]

+ (1− dit) log

[
1− Φ

(
K∑
k=0

bpkφk(η
(m)
it , εit, wit, ageit) + γpZit

)]
.

Notice that in this step, I use the pseudo-data previously generated as if they were

true observations of persistent income.

Because the likelihood function has a closed form, the stochastic E-step is straight-

forward to implement. In practice, I take M = 1, stop the chain after a large number

of iterations, and report an average across the last S̄ values θ̂ = 1
S̄

∑S
s=S−S̄+1 θ̂

(s), where

I take S̄ = S/2. Each estimation is based on S = 200 iterations, with 200 random walk

Metropolis-Hastings draws per iteration. I target the variance of the proposal distribu-

tions to obtain an acceptance rate of approximately 30 percent. Inference is based on

parametric and nonparametric bootstrap.

5 Results

In this section, I present empirical results. I first begin by showing average derivative

effects of the empirical participation and portfolio rules.23 I then report simulation exer-

cises based on the estimated model. Finally, I compute implied stock market participation

costs based on a framework by Vissing-Jørgensen (2002).

5.1 Average derivative effects

Figure 3 shows the average derivative effect, with respect to ηit, of the propensity score

p(zit) and the conditional mean of the latent risky asset share αit, respectively, evaluated

at different percentiles of wealth τwealth and age τage, and averaged over ηit, based on

the estimated nonlinear model. In general, with the exception of young households with

little wealth, the average derivative effect of an increase in persistent income is positive,

and ranges from 0.97 to 5 percent. Meanwhile, with respect to the risky asset share, the

average derivative effect is positive for young households (regardless of wealth levels), and

negative for older households. This result suggests that even if there are increases in in-

come, older households might prefer to rebalance their portfolios, as they are approaching

23In the estimation of the participation and portfolio rules, I use tensor products of Hermite polyno-
mials with degrees (2,1,1,1). The choice of the following specification is motivated by previous literature
(e.g., Guiso et al. (1996) and Vissing-Jørgensen (2002)), among others, who model income with quadratic
terms.
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retirement. However, this interpretation would not be exact without specific assumptions

on preferences. Figure F1 in Appendix F shows the results with the censored quantile

regression estimator of Buchinsky and Hahn (1998). As the graphs indicate, the results

are quite similar. Meanwhile, Figure F11 in Appendix F presents the 95% confidence

bands calculated via parametric bootstrap. As the results indicate, however, the effects

do not seem to be precisely estimated.

Figure 3: Average derivative effect of the persistent component of income ηit
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Note: The graphs show average derivatives of the propensity score and the risky asset share, respectively,

with respect to the persistent income ηit, given wit, persistent component ηit, income yit, and age ageit,

and evaluated at different values of wit and ageit that correspond to their τwealth and τage percentiles.

All results are based on estimates from the semi-structural model with the Arellano and Bonhomme

(2017a) quantile selection model estimator.

Figure 4 shows the average derivative effect, with respect to wealth wit, of the propen-

sity score p(zit) and the conditional mean of the latent risky asset share αit, respectively,

evaluated at percentiles of wealth τwealth and age τage, and averaged over ηit, based on

the estimated nonlinear model. The average derivative effect of wealth on the extensive

margin is positive and nonlinear across the wealth and age dimensions. In particular, the

effect is positive and concave along the wealth distribution, while it is positive and mostly

increasing along the age distribution. One can rationalize this result as being consistent

with the idea of heterogeneous participation costs, an object I will recover in section 5.3.

This result also reinforces the idea that households have different wealth thresholds when

they decide on their portfolio allocations. Meanwhile, the average derivative effect of

wealth along the intensive margin are positive, and increasing across different quantiles

of wealth and age. While these results might suggest that households exhibit DRRA

preferences, which is consistent with the findings of Calvet and Sodini (2014), note that

these average derivative effects might be a mixture of unobserved preferences and risk.
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evaluated at percentiles of wealth τwealth and age τage, and averaged over ηit, based on

the estimated nonlinear model. The average derivative effect of wealth on the extensive

margin is positive and nonlinear across the wealth and age dimensions. In particular, the

effect is positive and concave along the wealth distribution, while it is positive and mostly

increasing along the age distribution. One can rationalize this result as being consistent

with the idea of heterogeneous participation costs, an object I will recover in section 5.3.

This result also reinforces the idea that households have different wealth thresholds when

they decide on their portfolio allocations. Meanwhile, the average derivative effect of

wealth along the intensive margin are positive, and increasing across different quantiles

of wealth and age. While these results might suggest that households exhibit DRRA

preferences, which is consistent with the findings of Calvet and Sodini (2014), note that

these average derivative effects might be a mixture of unobserved preferences and risk.
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retirement. However, this interpretation would not be exact without specific assumptions

on preferences. Figure F1 in Appendix F shows the results with the censored quantile

regression estimator of Buchinsky and Hahn (1998). As the graphs indicate, the results

are quite similar. Meanwhile, Figure F11 in Appendix F presents the 95% confidence

bands calculated via parametric bootstrap. As the results indicate, however, the effects

do not seem to be precisely estimated.

Figure 3: Average derivative effect of the persistent component of income ηit

(a) Propensity score

-0.01
1

0.01

0.03

0.8 1

0.05

Pa
rti

ci
pa

tio
n 

re
sp

on
se

0.6 0.8

0.07

percentile wealth

0.6

0.09

percentile age

0.4
0.40.2 0.2

0 0

(b) Risky asset share

-0.05
1

0

0.05

0.8 1

Po
rtf

ol
io

 re
sp

on
se

0.1

0.6 0.8

percentile wealth

0.15

0.6

percentile age

0.4

0.2

0.40.2 0.2
0 0

Note: The graphs show average derivatives of the propensity score and the risky asset share, respectively,

with respect to the persistent income ηit, given wit, persistent component ηit, income yit, and age ageit,

and evaluated at different values of wit and ageit that correspond to their τwealth and τage percentiles.

All results are based on estimates from the semi-structural model with the Arellano and Bonhomme

(2017a) quantile selection model estimator.

Figure 4 shows the average derivative effect, with respect to wealth wit, of the propen-

sity score p(zit) and the conditional mean of the latent risky asset share αit, respectively,

evaluated at percentiles of wealth τwealth and age τage, and averaged over ηit, based on

the estimated nonlinear model. The average derivative effect of wealth on the extensive

margin is positive and nonlinear across the wealth and age dimensions. In particular, the

effect is positive and concave along the wealth distribution, while it is positive and mostly

increasing along the age distribution. One can rationalize this result as being consistent

with the idea of heterogeneous participation costs, an object I will recover in section 5.3.

This result also reinforces the idea that households have different wealth thresholds when

they decide on their portfolio allocations. Meanwhile, the average derivative effect of

wealth along the intensive margin are positive, and increasing across different quantiles

of wealth and age. While these results might suggest that households exhibit DRRA

preferences, which is consistent with the findings of Calvet and Sodini (2014), note that

these average derivative effects might be a mixture of unobserved preferences and risk.

28

retirement. However, this interpretation would not be exact without specific assumptions

on preferences. Figure F1 in Appendix F shows the results with the censored quantile

regression estimator of Buchinsky and Hahn (1998). As the graphs indicate, the results

are quite similar. Meanwhile, Figure F11 in Appendix F presents the 95% confidence

bands calculated via parametric bootstrap. As the results indicate, however, the effects

do not seem to be precisely estimated.

Figure 3: Average derivative effect of the persistent component of income ηit

(a) Propensity score

-0.01
1

0.01

0.03

0.8 1

0.05

Pa
rti

ci
pa

tio
n 

re
sp

on
se

0.6 0.8

0.07

percentile wealth

0.6

0.09

percentile age

0.4
0.40.2 0.2

0 0

(b) Risky asset share

-0.05
1

0

0.05

0.8 1

Po
rtf

ol
io

 re
sp

on
se

0.1

0.6 0.8

percentile wealth

0.15

0.6

percentile age

0.4

0.2

0.40.2 0.2
0 0

Note: The graphs show average derivatives of the propensity score and the risky asset share, respectively,

with respect to the persistent income ηit, given wit, persistent component ηit, income yit, and age ageit,

and evaluated at different values of wit and ageit that correspond to their τwealth and τage percentiles.

All results are based on estimates from the semi-structural model with the Arellano and Bonhomme

(2017a) quantile selection model estimator.

Figure 4 shows the average derivative effect, with respect to wealth wit, of the propen-

sity score p(zit) and the conditional mean of the latent risky asset share αit, respectively,

evaluated at percentiles of wealth τwealth and age τage, and averaged over ηit, based on

the estimated nonlinear model. The average derivative effect of wealth on the extensive

margin is positive and nonlinear across the wealth and age dimensions. In particular, the

effect is positive and concave along the wealth distribution, while it is positive and mostly

increasing along the age distribution. One can rationalize this result as being consistent

with the idea of heterogeneous participation costs, an object I will recover in section 5.3.

This result also reinforces the idea that households have different wealth thresholds when

they decide on their portfolio allocations. Meanwhile, the average derivative effect of

wealth along the intensive margin are positive, and increasing across different quantiles

of wealth and age. While these results might suggest that households exhibit DRRA

preferences, which is consistent with the findings of Calvet and Sodini (2014), note that

these average derivative effects might be a mixture of unobserved preferences and risk.

28

retirement. However, this interpretation would not be exact without specific assumptions

on preferences. Figure F1 in Appendix F shows the results with the censored quantile

regression estimator of Buchinsky and Hahn (1998). As the graphs indicate, the results

are quite similar. Meanwhile, Figure F11 in Appendix F presents the 95% confidence

bands calculated via parametric bootstrap. As the results indicate, however, the effects

do not seem to be precisely estimated.

Figure 3: Average derivative effect of the persistent component of income ηit

(a) Propensity score

-0.01
1

0.01

0.03

0.8 1

0.05

Pa
rti

ci
pa

tio
n 

re
sp

on
se

0.6 0.8

0.07

percentile wealth

0.6

0.09

percentile age

0.4
0.40.2 0.2

0 0

(b) Risky asset share

-0.05
1

0

0.05

0.8 1

Po
rtf

ol
io

 re
sp

on
se

0.1

0.6 0.8

percentile wealth

0.15

0.6

percentile age

0.4

0.2

0.40.2 0.2
0 0

Note: The graphs show average derivatives of the propensity score and the risky asset share, respectively,

with respect to the persistent income ηit, given wit, persistent component ηit, income yit, and age ageit,

and evaluated at different values of wit and ageit that correspond to their τwealth and τage percentiles.

All results are based on estimates from the semi-structural model with the Arellano and Bonhomme

(2017a) quantile selection model estimator.

Figure 4 shows the average derivative effect, with respect to wealth wit, of the propen-

sity score p(zit) and the conditional mean of the latent risky asset share αit, respectively,

evaluated at percentiles of wealth τwealth and age τage, and averaged over ηit, based on

the estimated nonlinear model. The average derivative effect of wealth on the extensive

margin is positive and nonlinear across the wealth and age dimensions. In particular, the

effect is positive and concave along the wealth distribution, while it is positive and mostly

increasing along the age distribution. One can rationalize this result as being consistent

with the idea of heterogeneous participation costs, an object I will recover in section 5.3.

This result also reinforces the idea that households have different wealth thresholds when

they decide on their portfolio allocations. Meanwhile, the average derivative effect of

wealth along the intensive margin are positive, and increasing across different quantiles

of wealth and age. While these results might suggest that households exhibit DRRA

preferences, which is consistent with the findings of Calvet and Sodini (2014), note that

these average derivative effects might be a mixture of unobserved preferences and risk.

28



BANCO DE ESPAÑA 35 DOCUMENTO DE TRABAJO N.º 2327

The increasing result, meanwhile, suggests that perhaps, the DRRA preferences are het-

erogeneous over the age and wealth distributions. Figure F2 in Appendix F shows the

results with the censored quantile regression estimator of Buchinsky and Hahn (1998).

The results are quite similar. Figure F12 in Appendix F shows the confidence bands

calculated using parametric bootstrap. Again, as in the results with respect to persistent

income, the estimates seem to be precisely estimated.

Figure 4: Average derivative effect of wealth

(a) Propensity score

0
1

0.1

0.8 1

0.2

Pa
rti

ci
pa

tio
n 

re
sp

on
se

0.6 0.8

0.3

percentile wealth

0.6

percentile age

0.4

0.4

0.40.2 0.2
0 0

(b) Risky asset share

0
1

0.8 1

0.05

Po
rtf

ol
io

 re
sp

on
se

0.6 0.8

percentile wealth

0.6

percentile age

0.4

0.1

0.40.2 0.2
0 0

Note: The graphs show average derivatives of the propensity score and the risky asset share, respectively,

with respect to wealth wit given wit, persistent component ηit, income yit, and age ageit, evaluated at

different values of wit and ageit that correspond to their τwealth and τage percentiles. All results are

based on estimates from the semi-structural model with the Arellano and Bonhomme (2017a) quantile

selection model estimator.

Finally, I evaluate the fit implied by the nonlinear model with that of the data. As the

results indicate, 57.28 percent of households participate according to the nonlinear model,

which is close to the observed 57.03 percent in the sample that I use for estimation.24

Moreover, as the graph of the density of risky asset shares indicates, the nonlinear model

provides a close fit with the data. Looking at the figure implied by the estimation with

the Buchinsky and Hahn (1998) estimator (Figure F3), I find that the fit is quite similar.

5.2 The impact of persistent earnings shocks

In this subsection, I simulate the life-cycle portfolio choice model with participation ac-

cording to the nonlinear model, and show the extensive and intensive margin response

with respect to a persistent income shock. In the simulation exercise, I report the dif-

ference between two types of households: households who are hit at age 37 by a large

24The average participation rate in the sample I use for estimation is different from that in Section 3,
as my exclusion restriction is a lagged variable.
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regression estimator of Buchinsky and Hahn (1998). As the graphs indicate, the results

are quite similar. Meanwhile, Figure F11 in Appendix F presents the 95% confidence

bands calculated via parametric bootstrap. As the results indicate, however, the effects

do not seem to be precisely estimated.
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Figure 5: Observed and implied densities of the risky asset share
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Note: The graph shows the observed and predicted unconditional densities of the share of household

wealth in risky asset share based on the nonlinear model. The blue line corresponds to the density

implied by the nonlinear model, while the red line corresponds to the density implied by the data. All

results are based on estimates from the semi-structural model with the Arellano and Bonhomme (2017a)

quantile selection model estimator.

negative shock to the persistent component (τshock = 0.1), or by a large positive shock

(τshock = 0.9), and households who are hit by a median shock (τshock = 0.5) to the per-

sistent component.25 I report age-specific means across 250,000 simulations. I compare

three different kinds of households: those who have low income (τinit = 0.1), middle

income (τinit = 0.5), or high income (τinit = 0.9).

Extensive margin responses. In Figure 6, I report the results with respect to the

conditional probability of participation, i.e., the extensive margin. The results show

asymmetric extensive margin responses to large income shocks. The results also highlight

the interaction between the rank of the household in the distribution of the initial earnings

(τinit) and the size of the shock received (τshock). In particular, a large negative shock

results in a decrease in participation of as much as 6 percentage points for high income

households, and a 2.9 percentage point decrease for low income households. Meanwhile, a

large positive shock yields an increase in participation of as much as 12 percentage points

for low-income households, compared to 2.2 percentage points for low-income households.

I observe similar patterns for the Buchinsky and Hahn (1998) censored quantile regression

estimator, as can be observed in Figure F4 of Appendix F. In addition, I report results

from estimating a linear portfolio choice rule with the standard linear earnings process.

25Note that the notion of shocks here are taken with respect to the rank of the household in the income
distribution.
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Note: The graphs show average derivatives of the propensity score and the risky asset share, respectively,

with respect to wealth wit given wit, persistent component ηit, income yit, and age ageit, evaluated at

different values of wit and ageit that correspond to their τwealth and τage percentiles. All results are

based on estimates from the semi-structural model with the Arellano and Bonhomme (2017a) quantile

selection model estimator.

Finally, I evaluate the fit implied by the nonlinear model with that of the data. As the

results indicate, 57.28 percent of households participate according to the nonlinear model,

which is close to the observed 57.03 percent in the sample that I use for estimation.24

Moreover, as the graph of the density of risky asset shares indicates, the nonlinear model

provides a close fit with the data. Looking at the figure implied by the estimation with

the Buchinsky and Hahn (1998) estimator (Figure F3), I find that the fit is quite similar.

5.2 The impact of persistent earnings shocks

In this subsection, I simulate the life-cycle portfolio choice model with participation ac-

cording to the nonlinear model, and show the extensive and intensive margin response

with respect to a persistent income shock. In the simulation exercise, I report the dif-

ference between two types of households: households who are hit at age 37 by a large

24The average participation rate in the sample I use for estimation is different from that in Section 3,
as my exclusion restriction is a lagged variable.
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Note: The graph shows the observed and predicted unconditional densities of the share of household

wealth in risky asset share based on the nonlinear model. The blue line corresponds to the density

implied by the nonlinear model, while the red line corresponds to the density implied by the data. All

results are based on estimates from the semi-structural model with the Arellano and Bonhomme (2017a)

quantile selection model estimator.

negative shock to the persistent component (τshock = 0.1), or by a large positive shock

(τshock = 0.9), and households who are hit by a median shock (τshock = 0.5) to the per-

sistent component.25 I report age-specific means across 250,000 simulations. I compare

three different kinds of households: those who have low income (τinit = 0.1), middle

income (τinit = 0.5), or high income (τinit = 0.9).

Extensive margin responses. In Figure 6, I report the results with respect to the

conditional probability of participation, i.e., the extensive margin. The results show

asymmetric extensive margin responses to large income shocks. The results also highlight

the interaction between the rank of the household in the distribution of the initial earnings

(τinit) and the size of the shock received (τshock). In particular, a large negative shock

results in a decrease in participation of as much as 6 percentage points for high income

households, and a 2.9 percentage point decrease for low income households. Meanwhile, a

large positive shock yields an increase in participation of as much as 12 percentage points

for low-income households, compared to 2.2 percentage points for low-income households.

I observe similar patterns for the Buchinsky and Hahn (1998) censored quantile regression

estimator, as can be observed in Figure F4 of Appendix F. In addition, I report results

from estimating a linear portfolio choice rule with the standard linear earnings process.

25Note that the notion of shocks here are taken with respect to the rank of the household in the income
distribution.
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negative shock to the persistent component (τshock = 0.1), or by a large positive shock

(τshock = 0.9), and households who are hit by a median shock (τshock = 0.5) to the per-

sistent component.25 I report age-specific means across 250,000 simulations. I compare

three different kinds of households: those who have low income (τinit = 0.1), middle

income (τinit = 0.5), or high income (τinit = 0.9).

Extensive margin responses. In Figure 6, I report the results with respect to the

conditional probability of participation, i.e., the extensive margin. The results show

asymmetric extensive margin responses to large income shocks. The results also highlight

the interaction between the rank of the household in the distribution of the initial earnings

(τinit) and the size of the shock received (τshock). In particular, a large negative shock

results in a decrease in participation of as much as 6 percentage points for high income

households, and a 2.9 percentage point decrease for low income households. Meanwhile, a

large positive shock yields an increase in participation of as much as 12 percentage points

for low-income households, compared to 2.2 percentage points for low-income households.

I observe similar patterns for the Buchinsky and Hahn (1998) censored quantile regression

estimator, as can be observed in Figure F4 of Appendix F. In addition, I report results

from estimating a linear portfolio choice rule with the standard linear earnings process.

25Note that the notion of shocks here are taken with respect to the rank of the household in the income
distribution.
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Figure 6: Impulse response, participation rule
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Note: The graphs show the difference in average participation rates between a household hit by a shock

τshock at age 37, and a household hit by 0.5 shock at the same age. The blue line corresponds to

low-income households (i.e., rank of τinit = 0.1 in the income distribution). The red line corresponds to

middle-income households (i.e., rank of τinit = 0.5 in the income distribution). The green line corresponds

to high-income households (i.e., rank of τinit = 0.9 in the income distribution). All results are based on

estimates from the semi-structural model with the Arellano et al. (2017) quantile selection estimator.

As Figure F9 indicates, the fact that the standard model does not allow for interactions

between the household’s rank in the income distribution and the type of shock received

appears to be at odds with the data.26

Intensive margin responses. In Figure 7, I look at the differences with respect to

the average risky asset share for stock market participants at age 35. As the results

indicate, a large negative income shock yields a 2.1 percentage point decrease in average

risky asset shares for high income households. In comparison, the same shock yields

a 0.45 percentage point decrease for low income households. A large positive income

shock, meanwhile, results in a 3 percentage point increase in the share of wealth invested

in risky assets for low income households. In comparison, the same shock results in a

1 percentage point increase for high income households. Looking at the corresponding

figure in the appendix (Figure F6) for the censored quantile regression estimator, I observe

similar results. These results suggest that the persistence of earnings histories is crucial

in understanding changes in risky asset shares with respect to asymmetries in income

risk. Figure F10 presents results from estimating a linear portfolio choice rule with

the standard linear earnings process. Again, the results assume away the presence of

26The estimated model is a Tobit regression where αit is modeled as a linear function of ηit, εit, wit,
and age, and was estimated via maximum likelihood methods with the stochastic EM algorithm.
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Note: The graph shows the observed and predicted unconditional densities of the share of household

wealth in risky asset share based on the nonlinear model. The blue line corresponds to the density

implied by the nonlinear model, while the red line corresponds to the density implied by the data. All

results are based on estimates from the semi-structural model with the Arellano and Bonhomme (2017a)

quantile selection model estimator.

negative shock to the persistent component (τshock = 0.1), or by a large positive shock

(τshock = 0.9), and households who are hit by a median shock (τshock = 0.5) to the per-

sistent component.25 I report age-specific means across 250,000 simulations. I compare

three different kinds of households: those who have low income (τinit = 0.1), middle

income (τinit = 0.5), or high income (τinit = 0.9).

Extensive margin responses. In Figure 6, I report the results with respect to the

conditional probability of participation, i.e., the extensive margin. The results show

asymmetric extensive margin responses to large income shocks. The results also highlight

the interaction between the rank of the household in the distribution of the initial earnings

(τinit) and the size of the shock received (τshock). In particular, a large negative shock

results in a decrease in participation of as much as 6 percentage points for high income

households, and a 2.9 percentage point decrease for low income households. Meanwhile, a

large positive shock yields an increase in participation of as much as 12 percentage points

for low-income households, compared to 2.2 percentage points for low-income households.

I observe similar patterns for the Buchinsky and Hahn (1998) censored quantile regression

estimator, as can be observed in Figure F4 of Appendix F. In addition, I report results

from estimating a linear portfolio choice rule with the standard linear earnings process.

25Note that the notion of shocks here are taken with respect to the rank of the household in the income
distribution.
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Note: The graphs show the difference in average participation rates between a household hit by a shock

τshock at age 37, and a household hit by 0.5 shock at the same age. The blue line corresponds to

low-income households (i.e., rank of τinit = 0.1 in the income distribution). The red line corresponds to

middle-income households (i.e., rank of τinit = 0.5 in the income distribution). The green line corresponds

to high-income households (i.e., rank of τinit = 0.9 in the income distribution). All results are based on

estimates from the semi-structural model with the Arellano et al. (2017) quantile selection estimator.

As Figure F9 indicates, the fact that the standard model does not allow for interactions

between the household’s rank in the income distribution and the type of shock received

appears to be at odds with the data.26

Intensive margin responses. In Figure 7, I look at the differences with respect to

the average risky asset share for stock market participants at age 35. As the results

indicate, a large negative income shock yields a 2.1 percentage point decrease in average

risky asset shares for high income households. In comparison, the same shock yields

a 0.45 percentage point decrease for low income households. A large positive income

shock, meanwhile, results in a 3 percentage point increase in the share of wealth invested

in risky assets for low income households. In comparison, the same shock results in a

1 percentage point increase for high income households. Looking at the corresponding

figure in the appendix (Figure F6) for the censored quantile regression estimator, I observe

similar results. These results suggest that the persistence of earnings histories is crucial

in understanding changes in risky asset shares with respect to asymmetries in income

risk. Figure F10 presents results from estimating a linear portfolio choice rule with

the standard linear earnings process. Again, the results assume away the presence of

26The estimated model is a Tobit regression where αit is modeled as a linear function of ηit, εit, wit,
and age, and was estimated via maximum likelihood methods with the stochastic EM algorithm.
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Note: The graphs show the difference in average participation rates between a household hit by a shock
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estimates from the semi-structural model with the Arellano et al. (2017) quantile selection estimator.
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appears to be at odds with the data.26
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indicate, a large negative income shock yields a 2.1 percentage point decrease in average

risky asset shares for high income households. In comparison, the same shock yields
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shock, meanwhile, results in a 3 percentage point increase in the share of wealth invested
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Note: The graphs show the difference in average participation rates between a household hit by a shock

τshock at age 37, and a household hit by 0.5 shock at the same age. The blue line corresponds to
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As Figure F9 indicates, the fact that the standard model does not allow for interactions

between the household’s rank in the income distribution and the type of shock received

appears to be at odds with the data.26

Intensive margin responses. In Figure 7, I look at the differences with respect to

the average risky asset share for stock market participants at age 35. As the results

indicate, a large negative income shock yields a 2.1 percentage point decrease in average

risky asset shares for high income households. In comparison, the same shock yields

a 0.45 percentage point decrease for low income households. A large positive income

shock, meanwhile, results in a 3 percentage point increase in the share of wealth invested

in risky assets for low income households. In comparison, the same shock results in a

1 percentage point increase for high income households. Looking at the corresponding

figure in the appendix (Figure F6) for the censored quantile regression estimator, I observe

similar results. These results suggest that the persistence of earnings histories is crucial

in understanding changes in risky asset shares with respect to asymmetries in income

risk. Figure F10 presents results from estimating a linear portfolio choice rule with

the standard linear earnings process. Again, the results assume away the presence of

26The estimated model is a Tobit regression where αit is modeled as a linear function of ηit, εit, wit,
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risky asset shares for high income households. In comparison, the same shock yields

a 0.45 percentage point decrease for low income households. A large positive income

shock, meanwhile, results in a 3 percentage point increase in the share of wealth invested

in risky assets for low income households. In comparison, the same shock results in a
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26The estimated model is a Tobit regression where αit is modeled as a linear function of ηit, εit, wit,
and age, and was estimated via maximum likelihood methods with the stochastic EM algorithm.
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Note: The graphs show the difference in average portfolio shares conditional on participation between a

household hit by a shock τshock at age 37, and a household hit by 0.5 shock at the same age. The blue

line corresponds to low-income households (i.e., rank of τinit = 0.1 in the income distribution). The red

line corresponds to middle-income households (i.e., rank of τinit = 0.5 in the income distribution). The

green line corresponds to high-income households (i.e., rank of τinit = 0.9 in the income distribution).

All results are based on estimates from the semi-structural model with the Arellano et al. (2017) quantile

selection estimator.

interaction effects between the household’s rank in the income distribution and the type

of shock received.

Interactions with wealth and age. Finally, Figures 8 and 9 present similar simu-

lation exercises, but varying the timing of the shocks and the amount of wealth that

the households possess. Comparing the magnitudes to households who are hit by the

same shock when they are old, as shown in Figure 9, I find that the extensive margin

responses are stronger for younger households than for older households. Meanwhile,

intensive margin responses seem to be similar for both households. The results suggest

the importance of human capital as a factor in portfolio choice decisions. Figures F7 and

F8 in the appendix reveal similar patterns when the relevant estimator is the censored

regression estimator of Buchinsky and Hahn (1998), with the exception of a very positive

income shock for low income households at old age.

Discussion. The results of the simulation exercises highlight the importance of the

persistence of earnings histories and large income shocks for household portfolio choice

decisions. In particular, the analyses suggest that for low-income households, labor mar-

ket events that substantially improve their earnings potential (such as the opportunity

of moving up the job ladder as in Lise (2013)) provide them with the possibility of diver-
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sifying their investments into potentially risky, but high return assets such as stocks. In

contrast, for high-income households who are more likely to be stock market participants,

an “unusually” negative income shock (such as the risk of job loss or an adverse health

shock, as in Rosen and Wu (2004) and Edwards (2008), for example) results in an exit

from the stock markets, as the risk that they face from their future labor income becomes

sufficiently high enough that they would like to reduce their exposures to other sources

of risk, and in particular, to financial risk. Hence, the impulse response exercises suggest

that the nonlinear earnings process allows for the possibility of “unusual” income shocks

to wipe out the memory of past income shocks.

Figure 8: Impulse responses by income and wealth quantiles, at age 35
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Note: The graphs show the difference between a household hit by a shock τshock at age 37, and a household

hit by a 0.5 shock at the same age, by income and wealth categories. The blue line corresponds to low

income, low wealth households. The red line corresponds to low income, high wealth households. The

green line corresponds to high income, low wealth households. The orange line corresponds to high

income, high wealth households. All results are based on estimates from the semi-structural model with

the Arellano et al. (2017) quantile selection estimator.
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line corresponds to middle-income households (i.e., rank of τinit = 0.5 in the income distribution). The
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Note: The graphs show the difference between a household hit by a shock τshock at age 37, and a household

hit by a 0.5 shock at the same age, by income and wealth categories. The blue line corresponds to low

income, low wealth households. The red line corresponds to low income, high wealth households. The

green line corresponds to high income, low wealth households. The orange line corresponds to high

income, high wealth households. All results are based on estimates from the semi-structural model with

the Arellano et al. (2017) quantile selection estimator.
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Note: The graphs show the difference between a household hit by a shock τshock at age 37, and a household

hit by a 0.5 shock at the same age, by income and wealth categories. The blue line corresponds to low
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Figure 9: Impulse responses by income and wealth quantiles, at age 51
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Note: The graphs show the difference between a household hit by a shock τshock at age 53, and a household

hit by a 0.5 shock at the same age, by income and wealth categories. The blue line corresponds to low

income, low wealth households. The red line corresponds to low income, high wealth households. The

green line corresponds to high income, low wealth households. The orange line corresponds to high

income, high wealth households. All results are based on estimates from the semi-structural model with

the Arellano et al. (2017) quantile selection estimator.
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Note: The graphs show the difference between a household hit by a shock τshock at age 53, and a household

hit by a 0.5 shock at the same age, by income and wealth categories. The blue line corresponds to low

income, low wealth households. The red line corresponds to low income, high wealth households. The

green line corresponds to high income, low wealth households. The orange line corresponds to high

income, high wealth households. All results are based on estimates from the semi-structural model with

the Arellano et al. (2017) quantile selection estimator.
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income, low wealth households. The red line corresponds to low income, high wealth households. The
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income, high wealth households. All results are based on estimates from the semi-structural model with

the Arellano et al. (2017) quantile selection estimator.
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In this final subsection, I calculate the implied costs of stock market participation. The

approach that I follow builds on the framework outlined in Vissing-Jørgensen (2002).

Assuming that preferences are time-separable and homothetic, the per-period benefit to

stock market participation is approximately:

Benefitit ≈ (rceit − rf )× α∗
it ×Wit (22)

where rceit is the certain return that would make a household indifferent between investing

in a risky asset and investing in an asset with a certain return of rceit , α
∗
it is the desired

risky asset share, and Wit is household i’s wealth at time t. An estimate of the per-period

participation cost cit can be obtained, hence, as the dollar amount required to offset this

benefit.

As the nonlinear model allows me to recover the latent distribution of risky asset

shares, I can calculate the following two objects. The first corresponds to clit, which can

be interpreted as the lower bound for participation costs for household i in period t27,

that is,

clit = (rceit − rf )× α∗
it ×W np

it , (23)

in which W np
it is the wealth of a non-participating household i. The second, meanwhile,

corresponds to cuit, which can be interpreted as an upper bound for participation costs for

household i in period t:

cuit = (rceit − rf )× α∗
it ×W p

it, (24)

in which W p
it is the wealth of a participating household i. An interpretation of clit is

that it is the minimum per-period participation cost that deters nonparticipants from

entering the stock market, while cuit is the minimum per-period benefit that stock market

participants gained from buying stocks. Hence, conditioning on wealthWit, I can calculate

the following cost distributions:

F (clit|dit = 0,Wit) and F (cuit|dit = 1,Wit).

To estimate participation cost bounds, I perform the following procedure. As in Vissing-

Jørgensen (2002), I assume that rceit − rf = 0.04. I then calculate the quantiles of latent

risky asset shares as implied by the nonlinear model. Finally, I calculate clit and cuit

following formulas (23) and (24), for a given Wit.

27Luttmer (1999) (using aggregate data) and Paiella (2007) (using the US Consumer Expenditure
Survey) both estimate the foregone gains to stock market participation via a moment inequality approach.
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Table 4: Implied distribution of per-period stock market participation costs

Quantiles of latent risky asset shares
10 25 50 75 90

α∗
it 0.001 0.019 0.076 0.293 0.773

Non-participants
Low wealth 0.63 5.58 47.53 194.89 475.93
Median wealth 3.41 30.05 256.06 1,409.98 2,563.84
High wealth 13.06 114.97 979.84 4,017.56 9.810.93

Participants
Low wealth 2.86 25.15 214.37 878.96 2,146.43
Median wealth 10.75 94.61 806.22 3,305.69 8,072.52
High wealth 39.77 350.07 2,983.25 12,232.06 29,870.72

Note: Data from 1999 to 2009 PSID waves. The table shows the implied per-period stock market

participation cost, for non-participants and participants, respectively. The columns correspond to the

quantiles of latent risky asset shares recovered from the estimates of the semi-structural model of portfolio

choice with the Arellano and Bonhomme (2017a) quantile selection estimator. The rows correspond to

households with different wealth levels. Low-wealth households are those at the 10th quantile of the

wealth distribution ($15,870 for non-participants (NP) and $71,682 for participants (P)); median-wealth

households are those at the 50th quantile of the wealth distribution ($85,819.37 for NP and $268,337.29
for P); and high-wealth households are those at the 90th quantile of the wealth distribution ($327,747.90
for NP $996,097 for P).

Table 4 provides estimates of the participation cost distributions faced by nonpartici-

pants and participants, respectively. I calculate this for three types of households: those

who have low wealth, those who have median wealth, and those who have high wealth. As

the results indicate, there is a wide dispersion on the participation costs faced by both

non-participants and participants, respectively. Notice as well, that the costs of stock

market participation lie in between 0 to 2 percent of a household’s wealth, regardless of

household type. The fact that these are costs are small suggests that there are other fac-

tors that are play which deter households from buying stocks, for example, risk aversion

or investment in housing.

6 Conclusion

In this paper, I develop a semi-structural framework to understand the nonlinear trans-

mission of income shocks on household investment behavior. I model stock market par-

ticipation and portfolio rules as age-dependent functions of the persistent and transitory

components of income, and of assets. The model reveals asymmetric participation and

portfolio adjustment responses with respect to “unusual” income shocks, which to the best
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Table 4: Implied distribution of per-period stock market participation costs

Quantiles of latent risky asset shares
10 25 50 75 90

α∗
it 0.001 0.019 0.076 0.293 0.773

Non-participants
Low wealth 0.63 5.58 47.53 194.89 475.93
Median wealth 3.41 30.05 256.06 1,409.98 2,563.84
High wealth 13.06 114.97 979.84 4,017.56 9.810.93

Participants
Low wealth 2.86 25.15 214.37 878.96 2,146.43
Median wealth 10.75 94.61 806.22 3,305.69 8,072.52
High wealth 39.77 350.07 2,983.25 12,232.06 29,870.72

Note: Data from 1999 to 2009 PSID waves. The table shows the implied per-period stock market

participation cost, for non-participants and participants, respectively. The columns correspond to the

quantiles of latent risky asset shares recovered from the estimates of the semi-structural model of portfolio

choice with the Arellano and Bonhomme (2017a) quantile selection estimator. The rows correspond to

households with different wealth levels. Low-wealth households are those at the 10th quantile of the

wealth distribution ($15,870 for non-participants (NP) and $71,682 for participants (P)); median-wealth

households are those at the 50th quantile of the wealth distribution ($85,819.37 for NP and $268,337.29
for P); and high-wealth households are those at the 90th quantile of the wealth distribution ($327,747.90
for NP $996,097 for P).

Table 4 provides estimates of the participation cost distributions faced by nonpartici-

pants and participants, respectively. I calculate this for three types of households: those

who have low wealth, those who have median wealth, and those who have high wealth. As

the results indicate, there is a wide dispersion on the participation costs faced by both

non-participants and participants, respectively. Notice as well, that the costs of stock

market participation lie in between 0 to 2 percent of a household’s wealth, regardless of

household type. The fact that these are costs are small suggests that there are other fac-

tors that are play which deter households from buying stocks, for example, risk aversion

or investment in housing.
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of my knowledge, has not been uncovered in previous literature. These results suggest

that the persistence of households earnings histories drive their stock market participa-

tion decision; however, “unusual” income shocks, which can correspond to moves up and

down the job ladder, or adverse health shocks, can wipe out the past memory of income

shocks and induce changes in participation and portfolio choice behavior. The empirical

evidence also shown in this paper supports the evidence that households present DRRA

preferences, as shown by Calvet and Sodini (2014).

In this paper, I have abstracted from an explicit modelling of aggregate shocks, such

as those related to the volatility of stock market returns and its correlation with labor

income. On the one hand, as Benzoni et al. (2007), Betermier et al. (2012), and Bonaparte

et al. (2014) show, the correlation between the stock market return and human capital

might induce households to hedge against their income risks through the use of stocks.

Catherine et al. (2022) also emphasize the importance of skewness risk and its covariance

with the stock return as a driver of portfolio allocations. Catherine (2022) also shows,

in a structural model of portfolio choice with countercyclical income risk, that portfolio

rules might have monotonicities in wealth and income. On the other hand, Schmidt

(2015) emphasizes that investing in stocks is a poor hedge against potentially disastrous

income shocks. A rigorous analysis of the income hedging motives requires extending the

empirical framework I present here to incorporate aggregate shocks.

Finally, it might be important to simultaneously consider the demand for other assets;

in particular, housing. As underscored by a large literature, for most households, their

abode constitutes the biggest share of their wealth (see Davis et al. (2015)). To this

end, extending the framework I present here to consider features inherent in studying

models of housing demand, such as movements from renting to homeownership (e.g.,

Han (2010) and Bajari et al. (2013)), might be relevant to understanding household

investment decisions.
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(discussant), Stéphane Bonhomme, Agar Brugiavini (discussant), Lukas Freund (discus-

sant), Luigi Guiso, Nezih Guner, Anson T.Y. Ho (discussant), Laura Hospido, Borja

Petit, Josep Pijoan, Kjetil Storesletten and several seminar and conference participants

for helpful comments and suggestions. I acknowledge funding from the Spanish Ministry

of Economics and Competitiveness, grant no. BES-2014-070515-P. A previous version

of this paper circulated under the name “Household portfolio choices and nonlinear in-

37

come risk”, and received the 2017 CEPR Household Finance Best Ph.D. Paper prize. All

remaining errors are mine.

References
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Online Appendix for the paper ”Household portfolio
choices under (non)linear income risk: an empirical

framework”

A Estimation of the canonical and nonlinear earn-

ings processes

A.1 Linear earnings process estimation

The linear earnings process I specify is similar to those considered by Storesletten et al.

(2004a) and Kaplan and Violante (2010), among others. In this earnings process, the tran-

sitory component εit is assumed to be independently and identically distributed (i.i.d.)

Gaussian, with N(0, σ2
ε). The persistent component, meanwhile, is modelled as

ηit = ρηit−1 + νit

where ρ is a persistence parameter. The idiosyncratic part of the persistent component

of income, νit, is also i.i.d. Gaussian, with νit ∼ N(0, σ2
ν). I assume that households

have different initial conditions; that is, ηi0 ∼ i.i.d.N(0, σ2
z). Moreover, I assume that the

initial condition, the idiosyncratic component of the persistent shock, and the transitory

shock are independent of each other.

The standard estimation strategy is minimum distance estimation. An alternative,

which I implement here, is to estimate the parameters via pseudo maximum likelihood

estimation. That is, if ui ∼ N (0,Ω(θ)), then the pseudo maximum likelihood estimator

of θ solves:

θ̂PML = argmin
c

{
log det(Ω(c)) +

1

N

N∑
i=1

ûiΩ(c)
−1ûi

}
.

This is equivalent to:

θ̂PML = argmin
c

{
log det(Ω(c)) + tr(Ω(c)−1Ω̂)

}
,

where tr is the trace of the resulting matrix, and Ω̂ =
∑

û′
iûi. The parameter estimates

are reported in the table below.

A.2 Specification and estimation of Arellano et al. (2017) earn-
ings process

Persistent component. Denote the persistent component of the household head i at

period t by ηit and ageit the age of the household head. Then, the conditional quantile
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û′
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iûi. The parameter estimates

are reported in the table below.

A.2 Specification and estimation of Arellano et al. (2017) earn-
ings process

Persistent component. Denote the persistent component of the household head i at

period t by ηit and ageit the age of the household head. Then, the conditional quantile

43



BANCO DE ESPAÑA 49 DOCUMENTO DE TRABAJO N.º 2327

Online Appendix for the paper ”Household portfolio
choices under (non)linear income risk: an empirical

framework”

A Estimation of the canonical and nonlinear earn-

ings processes

A.1 Linear earnings process estimation

The linear earnings process I specify is similar to those considered by Storesletten et al.

(2004a) and Kaplan and Violante (2010), among others. In this earnings process, the tran-

sitory component εit is assumed to be independently and identically distributed (i.i.d.)

Gaussian, with N(0, σ2
ε). The persistent component, meanwhile, is modelled as

ηit = ρηit−1 + νit

where ρ is a persistence parameter. The idiosyncratic part of the persistent component

of income, νit, is also i.i.d. Gaussian, with νit ∼ N(0, σ2
ν). I assume that households

have different initial conditions; that is, ηi0 ∼ i.i.d.N(0, σ2
z). Moreover, I assume that the

initial condition, the idiosyncratic component of the persistent shock, and the transitory

shock are independent of each other.

The standard estimation strategy is minimum distance estimation. An alternative,

which I implement here, is to estimate the parameters via pseudo maximum likelihood

estimation. That is, if ui ∼ N (0,Ω(θ)), then the pseudo maximum likelihood estimator

of θ solves:

θ̂PML = argmin
c

{
log det(Ω(c)) +

1

N

N∑
i=1
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period t by ηit and ageit the age of the household head. Then, the conditional quantile
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Parameter Estimates
Std. Error

Autoregressive parameter 0.8784
(0.0987)

SD of transitory component 0.2333
(0.0550)

SD of initial persistent component 0.3148
(0.0666)

SD of idiosyncratic persistent component 0.1968
(0.0365)

Note: These are estimates of the parameters of the linear earnings process. Standard errors are in

parentheses, and are calculated using the asymptotic covariance matrix.

of the persistent component as a function of the past persistent component and age is:

Qt(ηit−1, τ) =
K∑
k=0

aPK(τ)φk(ηit−1, ageit)

In practice, I estimate this function using tensor products of Hermite polynomials, which

are of the order (3,2).
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Transitory component. The conditional quantile function of the transitory compo-

nent as a function of age is:

Qε(ageit, τ) =
K∑
k=0

aTK(τ)φ̄k(ageit)

The estimation of this earnings process follows the stochastic EM algorithm described

in Arellano et al. (2017). I refer the reader to Arellano et al. (2017) for a full description

of the estimation procedure, and the likelihood function of the earnings process.

A.3 Comparing the nonlinear and canonical earnings processes

Figure A1 presents the results of the estimation of the earnings process, and the estimation

of a quantile autoregression of earnings. Specifically, the first three graphs are plots of

the average derivative of the conditional quantile function yit on yit−1, with respect to
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A Estimation of the canonical and nonlinear earn-
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the simulated earnings data. Meanwhile, the last graph is the average derivative of the

conditional quantile function ηit on ηit−1 using the nonlinear earnings process.

To check whether the results that I have obtained fit the model well, I compare the

estimated persistence from the true data, which is depicted in Figure panel (a) of Fig-

ure A1, with the estimated persistence that comes from simulated data according to the

nonlinear and the linear earnings models, which are in panels (b) and (c), respectively.

What I find is that the nonlinear earnings process is able to fit the data well in terms

of persistence. Panel (d) describes the results of the persistence in the persistent com-

ponent ηit in the nonlinear earnings model. As the results indicate, there seems to be

heterogeneity in persistence of income shocks.

Figure A2 shows estimates of conditional skewness, which were calculated using

quantile-based skewness measures. The results in panel (b) indicate evidence of con-

ditional asymmetry, which goes in the same direction as in Arellano et al. (2017). There

is less evidence of it though in the simulated data and in the earnings data of the PSID.

B Two-period model

In this appendix, I show how optimal portfolio choice is affected by higher-order moments

of income in a simple two-period set-up. The model I present is heavily based on the one

presented in Campbell and Viceira (2002).

Consider a model where a household with CRRA utility and wealth Wt that makes

a portfolio decision at time t. It consumes the liquidation value of its portfolio at time

t+ 1 plus household labor income Yt+1 one period later. Labor income is stochastic and

follows a general distribution H(Y ). The household cannot borrow against future labor

income, thereby making it non-tradeable. It has access to two assets for investment: a

riskless asset that has a certain return rf and a risky asset with a constant expected log

excess return Et(rt+1 − rf ) ≡ µ. The unexpected log return on the risky asset, denoted

by ut+1, is conditionally Normal, with mean zero and variance σ2
r . To invest in the stock

market, the household must pay a participation cost q.

To make its optimal decision, the household considers two subproblems. The first

corresponds to the situation in which it does not participate in the stock market. In this

case, it solves for optimal consumption, Cnp,t+1, via the following maximization problem:

Vnp = max
Cnp,t+1

E[U(C)]

s.t. Cnp,t+1 = Wt(1 +Rf ) + Yt+1
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Figure A1: Nonlinear persistence
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(b) Earnings, nonlinear model
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(c) Earnings, linear model
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(d) νit, nonlinear model
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Note: Panel (a), (b), and (c) show estimates of the conditional quantile function of yit given yit−1 with

respect to yit−1, evaluated at τshock and at a value of yit−1 that corresponds to the τinit percentile of the

distribution of yit−1. Panel (a) is based on the PSID data in my subsample, panel (b) comes from the

simulated data based on the nonlinear earnings process, and panel (c) comes from the simulated data

based on the linear earnings process. Finally, panel (d) is the average derivative of the the conditonal

quantile function of ηit on ηit−1 with respect to ηit−1, based on estimates from the nonlinear earnings

model.
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the simulated earnings data. Meanwhile, the last graph is the average derivative of the
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r . To invest in the stock

market, the household must pay a participation cost q.
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s.t. Cnp,t+1 = Wt(1 +Rf ) + Yt+1
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Figure A2: Conditional skewness

(a) Log-earnings residuals yit
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Note: These are estimates of the quantile-based skewness of residualized log household income (left panel)

from the data (blue) and from simulated data coming from the nonlinear earnings model of Arellano

et al. (2017) (green). The right panel is an estimate of the conditional skewness of the persistent income

component, ηit.

In the second subproblem, the household invests part or all of its wealth in stocks. It

then solves for the optimal portfolio share, αt, via the following maximization problem:

Vp = max
αt

E[U(C)]

s.t. Cp,t+1 = Wc,t[αtRt+1 + (1− αt)Rf ] + Yt+1

in which I have defined Wc,t = Wt − q. As the household can neither borrow nor short-

sell, the optimal portfolio share is constrained to be in between zero and one. Moreover,

it neither knows the realization of future stock market returns nor future labor income

when it makes the portfolio choice decision.

Although a closed form solution generally does not exist, an approximate formula for

optimal portfolio shares in the participation subproblem can be obtained as a function of

the certainty equivalent of future labor earnings H̃ and wealth net of participation costs,

Wc,t, under idiosyncratic labor income risk28:

αt =

(
1 +

H̃

Wc,t

)[
Et(rt+1 − rf ) +

1
2
σ2
r

γσ2
r

]
(B1)

To solve the optimization problem, the household compares the indirect utilities cal-

culated from the two subproblems. The household will clearly participate if the expected

utility from equity investment is at least as high as that of non-investment, which is

28A more formal treatment of a static portfolio choice problem when income risk is not lognormal
requires working with higher-order cumulants as in Martin (2012), but is left for further research.
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effectively summarized by this inequality:

Et

(
δ
C1−γ

p,t+1

1− γ

)
≥ Et

(
δ
C1−γ

np,t+1

1− γ

)

where Ci,t, i = p, np denotes the consumption if the household bought stocks or not,

respectively. Taking logs:

Et

(
δ
C1−γ

i,t+1

1− γ

)
= Et

[
exp

{
log

(
δ
C1−γ

i,t+1

1− γ

)}]
≈ Et(exp{(1− γ)ci,t+1})

Because the risk aversion parameter is a constant, I focus on Et(exp{ci,t+1}). Taking a

first order Taylor expansion around zero, I obtain:

Et(exp{ci,t+1}) ≈ 1 + Et(ci,t+1),

which, when substituted to the inequality yields the condition

Et(cp,t+1) ≥ Et(cnp,t+1).

that effectively states that to invest in the stock market, households must have at least

the same amount of consumption in both

Thus, if it decides to participate in the stock market, the optimal portfolio rule is

characterized by equation (B1). Otherwise, the optimal portfolio rule is characterized by

αt = 0.

Comparative statics. Equation (B1) allows me to study the effect of increases

in wealth and labor income under idiosyncratic labor income risk, respectively.29 First,

keeping labor income constant, an exogenous increase in wealth reduces the portfolio

share, as total household wealth becomes a more important source to draw consumption

from than labor income. Hence, the household will not invest in stocks, and might prefer

to save in riskless bonds, or to spend part of the wealth gain on goods. This result holds

regardless of whether labor income is lognormal or not.

Second, an increase in labor income has an ambiguous effect on household portfolio

shares when I relax lognormality, keeping wealth fixed. This is because now, labor income

will be affected by higher-order moments. For example, an increase in labor income might

lead the household to invest less in stocks if the distribution of its earnings is negatively

29The comparative statics results I discuss here apply to a household who is currently a stock investor.
For the marginal investor who is indifferent between entering and exiting the stock market, he will
continue to participate in the stock market if the consumption gained from investment is at least as high
as that of non-investment, regardless of whether the increases are with respect to labor income or wealth.
The results, again, depend on the higher-order moments of income.

48

effectively summarized by this inequality:

Et

(
δ
C1−γ

p,t+1

1− γ

)
≥ Et

(
δ
C1−γ

np,t+1

1− γ

)

where Ci,t, i = p, np denotes the consumption if the household bought stocks or not,

respectively. Taking logs:

Et

(
δ
C1−γ

i,t+1

1− γ

)
= Et

[
exp

{
log

(
δ
C1−γ

i,t+1

1− γ

)}]
≈ Et(exp{(1− γ)ci,t+1})

Because the risk aversion parameter is a constant, I focus on Et(exp{ci,t+1}). Taking a

first order Taylor expansion around zero, I obtain:

Et(exp{ci,t+1}) ≈ 1 + Et(ci,t+1),

which, when substituted to the inequality yields the condition

Et(cp,t+1) ≥ Et(cnp,t+1).

that effectively states that to invest in the stock market, households must have at least

the same amount of consumption in both

Thus, if it decides to participate in the stock market, the optimal portfolio rule is

characterized by equation (B1). Otherwise, the optimal portfolio rule is characterized by

αt = 0.

Comparative statics. Equation (B1) allows me to study the effect of increases

in wealth and labor income under idiosyncratic labor income risk, respectively.29 First,

keeping labor income constant, an exogenous increase in wealth reduces the portfolio

share, as total household wealth becomes a more important source to draw consumption

from than labor income. Hence, the household will not invest in stocks, and might prefer

to save in riskless bonds, or to spend part of the wealth gain on goods. This result holds

regardless of whether labor income is lognormal or not.

Second, an increase in labor income has an ambiguous effect on household portfolio

shares when I relax lognormality, keeping wealth fixed. This is because now, labor income

will be affected by higher-order moments. For example, an increase in labor income might

lead the household to invest less in stocks if the distribution of its earnings is negatively

29The comparative statics results I discuss here apply to a household who is currently a stock investor.
For the marginal investor who is indifferent between entering and exiting the stock market, he will
continue to participate in the stock market if the consumption gained from investment is at least as high
as that of non-investment, regardless of whether the increases are with respect to labor income or wealth.
The results, again, depend on the higher-order moments of income.

48

effectively summarized by this inequality:

Et

(
δ
C1−γ

p,t+1

1− γ

)
≥ Et

(
δ
C1−γ

np,t+1

1− γ

)

where Ci,t, i = p, np denotes the consumption if the household bought stocks or not,

respectively. Taking logs:

Et

(
δ
C1−γ

i,t+1

1− γ

)
= Et

[
exp

{
log

(
δ
C1−γ

i,t+1

1− γ

)}]
≈ Et(exp{(1− γ)ci,t+1})

Because the risk aversion parameter is a constant, I focus on Et(exp{ci,t+1}). Taking a

first order Taylor expansion around zero, I obtain:

Et(exp{ci,t+1}) ≈ 1 + Et(ci,t+1),

which, when substituted to the inequality yields the condition

Et(cp,t+1) ≥ Et(cnp,t+1).

that effectively states that to invest in the stock market, households must have at least

the same amount of consumption in both

Thus, if it decides to participate in the stock market, the optimal portfolio rule is

characterized by equation (B1). Otherwise, the optimal portfolio rule is characterized by

αt = 0.

Comparative statics. Equation (B1) allows me to study the effect of increases

in wealth and labor income under idiosyncratic labor income risk, respectively.29 First,

keeping labor income constant, an exogenous increase in wealth reduces the portfolio

share, as total household wealth becomes a more important source to draw consumption

from than labor income. Hence, the household will not invest in stocks, and might prefer

to save in riskless bonds, or to spend part of the wealth gain on goods. This result holds

regardless of whether labor income is lognormal or not.

Second, an increase in labor income has an ambiguous effect on household portfolio

shares when I relax lognormality, keeping wealth fixed. This is because now, labor income

will be affected by higher-order moments. For example, an increase in labor income might

lead the household to invest less in stocks if the distribution of its earnings is negatively

29The comparative statics results I discuss here apply to a household who is currently a stock investor.
For the marginal investor who is indifferent between entering and exiting the stock market, he will
continue to participate in the stock market if the consumption gained from investment is at least as high
as that of non-investment, regardless of whether the increases are with respect to labor income or wealth.
The results, again, depend on the higher-order moments of income.

48

effectively summarized by this inequality:

Et

(
δ
C1−γ

p,t+1

1− γ

)
≥ Et

(
δ
C1−γ

np,t+1

1− γ

)

where Ci,t, i = p, np denotes the consumption if the household bought stocks or not,

respectively. Taking logs:

Et

(
δ
C1−γ

i,t+1

1− γ

)
= Et

[
exp

{
log

(
δ
C1−γ

i,t+1

1− γ

)}]
≈ Et(exp{(1− γ)ci,t+1})

Because the risk aversion parameter is a constant, I focus on Et(exp{ci,t+1}). Taking a

first order Taylor expansion around zero, I obtain:

Et(exp{ci,t+1}) ≈ 1 + Et(ci,t+1),

which, when substituted to the inequality yields the condition

Et(cp,t+1) ≥ Et(cnp,t+1).

that effectively states that to invest in the stock market, households must have at least

the same amount of consumption in both

Thus, if it decides to participate in the stock market, the optimal portfolio rule is

characterized by equation (B1). Otherwise, the optimal portfolio rule is characterized by

αt = 0.

Comparative statics. Equation (B1) allows me to study the effect of increases

in wealth and labor income under idiosyncratic labor income risk, respectively.29 First,

keeping labor income constant, an exogenous increase in wealth reduces the portfolio

share, as total household wealth becomes a more important source to draw consumption

from than labor income. Hence, the household will not invest in stocks, and might prefer

to save in riskless bonds, or to spend part of the wealth gain on goods. This result holds

regardless of whether labor income is lognormal or not.

Second, an increase in labor income has an ambiguous effect on household portfolio

shares when I relax lognormality, keeping wealth fixed. This is because now, labor income

will be affected by higher-order moments. For example, an increase in labor income might

lead the household to invest less in stocks if the distribution of its earnings is negatively

29The comparative statics results I discuss here apply to a household who is currently a stock investor.
For the marginal investor who is indifferent between entering and exiting the stock market, he will
continue to participate in the stock market if the consumption gained from investment is at least as high
as that of non-investment, regardless of whether the increases are with respect to labor income or wealth.
The results, again, depend on the higher-order moments of income.

48

effectively summarized by this inequality:

Et

(
δ
C1−γ

p,t+1

1− γ

)
≥ Et

(
δ
C1−γ

np,t+1

1− γ

)

where Ci,t, i = p, np denotes the consumption if the household bought stocks or not,

respectively. Taking logs:

Et

(
δ
C1−γ

i,t+1

1− γ

)
= Et

[
exp

{
log

(
δ
C1−γ

i,t+1

1− γ

)}]
≈ Et(exp{(1− γ)ci,t+1})

Because the risk aversion parameter is a constant, I focus on Et(exp{ci,t+1}). Taking a

first order Taylor expansion around zero, I obtain:

Et(exp{ci,t+1}) ≈ 1 + Et(ci,t+1),

which, when substituted to the inequality yields the condition

Et(cp,t+1) ≥ Et(cnp,t+1).

that effectively states that to invest in the stock market, households must have at least

the same amount of consumption in both

Thus, if it decides to participate in the stock market, the optimal portfolio rule is

characterized by equation (B1). Otherwise, the optimal portfolio rule is characterized by

αt = 0.

Comparative statics. Equation (B1) allows me to study the effect of increases

in wealth and labor income under idiosyncratic labor income risk, respectively.29 First,

keeping labor income constant, an exogenous increase in wealth reduces the portfolio

share, as total household wealth becomes a more important source to draw consumption

from than labor income. Hence, the household will not invest in stocks, and might prefer

to save in riskless bonds, or to spend part of the wealth gain on goods. This result holds

regardless of whether labor income is lognormal or not.

Second, an increase in labor income has an ambiguous effect on household portfolio

shares when I relax lognormality, keeping wealth fixed. This is because now, labor income

will be affected by higher-order moments. For example, an increase in labor income might

lead the household to invest less in stocks if the distribution of its earnings is negatively

29The comparative statics results I discuss here apply to a household who is currently a stock investor.
For the marginal investor who is indifferent between entering and exiting the stock market, he will
continue to participate in the stock market if the consumption gained from investment is at least as high
as that of non-investment, regardless of whether the increases are with respect to labor income or wealth.
The results, again, depend on the higher-order moments of income.

48

effectively summarized by this inequality:

Et

(
δ
C1−γ

p,t+1

1− γ

)
≥ Et

(
δ
C1−γ

np,t+1

1− γ

)

where Ci,t, i = p, np denotes the consumption if the household bought stocks or not,

respectively. Taking logs:

Et

(
δ
C1−γ

i,t+1

1− γ

)
= Et

[
exp

{
log

(
δ
C1−γ

i,t+1

1− γ

)}]
≈ Et(exp{(1− γ)ci,t+1})

Because the risk aversion parameter is a constant, I focus on Et(exp{ci,t+1}). Taking a

first order Taylor expansion around zero, I obtain:

Et(exp{ci,t+1}) ≈ 1 + Et(ci,t+1),

which, when substituted to the inequality yields the condition

Et(cp,t+1) ≥ Et(cnp,t+1).

that effectively states that to invest in the stock market, households must have at least

the same amount of consumption in both

Thus, if it decides to participate in the stock market, the optimal portfolio rule is

characterized by equation (B1). Otherwise, the optimal portfolio rule is characterized by

αt = 0.

Comparative statics. Equation (B1) allows me to study the effect of increases

in wealth and labor income under idiosyncratic labor income risk, respectively.29 First,

keeping labor income constant, an exogenous increase in wealth reduces the portfolio

share, as total household wealth becomes a more important source to draw consumption

from than labor income. Hence, the household will not invest in stocks, and might prefer

to save in riskless bonds, or to spend part of the wealth gain on goods. This result holds

regardless of whether labor income is lognormal or not.

Second, an increase in labor income has an ambiguous effect on household portfolio

shares when I relax lognormality, keeping wealth fixed. This is because now, labor income

will be affected by higher-order moments. For example, an increase in labor income might

lead the household to invest less in stocks if the distribution of its earnings is negatively

29The comparative statics results I discuss here apply to a household who is currently a stock investor.
For the marginal investor who is indifferent between entering and exiting the stock market, he will
continue to participate in the stock market if the consumption gained from investment is at least as high
as that of non-investment, regardless of whether the increases are with respect to labor income or wealth.
The results, again, depend on the higher-order moments of income.

48

effectively summarized by this inequality:

Et

(
δ
C1−γ

p,t+1

1− γ

)
≥ Et

(
δ
C1−γ

np,t+1

1− γ

)

where Ci,t, i = p, np denotes the consumption if the household bought stocks or not,

respectively. Taking logs:

Et

(
δ
C1−γ

i,t+1

1− γ

)
= Et

[
exp

{
log

(
δ
C1−γ

i,t+1

1− γ

)}]
≈ Et(exp{(1− γ)ci,t+1})

Because the risk aversion parameter is a constant, I focus on Et(exp{ci,t+1}). Taking a

first order Taylor expansion around zero, I obtain:

Et(exp{ci,t+1}) ≈ 1 + Et(ci,t+1),

which, when substituted to the inequality yields the condition

Et(cp,t+1) ≥ Et(cnp,t+1).

that effectively states that to invest in the stock market, households must have at least

the same amount of consumption in both

Thus, if it decides to participate in the stock market, the optimal portfolio rule is

characterized by equation (B1). Otherwise, the optimal portfolio rule is characterized by

αt = 0.

Comparative statics. Equation (B1) allows me to study the effect of increases

in wealth and labor income under idiosyncratic labor income risk, respectively.29 First,

keeping labor income constant, an exogenous increase in wealth reduces the portfolio

share, as total household wealth becomes a more important source to draw consumption

from than labor income. Hence, the household will not invest in stocks, and might prefer

to save in riskless bonds, or to spend part of the wealth gain on goods. This result holds

regardless of whether labor income is lognormal or not.

Second, an increase in labor income has an ambiguous effect on household portfolio

shares when I relax lognormality, keeping wealth fixed. This is because now, labor income

will be affected by higher-order moments. For example, an increase in labor income might

lead the household to invest less in stocks if the distribution of its earnings is negatively

29The comparative statics results I discuss here apply to a household who is currently a stock investor.
For the marginal investor who is indifferent between entering and exiting the stock market, he will
continue to participate in the stock market if the consumption gained from investment is at least as high
as that of non-investment, regardless of whether the increases are with respect to labor income or wealth.
The results, again, depend on the higher-order moments of income.
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skewed. In this case, even if the household experiences an increase in labor income, the

possibility of highly negative income realizations in the future might lead the household to

become more conservative in its investments. In contrast, under lognormality, an increase

in labor income will lead the household to invest in stocks if the expected labor income

is greater than the risk the household faces, which is captured by its variance.

C Data and descriptive statistics

C.1 Sample selection criteria in detail

Table C1 shows the detailed sample selection criteria that was implemented for the main

sample in the empirical study that largely follows the criteria of Blundell et al. (2016).

In the sample selection, I first construct a subsample of all households who I can follow

for the entire six waves of the PSID. I then apply each of the criteria in Blundell et al.

(2016).

Table C1: Sample selection criteria, PSID

Total households eligible from the PSID interviews 4304
Less:
Households who were not continuously married 2064
Households with missing information on state 20
Households with missing information on age 0
Households with missing information on education 292
Non-SEO households 273
Households with missing information on race 7
Households who are not within the age range 561
Households with higher than $20,000,000 assets 1
Households with missing information on assets 192
Households with wages less than half the state minimum wage 187
Households with missing labor income 26
Households with jumps on their labor income 20

661

Note: Data from 1999 to 2009 PSID waves. This table presents the sample selection criteria I opera-

tionalized for the paper. The sample selection criteria mostly follows that of Blundell et al. (2016).

Table C2 compares the households in my baseline sample with a sample of all married

male household heads (regardless of participation status) and with a sample of all male

household heads who were recorded as married at least once in the 1998 to 2008 period

(again, independently of participation status). The table shows very small differences

in the observables across households. Household earnings are only slightly smaller for
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first order Taylor expansion around zero, I obtain:

Et(exp{ci,t+1}) ≈ 1 + Et(ci,t+1),

which, when substituted to the inequality yields the condition

Et(cp,t+1) ≥ Et(cnp,t+1).

that effectively states that to invest in the stock market, households must have at least

the same amount of consumption in both

Thus, if it decides to participate in the stock market, the optimal portfolio rule is

characterized by equation (B1). Otherwise, the optimal portfolio rule is characterized by

αt = 0.

Comparative statics. Equation (B1) allows me to study the effect of increases

in wealth and labor income under idiosyncratic labor income risk, respectively.29 First,

keeping labor income constant, an exogenous increase in wealth reduces the portfolio

share, as total household wealth becomes a more important source to draw consumption

from than labor income. Hence, the household will not invest in stocks, and might prefer

to save in riskless bonds, or to spend part of the wealth gain on goods. This result holds

regardless of whether labor income is lognormal or not.

Second, an increase in labor income has an ambiguous effect on household portfolio

shares when I relax lognormality, keeping wealth fixed. This is because now, labor income

will be affected by higher-order moments. For example, an increase in labor income might

lead the household to invest less in stocks if the distribution of its earnings is negatively

29The comparative statics results I discuss here apply to a household who is currently a stock investor.
For the marginal investor who is indifferent between entering and exiting the stock market, he will
continue to participate in the stock market if the consumption gained from investment is at least as high
as that of non-investment, regardless of whether the increases are with respect to labor income or wealth.
The results, again, depend on the higher-order moments of income.
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the more comprehensive households than for the baseline sample, and total household

wealth is smaller for the more comprehensive samples than for the baseline sample. The

proportion of stock market participants is also roughly similar across these households,

which suggests that concerns on whether I am removing households whose heads are

facing extremely large income shocks that result in long unemployment spells seem to be

disspelled.

Table C2: Baseline sample comparisons

Baseline sample With nonworking males All ever married
Mean Median Mean Median Mean Median

All households
Household income 82,699.47 54,000.00 81,744.46 54,000.00 81,071.35 54,000.00
Total assets 371,189.60 164,043.40 367,263.70 163,715.20 364,863.50 160,581.20
Liquid wealth 95,529.77 17,083.33 97,067.34 17,083.33 95,278.02 17,083.33
Risky wealth 81,353.17 4,741.95 81,998.92 4,365.16 80,484.74 4,000.00
Stocks 51,547.79 - 52,983.55 - 51,758.05 -
Share of stocks in total wealth 0.077 - 0.077 - 0.076 -
Share of risky assets in total wealth 0.148 0.030 0.148 0.029 0.147 0.029
Ownership of stocks 0.410 0.408 0.408
Ownership of risky assets 0.591 0.587 0.586

Risky market participants
Household income 98,524.98 65,000.00 97,221.93 65,000.00 96,468.87 64,250.00
Total assets 512,872.20 269,187.60 510,379.10 269,682.60 507,263.20 264,412.70
Liquid wealth 145,598.80 41,201.23 148,873.50 42,548.95 146,207.80 41,314.15
Risky wealth 137,676.70 43,994.58 139,767.20 44,223.90 137,445.20 43,073.93
Stocks 87,236.06 9,597.64 90,310.51 10,000.00 88,388.12 9,571.98
Share of stocks in total wealth 0.130 0.046 0.131 0.047 0.130 0.047
Share of risky assets in total wealth 0.251 0.192 0.252 0.192 0.251 0.190

Note: Data from 1999 to 2009 PSID waves. This table presents summary statistics for different subsam-

ples. The first two columns correspond to the baseline sample that I use in my empirical study. The

next two columns correspond to all male married households heads (independently of work status). The

last two columns correspond to all male households heads who have been married at least once, again

independently of work status. The first panel corresponds to all households in a given sample; the second

panel corresponds to the risky market participants in a given sample.

C.2 Calculating human wealth

I follow the definition of Calvet and Sodini (2014) and Fagereng et al. (2017a) in the

calculation of human wealth, which is crucial in the calculation of lifetime wealth, the

exclusion restriction I follow in the paper. To be specific, the formula is the following:

HWi,t = Yi,t +
T−t∑
τ=1

πτ+1|τ
Et(Yi,t+τ )

(1 + r)τ
(C2)

in which HWi,t denotes human wealth, Yi,t+τ is the labor income of the household at age

t + τ and πτ is the survival probability of the household head being alove at age t + τ

given that he was alive at age t. I set the discount rate to the one I use in the calibrations,

approximately 2 percent. Lifetime wealth, in this case, is the sum of human wealth and

accumulated assets during that period.
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Mean Median Mean Median Mean Median

All households
Household income 82,699.47 54,000.00 81,744.46 54,000.00 81,071.35 54,000.00
Total assets 371,189.60 164,043.40 367,263.70 163,715.20 364,863.50 160,581.20
Liquid wealth 95,529.77 17,083.33 97,067.34 17,083.33 95,278.02 17,083.33
Risky wealth 81,353.17 4,741.95 81,998.92 4,365.16 80,484.74 4,000.00
Stocks 51,547.79 - 52,983.55 - 51,758.05 -
Share of stocks in total wealth 0.077 - 0.077 - 0.076 -
Share of risky assets in total wealth 0.148 0.030 0.148 0.029 0.147 0.029
Ownership of stocks 0.410 0.408 0.408
Ownership of risky assets 0.591 0.587 0.586

Risky market participants
Household income 98,524.98 65,000.00 97,221.93 65,000.00 96,468.87 64,250.00
Total assets 512,872.20 269,187.60 510,379.10 269,682.60 507,263.20 264,412.70
Liquid wealth 145,598.80 41,201.23 148,873.50 42,548.95 146,207.80 41,314.15
Risky wealth 137,676.70 43,994.58 139,767.20 44,223.90 137,445.20 43,073.93
Stocks 87,236.06 9,597.64 90,310.51 10,000.00 88,388.12 9,571.98
Share of stocks in total wealth 0.130 0.046 0.131 0.047 0.130 0.047
Share of risky assets in total wealth 0.251 0.192 0.252 0.192 0.251 0.190

Note: Data from 1999 to 2009 PSID waves. This table presents summary statistics for different subsam-

ples. The first two columns correspond to the baseline sample that I use in my empirical study. The

next two columns correspond to all male married households heads (independently of work status). The

last two columns correspond to all male households heads who have been married at least once, again

independently of work status. The first panel corresponds to all households in a given sample; the second

panel corresponds to the risky market participants in a given sample.

C.2 Calculating human wealth

I follow the definition of Calvet and Sodini (2014) and Fagereng et al. (2017a) in the

calculation of human wealth, which is crucial in the calculation of lifetime wealth, the

exclusion restriction I follow in the paper. To be specific, the formula is the following:

HWi,t = Yi,t +
T−t∑
τ=1

πτ+1|τ
Et(Yi,t+τ )

(1 + r)τ
(C2)

in which HWi,t denotes human wealth, Yi,t+τ is the labor income of the household at age

t + τ and πτ is the survival probability of the household head being alove at age t + τ

given that he was alive at age t. I set the discount rate to the one I use in the calibrations,

approximately 2 percent. Lifetime wealth, in this case, is the sum of human wealth and

accumulated assets during that period.
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D Nonparametric identification

This section covers the nonparametric identification of the semi-structural model. I state

the formal assumptions, and then outline the proof, which relies on an induction argu-

ment.

Consider a given household i observed for T periods. Let us denote by xt
i as the

following vector xt
i = (xi1, xi2, . . . , xiT )

′, and suppose that we observe the sequence of

household wealth wt
i , the resulting portfolio choice αt

i, the observed participation choice

dti, and household earnings yti . Let us call by ηti the latent earnings component, and

by α∗,t
i the latent risky asset share. Our goal is to identify the joint distribution of η’s,

assets, earnings, portfolio choices, and participation decisions. To do so, we will need the

following assumptions on the semi-structural model:

Assumption 1 For all t ≥ 1:

a. The unobserved errors (vi1, . . . ,viT , ηi1, . . . , ηiT , εi1, . . . , εiT , ζi2, . . . , ζiT ) are mutu-

ally independently distributed.

b. The bivariate distribution of vit = (χit, ξit)
′ given wt

i , α
t
i, d

t
i, y

t
i and ηti are absolutely

continuous with respect to the Lebesgue measure, with standard uniform marginals

and rectangular support. I denote the c.d.f. as Cx(χ, ξ).

c. The conditional c.d.f. Fα∗|Z(α|Z) is strictly increasing. Moreover, Cx(χ, ξ) is

strictly increasing in χ.

d. Pr(dit = 1|zit) > 0 for all t with probability one.

The first assumption implies the following: first, that current and future earnings

shocks are independent of current and past wealth; second, a Markovian assumption on

wealth dynamics; and third, that the unobserved errors of the portfolio and participation

rules are independent over time, independent of earnings components, and independent

of current and past assets. The second assumption states that the dependence between

(χit, ξit) is the source of sample selection bias. In the context of the economic model,

the dependence is the link between the participation subproblem, the result of which is

the latent risky asset shares α∗
it, and the economic problem at hand, which results in the

participation rule denoted by dit and the observed outcome αit. The third assumption

restricts the analysis to continuous outcomes, and the fourth is a standard assumption in

sample selection models. The proof proceeds sequentially, starting with the first period.
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The first assumption implies the following: first, that current and future earnings

shocks are independent of current and past wealth; second, a Markovian assumption on

wealth dynamics; and third, that the unobserved errors of the portfolio and participation

rules are independent over time, independent of earnings components, and independent

of current and past assets. The second assumption states that the dependence between

(χit, ξit) is the source of sample selection bias. In the context of the economic model,

the dependence is the link between the participation subproblem, the result of which is

the latent risky asset shares α∗
it, and the economic problem at hand, which results in the

participation rule denoted by dit and the observed outcome αit. The third assumption

restricts the analysis to continuous outcomes, and the fourth is a standard assumption in

sample selection models. The proof proceeds sequentially, starting with the first period.
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First period wealth. Using f as a generic notation for a density function:

f(w1|y) =
∫

f(w1|η1)f(η1|y)dη1 (D3)

where, by Assumption 1a, f(w1|η1, y) and f(w1|η1) coincide. Provided that the distri-

bution of (ηi1|yi) is complete (given that this is identified from the earnings process, see

Arellano et al. (2017)), the density f(w1|y) is identified.
First period participation. Next, I turn into the participation rule. Notice that

via the definition of the participation rule, and by assumption 1a, I have:

f(d1|w1, q1, y) =

∫
f(d1|w1, η1, q1, y1)f(η1|w1, y)dη1 (D4)

where under completeness of (η1|w1, yi) in yi, the density f(d1|w1, q1, y1) is identified.

First period portfolio rule. Identification of the joint density of risky shares and

the participation indicator is not straightforward, however. To illustrate, write the density

f(α∗
1, d1|w1, y) as:

f(α∗
1, d1|w1, q1, y) =

∫
[Pr(α∗

1, d1 = 1|q1, w1, η1, y)]
d1 [Pr(d1 = 0|q1, w1, η1, y)]

(1−d1) f(η1|w1, y)dη1.

I decompose this further into:

f(α∗
1, d1|w1, q1, y) =

∫
[f(α∗

1|d1 = 1, w1, η1, y)]
d1 ×

[Pr(d1 = 1|w1, q1, η1, y)]
d1 [Pr(d1 = 0|w1, q1, η1, y)]

(1−d1) f(η1|w1, y)dη1,

which, after, using the definition of the participation rule, yields:

f(α∗
1, d1|w1, y) =

∫
[f(α∗

1|d1 = 1, w1, η1, y)]
d1 f(d1|w1, η1, y)f(η1|w1, y)dη1 (D5)

If α∗
1 were not latent, I can proceed with the same identification arguments as those for

wealth and the participation rule.30 To prove that this density is identified under the

presence of sample selection, note that, conditional on participation, for all τ ∈ (0, 1) and

t ≥ 1:

Pr(α∗
it ≤ q(τ, x))|dit = 1,Zit = zit) = Gx(τ, p(zit)) (D6)

30Alternatively, if the economic problem is such that there is no selection into stock market participa-
tion, the same arguments will still apply. This is because, in the absence of the participation rule, the
density of risky asset shares is simply:

f(α1|w1, y) =

∫
[f(α1|w1, η1, y)]

1(α1>0)
[F (0|w1, η1, y)]

1(α1=0)
f(η1|w1, y)dη1

It can then be shown that the density is nonparametrically identified under completeness of (ηi1|wi1, yi)
on (yi1, yi2, . . . , yiT ), following similar arguments.
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f(α∗
1, d1|w1, y) as:

f(α∗
1, d1|w1, q1, y) =

∫
[Pr(α∗

1, d1 = 1|q1, w1, η1, y)]
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f(α∗
1, d1|w1, q1, y) =

∫
[f(α∗

1|d1 = 1, w1, η1, y)]
d1 ×

[Pr(d1 = 1|w1, q1, η1, y)]
d1 [Pr(d1 = 0|w1, q1, η1, y)]

(1−d1) f(η1|w1, y)dη1,

which, after, using the definition of the participation rule, yields:

f(α∗
1, d1|w1, y) =

∫
[f(α∗

1|d1 = 1, w1, η1, y)]
d1 f(d1|w1, η1, y)f(η1|w1, y)dη1 (D5)

If α∗
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wealth and the participation rule.30 To prove that this density is identified under the

presence of sample selection, note that, conditional on participation, for all τ ∈ (0, 1) and

t ≥ 1:

Pr(α∗
it ≤ q(τ, x))|dit = 1,Zit = zit) = Gx(τ, p(zit)) (D6)
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on (yi1, yi2, . . . , yiT ), following similar arguments.
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where I have used Assumption 1b and Bayes’ rule. The mapping Gx(τ, p(zit)) provides the

link between the latent and the observed distribution of risky asset shares in my model.

Notably, what equation (D6) implies is that if Gx(·, ·) is known, then I can recover

q(τ, x), as a quantile of the observed portfolio shares, by suitably shifting percentile

ranks. Subsequently, I would be able to recover the portfolio rule. More formally, under

Assumption 1, and given that the mapping Gx is known, Proposition 1 of Arellano and

Bonhomme (2017a) will hold. Given that this is satisifed, F (α∗
1|d1 = 1, w1, η1, y) and

subsequently, f(α∗
1|d1 = 1, w1, η1, y) are identified nonparametrically.

Second period wealth. Notice that:

f(w2|α1, d1, w1, y, q) =

∫
f(w2|α1, d1, w1, η1, y)f(η1|α1, d1, w1, y)dη1 (D7)

Provided that the distribution (η1|α1, d1, w1, y) is complete in yi = (yi1, yi2, . . . , yiT ), I

can identify the density f(w2|α1, d1, w1, η1, y).

Via Bayes’ rule and Assumption 1a,

f(η2|w2, w1, α1, d1, y, b) =

∫
f(η1, η2|w1, w2, α1, d1, y1)f(y|y1, η1, η2)

f(y|w2, w1, α1, y1)
dη2 (D8)

As f(η1, η2|w1, w2, α1, d1, y1) = f(η1|w1, w2, α1, d1, y1)f(η2|η1) is identified (given that

f(η2|η1) is identified from the earnings process, and f(η1|w1, w2, α1, d1, y1) is identified

from above), it follows that f(η2|w2, w1, α1, d1, y) is identified.

Subsequent periods. To prove the participation rule, notice that:

f(d2|w2, w1, α1, y) =

∫
f(d2|w2, η2, y, q)f(η2|w2, w1, α1, d1, y)dη2. (D9)

Given that (ηi2|wi2, wi1, αi1, di1, y) (which is identified from the previous paragraph) is

complete in (αi1, di1, wi1, yi1, yi3, . . . , yiT ), the density f(d2|w2, η2, y, q) is nonparametri-

cally identified.

In the case of the portfolio rule,

f(α∗
2, d2|w2, w1, y1, α1) =

∫
[f(α∗

2|d2 = 1, w2, η2, y)]
d2 f(η2|d2, b2, w2, w1, α1, d1, y)dν2.

(D10)

As the distribution of (ηi2|wi2, wi1, αi1, di1, y) is complete in (di2, αi1, di1, wi1, yi1, yi3, . . . , yiT )

(which is identified from the participation rule) and under Proposition 1 of Arellano and

Bonhomme (2017a), the distribution F (α∗
2|d2 = 1, w2, η2, y), and subsequently, the den-

sity f(α∗
2|d2 = 1, w2, η2, y) is nonparametrically identified.

Finally, by induction, and using assumptions 1 and Proposition 1 of Arellano and

Bonhomme (2017a) from the third period onward, the joint density of η’s, assets, earn-

ings, portfolio choices, and participation decisions are nonparametrically identified. This
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is provided that, for all t ≥ 1, the distributions of (ηit|αt

i, w
t
i , d

t
i, yi) are complete in

(αt−1
i , wt−1

i , dt−1
i , yt−1

i , yit+1, yiT ).

Intuitively, the identification argument comes from the link to nonparametric instru-

mental variables problems. To see this, note that I can rewrite equation (D3) as

f(w1|y) = E [f(w1|ηi1)|yi = y] (D11)

where I am taking the expectation of the distribution of ηi1 conditional on yi for a given

fixed value of wi1. This is analogous to a nonparametric IV problem where the endogenous

regressor is ηi1 and yi are the excluded instruments. Likewise, I can rewrite equations

(D4) and (D5) as the following functional equations:

f(d1|w1, y) = E [f(d1|ηi1, wi1, yi1)|wi1 = w, yi = y] (D12)

f(α∗
1, d1|w1, y) = E

[
{f(α∗

i1|ηi1, wi1, di1 = 1, yi1)}1{di1=1}|di1 = d, qi1 = q, wi1 = w, yi = y
]

(D13)

In these particular cases, conditional on (wi1, yi1), (yi2, . . . , yiT ) are the “excluded

instruments” for ηi1 with respect to the functional equation that corresponds to the

participation rule. With respect to the portfolio rule, however, I require not only these

“excluded instruments”, but also a participation cost shifter that does not affect the

subsequent portfolio choice.

The identification arguments also rely on completeness conditions, which relate to

the relevance of the excluded instruments. The notion of completeness that I refer to

here relates to the concept of operator injectivity. More formally, a linear operator L is

injective if the only solution h ∈ H1 to the equation Lh = 0 is h = 0. In this paper, L
is the conditional expectation operator. For example, in equation (D11), completeness

implies that the only solution to the equation [Lh](yi) = E [f(w1|ηi1)|yi = y] is h = 0.
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E Estimation strategy

E.1 Model estimation: details

E.1.1 Likelihood function

The likelihood function is:

f(αT
i , η

T
i , ε

T
i , w

T
i ,Zi, d

T
i ; µ̄),=

T∏
t=1

[f(α∗
it|ηit, εit, wit,xit)p(dit = 1|νit, εit, wit, zit)∇C(u, v; c)]dit

×
T∏
t=1

[p(dit = 0|ηit, εit, wit, zit)]
1−dit

T∏
t=2

f(wit|wit−1, ηit−1, yit−1, αit−1,xit)

× f(wi1|ηi1,xi1)
T∏
t=1

f(yit|ηit)
T∏
t=2

f(ηit|ηit−1)f(ηi1) (E14)

where u = F (α∗
it|ηit, εit, wit,xit), v = p(dit = 1|ηit, εit, wit, zit) and ∇C(·, ·; ·) is the first

derivative of the conditional copula with respect to the first argument.

I can simplify the likelihood function further by noting that I can rewrite the condi-

tional copula as follows:

C(u, v; c) =
G(F (α∗

it|ηit, εit, wit,xit), p(dit = 1|ηit, εit, wit, zit); ρc)

p(dit = 1|ηit, εit, wit, zit)
(E15)

where G(·, ·; ρc) is the Gaussian copula. It follows that the first derivative of this function

with respect to the first argument is:

∇G(u, v; c) = Φ

(
Φ−1(v)− ρcΦ

−1(u)√
1− ρ2c

)
(E16)

Substituting the resulting expression for ∇C(u, v; c) to the expression above, the likeli-

hood function simplifies to:

f(αT
i , η

T
i , ε

T
i , w

T
i ,Z

T
i , d

T
i ; µ̄),=

T∏
t=1

[
f(α∗

it|ηit, εit, wit,xit)Φ

(
Φ−1(v)− ρcΦ

−1(u)√
1− ρ2c

)]dit

×
T∏
t=1

[p(dit = 0|ηit, εit, wit, zit)]
1−dit

T∏
t=2

f(wit|wit−1, ηit−1, yit−1, αit−1,xit)f(wi1|ηi1,xi1)

×
T∏
t=1

f(yit|ηit)
T∏
t=2

f(ηit|ηit−1)f(ηi1) (E17)

As the model is fully specified, I can write the likelihood function in closed form. To

focus my discussion, I illustrate the specification for the approximating density function

f(α∗
it|ηit, εit, wit,xit) and cumulative distribution function F (α∗

it|ηit, εit, wit,xit). Notice

55

E Estimation strategy

E.1 Model estimation: details

E.1.1 Likelihood function

The likelihood function is:

f(αT
i , η

T
i , ε

T
i , w

T
i ,Zi, d

T
i ; µ̄),=

T∏
t=1

[f(α∗
it|ηit, εit, wit,xit)p(dit = 1|νit, εit, wit, zit)∇C(u, v; c)]dit

×
T∏
t=1

[p(dit = 0|ηit, εit, wit, zit)]
1−dit

T∏
t=2

f(wit|wit−1, ηit−1, yit−1, αit−1,xit)

× f(wi1|ηi1,xi1)
T∏
t=1

f(yit|ηit)
T∏
t=2

f(ηit|ηit−1)f(ηi1) (E14)

where u = F (α∗
it|ηit, εit, wit,xit), v = p(dit = 1|ηit, εit, wit, zit) and ∇C(·, ·; ·) is the first

derivative of the conditional copula with respect to the first argument.

I can simplify the likelihood function further by noting that I can rewrite the condi-

tional copula as follows:

C(u, v; c) =
G(F (α∗

it|ηit, εit, wit,xit), p(dit = 1|ηit, εit, wit, zit); ρc)

p(dit = 1|ηit, εit, wit, zit)
(E15)

where G(·, ·; ρc) is the Gaussian copula. It follows that the first derivative of this function

with respect to the first argument is:

∇G(u, v; c) = Φ

(
Φ−1(v)− ρcΦ

−1(u)√
1− ρ2c

)
(E16)

Substituting the resulting expression for ∇C(u, v; c) to the expression above, the likeli-

hood function simplifies to:

f(αT
i , η

T
i , ε

T
i , w

T
i ,Z

T
i , d

T
i ; µ̄),=

T∏
t=1

[
f(α∗

it|ηit, εit, wit,xit)Φ

(
Φ−1(v)− ρcΦ

−1(u)√
1− ρ2c

)]dit

×
T∏
t=1

[p(dit = 0|ηit, εit, wit, zit)]
1−dit

T∏
t=2

f(wit|wit−1, ηit−1, yit−1, αit−1,xit)f(wi1|ηi1,xi1)

×
T∏
t=1

f(yit|ηit)
T∏
t=2

f(ηit|ηit−1)f(ηi1) (E17)

As the model is fully specified, I can write the likelihood function in closed form. To

focus my discussion, I illustrate the specification for the approximating density function

f(α∗
it|ηit, εit, wit,xit) and cumulative distribution function F (α∗

it|ηit, εit, wit,xit). Notice

55

E Estimation strategy

E.1 Model estimation: details

E.1.1 Likelihood function

The likelihood function is:

f(αT
i , η

T
i , ε

T
i , w

T
i ,Zi, d

T
i ; µ̄),=

T∏
t=1

[f(α∗
it|ηit, εit, wit,xit)p(dit = 1|νit, εit, wit, zit)∇C(u, v; c)]dit

×
T∏
t=1

[p(dit = 0|ηit, εit, wit, zit)]
1−dit

T∏
t=2

f(wit|wit−1, ηit−1, yit−1, αit−1,xit)

× f(wi1|ηi1,xi1)
T∏
t=1

f(yit|ηit)
T∏
t=2

f(ηit|ηit−1)f(ηi1) (E14)

where u = F (α∗
it|ηit, εit, wit,xit), v = p(dit = 1|ηit, εit, wit, zit) and ∇C(·, ·; ·) is the first

derivative of the conditional copula with respect to the first argument.

I can simplify the likelihood function further by noting that I can rewrite the condi-

tional copula as follows:

C(u, v; c) =
G(F (α∗

it|ηit, εit, wit,xit), p(dit = 1|ηit, εit, wit, zit); ρc)

p(dit = 1|ηit, εit, wit, zit)
(E15)

where G(·, ·; ρc) is the Gaussian copula. It follows that the first derivative of this function

with respect to the first argument is:

∇G(u, v; c) = Φ

(
Φ−1(v)− ρcΦ

−1(u)√
1− ρ2c

)
(E16)

Substituting the resulting expression for ∇C(u, v; c) to the expression above, the likeli-

hood function simplifies to:

f(αT
i , η

T
i , ε

T
i , w

T
i ,Z

T
i , d

T
i ; µ̄),=

T∏
t=1

[
f(α∗

it|ηit, εit, wit,xit)Φ

(
Φ−1(v)− ρcΦ

−1(u)√
1− ρ2c

)]dit

×
T∏
t=1

[p(dit = 0|ηit, εit, wit, zit)]
1−dit

T∏
t=2

f(wit|wit−1, ηit−1, yit−1, αit−1,xit)f(wi1|ηi1,xi1)

×
T∏
t=1

f(yit|ηit)
T∏
t=2

f(ηit|ηit−1)f(ηi1) (E17)

As the model is fully specified, I can write the likelihood function in closed form. To

focus my discussion, I illustrate the specification for the approximating density function

f(α∗
it|ηit, εit, wit,xit) and cumulative distribution function F (α∗

it|ηit, εit, wit,xit). Notice

55

E Estimation strategy

E.1 Model estimation: details

E.1.1 Likelihood function

The likelihood function is:

f(αT
i , η

T
i , ε

T
i , w

T
i ,Zi, d

T
i ; µ̄),=

T∏
t=1

[f(α∗
it|ηit, εit, wit,xit)p(dit = 1|νit, εit, wit, zit)∇C(u, v; c)]dit

×
T∏
t=1

[p(dit = 0|ηit, εit, wit, zit)]
1−dit

T∏
t=2

f(wit|wit−1, ηit−1, yit−1, αit−1,xit)

× f(wi1|ηi1,xi1)
T∏
t=1

f(yit|ηit)
T∏
t=2

f(ηit|ηit−1)f(ηi1) (E14)

where u = F (α∗
it|ηit, εit, wit,xit), v = p(dit = 1|ηit, εit, wit, zit) and ∇C(·, ·; ·) is the first

derivative of the conditional copula with respect to the first argument.

I can simplify the likelihood function further by noting that I can rewrite the condi-

tional copula as follows:

C(u, v; c) =
G(F (α∗

it|ηit, εit, wit,xit), p(dit = 1|ηit, εit, wit, zit); ρc)

p(dit = 1|ηit, εit, wit, zit)
(E15)

where G(·, ·; ρc) is the Gaussian copula. It follows that the first derivative of this function

with respect to the first argument is:

∇G(u, v; c) = Φ

(
Φ−1(v)− ρcΦ

−1(u)√
1− ρ2c

)
(E16)

Substituting the resulting expression for ∇C(u, v; c) to the expression above, the likeli-

hood function simplifies to:

f(αT
i , η

T
i , ε

T
i , w

T
i ,Z

T
i , d

T
i ; µ̄),=

T∏
t=1

[
f(α∗

it|ηit, εit, wit,xit)Φ

(
Φ−1(v)− ρcΦ

−1(u)√
1− ρ2c

)]dit

×
T∏
t=1

[p(dit = 0|ηit, εit, wit, zit)]
1−dit

T∏
t=2

f(wit|wit−1, ηit−1, yit−1, αit−1,xit)f(wi1|ηi1,xi1)

×
T∏
t=1

f(yit|ηit)
T∏
t=2

f(ηit|ηit−1)f(ηi1) (E17)

As the model is fully specified, I can write the likelihood function in closed form. To

focus my discussion, I illustrate the specification for the approximating density function

f(α∗
it|ηit, εit, wit,xit) and cumulative distribution function F (α∗

it|ηit, εit, wit,xit). Notice

55

E Estimation strategy

E.1 Model estimation: details

E.1.1 Likelihood function

The likelihood function is:

f(αT
i , η

T
i , ε

T
i , w

T
i ,Zi, d

T
i ; µ̄),=

T∏
t=1

[f(α∗
it|ηit, εit, wit,xit)p(dit = 1|νit, εit, wit, zit)∇C(u, v; c)]dit

×
T∏
t=1

[p(dit = 0|ηit, εit, wit, zit)]
1−dit

T∏
t=2

f(wit|wit−1, ηit−1, yit−1, αit−1,xit)

× f(wi1|ηi1,xi1)
T∏
t=1

f(yit|ηit)
T∏
t=2

f(ηit|ηit−1)f(ηi1) (E14)

where u = F (α∗
it|ηit, εit, wit,xit), v = p(dit = 1|ηit, εit, wit, zit) and ∇C(·, ·; ·) is the first

derivative of the conditional copula with respect to the first argument.

I can simplify the likelihood function further by noting that I can rewrite the condi-

tional copula as follows:

C(u, v; c) =
G(F (α∗

it|ηit, εit, wit,xit), p(dit = 1|ηit, εit, wit, zit); ρc)

p(dit = 1|ηit, εit, wit, zit)
(E15)

where G(·, ·; ρc) is the Gaussian copula. It follows that the first derivative of this function

with respect to the first argument is:

∇G(u, v; c) = Φ

(
Φ−1(v)− ρcΦ

−1(u)√
1− ρ2c

)
(E16)

Substituting the resulting expression for ∇C(u, v; c) to the expression above, the likeli-

hood function simplifies to:

f(αT
i , η

T
i , ε

T
i , w

T
i ,Z

T
i , d

T
i ; µ̄),=

T∏
t=1

[
f(α∗

it|ηit, εit, wit,xit)Φ

(
Φ−1(v)− ρcΦ

−1(u)√
1− ρ2c

)]dit

×
T∏
t=1

[p(dit = 0|ηit, εit, wit, zit)]
1−dit

T∏
t=2

f(wit|wit−1, ηit−1, yit−1, αit−1,xit)f(wi1|ηi1,xi1)

×
T∏
t=1

f(yit|ηit)
T∏
t=2

f(ηit|ηit−1)f(ηi1) (E17)

As the model is fully specified, I can write the likelihood function in closed form. To

focus my discussion, I illustrate the specification for the approximating density function

f(α∗
it|ηit, εit, wit,xit) and cumulative distribution function F (α∗

it|ηit, εit, wit,xit). Notice

55

E Estimation strategy

E.1 Model estimation: details

E.1.1 Likelihood function

The likelihood function is:

f(αT
i , η

T
i , ε

T
i , w

T
i ,Zi, d

T
i ; µ̄),=

T∏
t=1

[f(α∗
it|ηit, εit, wit,xit)p(dit = 1|νit, εit, wit, zit)∇C(u, v; c)]dit

×
T∏
t=1

[p(dit = 0|ηit, εit, wit, zit)]
1−dit

T∏
t=2

f(wit|wit−1, ηit−1, yit−1, αit−1,xit)

× f(wi1|ηi1,xi1)
T∏
t=1

f(yit|ηit)
T∏
t=2

f(ηit|ηit−1)f(ηi1) (E14)

where u = F (α∗
it|ηit, εit, wit,xit), v = p(dit = 1|ηit, εit, wit, zit) and ∇C(·, ·; ·) is the first

derivative of the conditional copula with respect to the first argument.

I can simplify the likelihood function further by noting that I can rewrite the condi-

tional copula as follows:

C(u, v; c) =
G(F (α∗

it|ηit, εit, wit,xit), p(dit = 1|ηit, εit, wit, zit); ρc)

p(dit = 1|ηit, εit, wit, zit)
(E15)

where G(·, ·; ρc) is the Gaussian copula. It follows that the first derivative of this function

with respect to the first argument is:

∇G(u, v; c) = Φ

(
Φ−1(v)− ρcΦ

−1(u)√
1− ρ2c

)
(E16)

Substituting the resulting expression for ∇C(u, v; c) to the expression above, the likeli-

hood function simplifies to:

f(αT
i , η

T
i , ε

T
i , w

T
i ,Z

T
i , d

T
i ; µ̄),=

T∏
t=1

[
f(α∗

it|ηit, εit, wit,xit)Φ

(
Φ−1(v)− ρcΦ

−1(u)√
1− ρ2c

)]dit

×
T∏
t=1

[p(dit = 0|ηit, εit, wit, zit)]
1−dit

T∏
t=2

f(wit|wit−1, ηit−1, yit−1, αit−1,xit)f(wi1|ηi1,xi1)

×
T∏
t=1

f(yit|ηit)
T∏
t=2

f(ηit|ηit−1)f(ηi1) (E17)

As the model is fully specified, I can write the likelihood function in closed form. To

focus my discussion, I illustrate the specification for the approximating density function

f(α∗
it|ηit, εit, wit,xit) and cumulative distribution function F (α∗

it|ηit, εit, wit,xit). Notice

55



BANCO DE ESPAÑA 61 DOCUMENTO DE TRABAJO N.º 2327

that I can write the approximating outcome density as:

f(α∗
it|ηit, εit, wit,xit) =

[
L−1∑
l=1

τl+1 − τl∑K
k=0 φk(ηit, εit, wit, ageit)(bakl+1 − bakl)

×1

{
K∑
k=0

baklφk(ηit, εit, wit, ageit) < Λ−1(α∗
it) ≤

K∑
k=0

bakl+1φk(ηit, εit, wit, ageit)

}]

+ λa
−τ1e

λa
−(Λ−1(α∗

it)−
∑K

k=0 b
a
k1φk(ηit,εit,wit,ageit))1

{
Λ−1(α∗

it) <
K∑
k=0

bak1φk(ηit, εit, wit, ageit)

}

+λa
+(1−τL)e

−λa
+(Λ−1(α∗

it)−
∑K

k=0 b
a
kLφk(ηit,εit,wit,ageit))1

{
Λ−1(α∗

it) ≥
K∑
k=0

bakLφk(ηit, εit, wit, ageit)

}

where I proceed with an exponential modelling of the tails.

The approximating conditional distribution functions are:

F (α∗
it|ηit, εit, wit,xit) =

[
L−1∑
l=1

τl + (τl+1 − τl)
Λ−1(α∗
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where G(·, ·; ρc) is the Gaussian copula. It follows that the first derivative of this function

with respect to the first argument is:
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Substituting the resulting expression for ∇C(u, v; c) to the expression above, the likeli-
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As the model is fully specified, I can write the likelihood function in closed form. To

focus my discussion, I illustrate the specification for the approximating density function

f(α∗
it|ηit, εit, wit,xit) and cumulative distribution function F (α∗

it|ηit, εit, wit,xit). Notice
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that I can write the approximating outcome density as:

f(α∗
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L−1∑
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τl+1 − τl∑K
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}]

+ λa
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−(Λ−1(α∗

it)−
∑K

k=0 b
a
k1φk(ηit,εit,wit,ageit))1

{
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it) <
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}

+λa
+(1−τL)e

−λa
+(Λ−1(α∗

it)−
∑K

k=0 b
a
kLφk(ηit,εit,wit,ageit))1

{
Λ−1(α∗

it) ≥
K∑
k=0

bakLφk(ηit, εit, wit, ageit)

}

where I proceed with an exponential modelling of the tails.

The approximating conditional distribution functions are:

F (α∗
it|ηit, εit, wit,xit) =
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)
1

{
Λ−1(α∗

it) <
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}

+
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(
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+(Λ−1(α∗
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∑K
k=0 b

a
kLφk(ηit,εit,wit,ageit))

)]

1

{
Λ−1(α∗

it)× ≥
K∑
k=0

bakLφk(ηit, εit, wit, ageit).

}

E.1.2 Estimation algorithm: details

Start with θ(0). Then, iterate on s = 0, 1, 2, . . . the following two steps:

Stochastic E-step: Draw M values η
(m)
i =

(
η
(m)
i1 , . . . , η

(m)
iT

)
from
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T
i , ε
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i , w
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(s)),=
T∏
t=1

[
f(α∗

it|ηit, εit, wit,xit; θ̂
(s))Φ

(
Φ−1(v)− ρcΦ

−1(u)√
1− ρ2c

; θ̂(s)

)]dit

×
T∏
t=1

[
p(dit = 0|ηit, εit, wit, zit; θ̂

(s))
]1−dit

T∏
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×
T∏
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f(yit|ηit; θ̂)
T∏
t=2

f(ηit|ηit−1; θ̂)f(ηi1; θ̂) (E18)
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M-step: Compute, for all l = 1, . . . , L:

(bP,(s+1)
0 , . . . ,bP,(s+1)

K ) = argmax
(b

P,(s+1)
0 ,...,b

P,(s+1)
K )

T
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N
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M
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dit log Λ


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bpkφk(η
(m)
it , εit, wit, ageit)



+ (1− dit) log


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
K
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(m)
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
(E19)
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
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i=1

M
m=1


wit −

K
k=1

bmk φk(η
(m)
it−1, εit−1, wit−1, αit−1, ageit)

2

(E22)

(bw,(s+1)
0l , . . . ,bw,(s+1)

Kl ) = argmin
(b

w,(s+1)
0l ,...,b

w,(s+1)
Kl )

N
i=1

M
m=1

τl


wi1 −

K
k=0

bwkl φk(η
(m)
i1 , agei1)

+

+ (1− τl)


wi1 −

K
k=0

bwkl φk(η
(m)
i1 , agei1)

−

(E23)

For the tail parameters, I calculate the following:

λ
a,(s+1)
− = −

T
t=1

N
i=1

M
m=1 1{Λ−1(α∗

it) ≤
K

k=0
bak1φk(·)}T

t=1

N
i=1

M
m=1


Λ−1(α∗

it)−
K

k=0
bak1φk(·))


1{Λ−1(α∗

it) ≤
K

k=0
bak1φk(·)}

,

(E24)

where φk(·) = φk(η
(m)
it , εit, wit, ageit), with similar updating rules for the other tail pa-

rameters.
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that I can write the approximating outcome density as:

f(α∗
it|ηit, εit, wit,xit) =

[
L−1∑
l=1

τl+1 − τl∑K
k=0 φk(ηit, εit, wit, ageit)(bakl+1 − bakl)

×1

{
K∑
k=0

baklφk(ηit, εit, wit, ageit) < Λ−1(α∗
it) ≤

K∑
k=0

bakl+1φk(ηit, εit, wit, ageit)

}]

+ λa
−τ1e

λa
−(Λ−1(α∗

it)−
∑K

k=0 b
a
k1φk(ηit,εit,wit,ageit))1

{
Λ−1(α∗

it) <
K∑
k=0

bak1φk(ηit, εit, wit, ageit)

}

+λa
+(1−τL)e

−λa
+(Λ−1(α∗

it)−
∑K

k=0 b
a
kLφk(ηit,εit,wit,ageit))1

{
Λ−1(α∗

it) ≥
K∑
k=0

bakLφk(ηit, εit, wit, ageit)

}

where I proceed with an exponential modelling of the tails.

The approximating conditional distribution functions are:

F (α∗
it|ηit, εit, wit,xit) =

[
L−1∑
l=1

τl + (τl+1 − τl)
Λ−1(α∗

it)−
∑K

k=0 b
a
klφk(ηit, εit, wit, ageit)∑K

k=0 φk(ηit, εit, wit, ageit)(bakl+1 − bakl)

×1

{
K∑
k=0

baklφk(ηit, εit, wit, ageit) < Λ−1(α∗
it) ≤

K∑
k=0

bakl+1φk(ηit, εit, wit, ageit)

}]

+ τ1

(
eλ

a
−(Λ−1(α∗

it)−
∑K

k=0 b
a
k1φk(ηit,εit,wit,ageit))

)
1

{
Λ−1(α∗

it) <
K∑
k=0

bak1φk(ηit, εit, wit, ageit)

}

+
[
τL + (1− τL)

(
1− e−λa

+(Λ−1(α∗
it)−

∑K
k=0 b

a
kLφk(ηit,εit,wit,ageit))

)]

1

{
Λ−1(α∗

it)× ≥
K∑
k=0

bakLφk(ηit, εit, wit, ageit).

}

E.1.2 Estimation algorithm: details

Start with θ(0). Then, iterate on s = 0, 1, 2, . . . the following two steps:

Stochastic E-step: Draw M values η
(m)
i =

(
η
(m)
i1 , . . . , η

(m)
iT

)
from

f(αT
i , η

T
i , ε

T
i , w

T
i ,Z

T
i , d

T
i ; θ̂

(s)),=
T∏
t=1

[
f(α∗

it|ηit, εit, wit,xit; θ̂
(s))Φ

(
Φ−1(v)− ρcΦ

−1(u)√
1− ρ2c

; θ̂(s)

)]dit

×
T∏
t=1

[
p(dit = 0|ηit, εit, wit, zit; θ̂

(s))
]1−dit

T∏
t=2

f(wit|wit−1, ηit−1, yit−1, αit−1,xit; θ̂
(s))f(wi1|ηi1,xi1; θ̂

(s))

×
T∏
t=1

f(yit|ηit; θ̂)
T∏
t=2

f(ηit|ηit−1; θ̂)f(ηi1; θ̂) (E18)
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M-step: Compute, for all l = 1, . . . , L:

(bP,(s+1)
0 , . . . ,bP,(s+1)

K ) = argmax
(b

P,(s+1)
0 ,...,b

P,(s+1)
K )

T
t=1

N
i=1

M
m=1

dit log Λ


K
k=0

bpkφk(η
(m)
it , εit, wit, ageit)



+ (1− dit) log


1− Λ


K
k=0

bpkφk(η
(m)
it , εit, wit, ageit)


(E19)

ρ(s+1)
c = argmin

ρc


N
i=1

T
t=1

M
m=1

ditΥ(τl,xit)


1


Λ−1(α∗

it) ≤
K
k=0

bakl(c)φk(·)


−G(τl, p(xit); ρc)


(E20)

(ba,(s+1)
0l , . . . ,ba,(s+1)

Kl ) = argmin
(b

a,(s+1)
0l ,...,b

a,(s+1)
Kl )

T
t=1

N
i=1

M
m=1

dit


G(τl, p(xit); ρc)


Λ−1(α∗

it)−
K

k=0

baklφk(η
(m)
it , εit, wit, ageit)

+

+(1−G(τl, p(xit); ρc))


Λ−1(α∗

it)−
K

k=0

baklφk(η
(m)
it , εit, wit, ageit)

−
 (E21)

(bm,(s+1)
0 , . . . ,bm,(s+1)

K ) = argmin
(b

m,(s+1)
0 ,...,b

m,(s+1)
K )

T
t=2

N
i=1

M
m=1


wit −

K
k=1

bmk φk(η
(m)
it−1, εit−1, wit−1, αit−1, ageit)

2

(E22)

(bw,(s+1)
0l , . . . ,bw,(s+1)

Kl ) = argmin
(b

w,(s+1)
0l ,...,b

w,(s+1)
Kl )

N
i=1

M
m=1

τl


wi1 −

K
k=0

bwkl φk(η
(m)
i1 , agei1)

+

+ (1− τl)


wi1 −

K
k=0

bwkl φk(η
(m)
i1 , agei1)

−

(E23)

For the tail parameters, I calculate the following:

λ
a,(s+1)
− = −

T
t=1

N
i=1

M
m=1 1{Λ−1(α∗

it) ≤
K

k=0
bak1φk(·)}T

t=1

N
i=1

M
m=1


Λ−1(α∗

it)−
K

k=0
bak1φk(·))


1{Λ−1(α∗

it) ≤
K

k=0
bak1φk(·)}

,

(E24)

where φk(·) = φk(η
(m)
it , εit, wit, ageit), with similar updating rules for the other tail pa-

rameters.
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E.2 Buchinsky and Hahn (1998) censored quantile regression
estimation

E.2.1 Nonlinear reduced form and model specification

The equivalent nonlinear reduced form that corresponds to the Buchinsky and Hahn

(1998) model is the following:

α∗
it = gt(ηit, εit, wit,Xit, uit) (E25)

αit = α∗
it · dit (E26)

dit =

{
1, if mt(ηit, εit, wit, q(Xit)) ≤ uit

0, otherwise
(E27)

wit = ht(ηit−1, εit−1, wit−1, αit−1,Xit, ζit) (E28)

wi0 unrestricted (E29)

The specification outlined here is similar to the one outlined in the main text. There are

two main differences: the first is that the variables that determine participation are the

same as the ones that determine the outcome, and the second is that the error terms of

equations (E25) and (E27) are the same.

E.2.2 Model specification and estimation algorithm

Participation rule. Most of the model specifications outlined in the main text remain to

be the same when I move to the model of Buchinsky and Hahn (1998); the main difference

is in the participation rule, equation (E27). The specification now becomes:

Pr(dit = 1|ηit, εit, wit, ageit,Xit) = Λ

(
K∑
k=0

bpkφk(ηit, εit, wit, ageit) + γpXit

)
(E30)

where Λ(·) is the logistic function and ϕk is a dictionary of functions.31

Overview of the estimation algorithm. The M-step that corresponds with Buchinsky

and Hahn (1998) is characterized by the following steps. First, I estimate the participation

rule:

max
(bP0 ,...,bPK ,γP )

N∑
i=1

T∑
t=1

M∑
m=1

dit log

[
Λ

(
K∑
k=0

bpkφk(ηit, εit, wit, ageit) + γpXit

)]

+ (1− dit) log

[
1− Λ

(
K∑
k=0

bpkφk(ηit, εit, wit, ageit) + γpXit

)]
. (E31)

31Buchinsky and Hahn (1998) propose to estimate the propensity score with a nonparametric kernel
density estimator, as the propensity score depends on the latent distribution of outcomes. However, this
leads to a less computationally tractable estimation procedure in the context of the nonlinear reduced
form model. Hence, I specify the propensity score with this model. An added advantage is the possibility
of calculating extensive margins of income components and wealth.
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M-step: Compute, for all l = 1, . . . , L:

(bP,(s+1)
0 , . . . ,bP,(s+1)

K ) = argmax
(b

P,(s+1)
0 ,...,b

P,(s+1)
K )

T
t=1

N
i=1

M
m=1

dit log Λ


K
k=0

bpkφk(η
(m)
it , εit, wit, ageit)



+ (1− dit) log


1− Λ


K
k=0

bpkφk(η
(m)
it , εit, wit, ageit)


(E19)

ρ(s+1)
c = argmin

ρc


N
i=1

T
t=1

M
m=1

ditΥ(τl,xit)


1


Λ−1(α∗

it) ≤
K
k=0

bakl(c)φk(·)


−G(τl, p(xit); ρc)


(E20)

(ba,(s+1)
0l , . . . ,ba,(s+1)

Kl ) = argmin
(b

a,(s+1)
0l ,...,b

a,(s+1)
Kl )

T
t=1

N
i=1

M
m=1

dit


G(τl, p(xit); ρc)


Λ−1(α∗

it)−
K

k=0

baklφk(η
(m)
it , εit, wit, ageit)

+

+(1−G(τl, p(xit); ρc))


Λ−1(α∗

it)−
K

k=0

baklφk(η
(m)
it , εit, wit, ageit)

−
 (E21)

(bm,(s+1)
0 , . . . ,bm,(s+1)

K ) = argmin
(b

m,(s+1)
0 ,...,b

m,(s+1)
K )

T
t=2

N
i=1

M
m=1


wit −

K
k=1

bmk φk(η
(m)
it−1, εit−1, wit−1, αit−1, ageit)

2

(E22)

(bw,(s+1)
0l , . . . ,bw,(s+1)

Kl ) = argmin
(b

w,(s+1)
0l ,...,b

w,(s+1)
Kl )

N
i=1

M
m=1

τl


wi1 −

K
k=0

bwkl φk(η
(m)
i1 , agei1)

+

+ (1− τl)


wi1 −

K
k=0

bwkl φk(η
(m)
i1 , agei1)

−

(E23)

For the tail parameters, I calculate the following:

λ
a,(s+1)
− = −

T
t=1

N
i=1

M
m=1 1{Λ−1(α∗

it) ≤
K

k=0
bak1φk(·)}T

t=1

N
i=1

M
m=1


Λ−1(α∗

it)−
K

k=0
bak1φk(·))


1{Λ−1(α∗

it) ≤
K

k=0
bak1φk(·)}

,

(E24)

where φk(·) = φk(η
(m)
it , εit, wit, ageit), with similar updating rules for the other tail pa-

rameters.
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M-step: Compute, for all l = 1, . . . , L:

(bP,(s+1)
0 , . . . ,bP,(s+1)

K ) = argmax
(b

P,(s+1)
0 ,...,b

P,(s+1)
K )

T
t=1

N
i=1

M
m=1

dit log Λ


K
k=0

bpkφk(η
(m)
it , εit, wit, ageit)



+ (1− dit) log


1− Λ


K
k=0

bpkφk(η
(m)
it , εit, wit, ageit)


(E19)

ρ(s+1)
c = argmin

ρc


N
i=1

T
t=1

M
m=1

ditΥ(τl,xit)


1


Λ−1(α∗

it) ≤
K
k=0

bakl(c)φk(·)


−G(τl, p(xit); ρc)


(E20)

(ba,(s+1)
0l , . . . ,ba,(s+1)

Kl ) = argmin
(b

a,(s+1)
0l ,...,b

a,(s+1)
Kl )

T
t=1

N
i=1

M
m=1

dit


G(τl, p(xit); ρc)


Λ−1(α∗

it)−
K

k=0

baklφk(η
(m)
it , εit, wit, ageit)

+

+(1−G(τl, p(xit); ρc))


Λ−1(α∗

it)−
K

k=0

baklφk(η
(m)
it , εit, wit, ageit)

−
 (E21)

(bm,(s+1)
0 , . . . ,bm,(s+1)

K ) = argmin
(b

m,(s+1)
0 ,...,b

m,(s+1)
K )

T
t=2

N
i=1

M
m=1


wit −

K
k=1

bmk φk(η
(m)
it−1, εit−1, wit−1, αit−1, ageit)

2

(E22)

(bw,(s+1)
0l , . . . ,bw,(s+1)

Kl ) = argmin
(b

w,(s+1)
0l ,...,b

w,(s+1)
Kl )

N
i=1

M
m=1

τl


wi1 −

K
k=0

bwkl φk(η
(m)
i1 , agei1)

+

+ (1− τl)


wi1 −

K
k=0

bwkl φk(η
(m)
i1 , agei1)

−

(E23)

For the tail parameters, I calculate the following:
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(E24)

where φk(·) = φk(η
(m)
it , εit, wit, ageit), with similar updating rules for the other tail pa-

rameters.
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−G(τl, p(xit); ρc)


(E20)

(ba,(s+1)
0l , . . . ,ba,(s+1)

Kl ) = argmin
(b

a,(s+1)
0l ,...,b

a,(s+1)
Kl )

T
t=1

N
i=1

M
m=1

dit


G(τl, p(xit); ρc)


Λ−1(α∗

it)−
K

k=0

baklφk(η
(m)
it , εit, wit, ageit)

+

+(1−G(τl, p(xit); ρc))


Λ−1(α∗

it)−
K

k=0

baklφk(η
(m)
it , εit, wit, ageit)

−
 (E21)

(bm,(s+1)
0 , . . . ,bm,(s+1)

K ) = argmin
(b

m,(s+1)
0 ,...,b

m,(s+1)
K )

T
t=2

N
i=1

M
m=1


wit −

K
k=1

bmk φk(η
(m)
it−1, εit−1, wit−1, αit−1, ageit)

2

(E22)

(bw,(s+1)
0l , . . . ,bw,(s+1)

Kl ) = argmin
(b

w,(s+1)
0l ,...,b

w,(s+1)
Kl )

N
i=1

M
m=1

τl


wi1 −

K
k=0

bwkl φk(η
(m)
i1 , agei1)

+

+ (1− τl)


wi1 −

K
k=0

bwkl φk(η
(m)
i1 , agei1)

−

(E23)

For the tail parameters, I calculate the following:

λ
a,(s+1)
− = −

T
t=1

N
i=1

M
m=1 1{Λ−1(α∗

it) ≤
K

k=0
bak1φk(·)}T

t=1

N
i=1

M
m=1


Λ−1(α∗

it)−
K

k=0
bak1φk(·))


1{Λ−1(α∗

it) ≤
K

k=0
bak1φk(·)}

,

(E24)

where φk(·) = φk(η
(m)
it , εit, wit, ageit), with similar updating rules for the other tail pa-

rameters.
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E.2 Buchinsky and Hahn (1998) censored quantile regression
estimation

E.2.1 Nonlinear reduced form and model specification

The equivalent nonlinear reduced form that corresponds to the Buchinsky and Hahn

(1998) model is the following:

α∗
it = gt(ηit, εit, wit,Xit, uit) (E25)

αit = α∗
it · dit (E26)

dit =

{
1, if mt(ηit, εit, wit, q(Xit)) ≤ uit

0, otherwise
(E27)

wit = ht(ηit−1, εit−1, wit−1, αit−1,Xit, ζit) (E28)

wi0 unrestricted (E29)

The specification outlined here is similar to the one outlined in the main text. There are

two main differences: the first is that the variables that determine participation are the

same as the ones that determine the outcome, and the second is that the error terms of

equations (E25) and (E27) are the same.

E.2.2 Model specification and estimation algorithm

Participation rule. Most of the model specifications outlined in the main text remain to

be the same when I move to the model of Buchinsky and Hahn (1998); the main difference

is in the participation rule, equation (E27). The specification now becomes:

Pr(dit = 1|ηit, εit, wit, ageit,Xit) = Λ

(
K∑
k=0

bpkφk(ηit, εit, wit, ageit) + γpXit

)
(E30)

where Λ(·) is the logistic function and ϕk is a dictionary of functions.31

Overview of the estimation algorithm. The M-step that corresponds with Buchinsky

and Hahn (1998) is characterized by the following steps. First, I estimate the participation

rule:

max
(bP0 ,...,bPK ,γP )

N∑
i=1

T∑
t=1

M∑
m=1

dit log

[
Λ

(
K∑
k=0

bpkφk(ηit, εit, wit, ageit) + γpXit

)]

+ (1− dit) log

[
1− Λ

(
K∑
k=0

bpkφk(ηit, εit, wit, ageit) + γpXit

)]
. (E31)

31Buchinsky and Hahn (1998) propose to estimate the propensity score with a nonparametric kernel
density estimator, as the propensity score depends on the latent distribution of outcomes. However, this
leads to a less computationally tractable estimation procedure in the context of the nonlinear reduced
form model. Hence, I specify the propensity score with this model. An added advantage is the possibility
of calculating extensive margins of income components and wealth.
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)]

+ (1− dit) log
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31Buchinsky and Hahn (1998) propose to estimate the propensity score with a nonparametric kernel
density estimator, as the propensity score depends on the latent distribution of outcomes. However, this
leads to a less computationally tractable estimation procedure in the context of the nonlinear reduced
form model. Hence, I specify the propensity score with this model. An added advantage is the possibility
of calculating extensive margins of income components and wealth.
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From here, I can compute the propensity score p(xit); that is, the probability that a

household participates in the stock market. In the second step, I estimate the following

censored quantile regression, which updates the parameters of the portfolio rule:

min
(ba0 ,...,b

a
K)

N
i=1

T
t=2

M
m=1

dit1{hτ (xit) > 0}


hτ (xit)


Λ−1(α∗

it)−
K
k=0

bak(τ)φk(ηit, εit, wit, ageit) + γa(τ)′Xit

+

+(1− hτ (xit))


Λ−1(α∗

it)−
K
k=0

bak(τ)φk(ηit, εit, wit, ageit) + γa(τ)′Xit

−
 (E32)

where hτ (xit) = τ+p(xit)−1
p(xit)

. The role of this function is to “shift” the mass from the

unobserved to the observed part of the distribution of portolio shares. In fact, hτ (xit)

provides the link between Buchinsky and Hahn (1998) and Arellano and Bonhomme

(2017a). This is because the conditional copula of the error terms of the participation

and portfolio rules when there is no exclusion restriction and where the error terms are

the same is the lower Fréchet bound, i.e., G−(τ, p) = max


τ+p(xit)−1
p(xit)

, 0

.

As the model restrictions and implementation are similar as in the main text, I do

not outline them here. I show, however, the likelihood function implied by the model.

Likelihood function. The corresponding likelihood function has the following form:

f(αT
i , η

T
i , ε

T
i ,m

T
i ,Xi, d

T
i ; θ̄) =

T
t=1

[f(α∗
it|ηit, εit,mit,xit)p(dit = 1|ηit, εit,mit,xit)∇C(u, v; c)]dit

×
T
t=1

[p(dit = 0|ηit, εit,mit,xit)]
1−dit

T
t=2

f(mit|mit−1, ηit−1, yit−1, αit−1,xit)

× f(mi1|ηi1,xi1)
T
t=1

f(yit|ηit)
T
t=2

f(ηit|ηit−1)f(ηi1) (E33)

I can simplify the likelihood function further by noting that I can rewrite the lower

Fréchet bound as follows:

C(u, v; c) =


τ+p(xit)−1

p(xit)
, if p(xit) > 1− τ

0, otherwise

It follows that the first derivative of this function with respect to the first argument is:

∇C(u, v; c) =


1

p(xit)
, if p(xit) > 1− τ

0, otherwise
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0, otherwise
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The specification outlined here is similar to the one outlined in the main text. There are

two main differences: the first is that the variables that determine participation are the

same as the ones that determine the outcome, and the second is that the error terms of

equations (E25) and (E27) are the same.

E.2.2 Model specification and estimation algorithm

Participation rule. Most of the model specifications outlined in the main text remain to

be the same when I move to the model of Buchinsky and Hahn (1998); the main difference

is in the participation rule, equation (E27). The specification now becomes:

Pr(dit = 1|ηit, εit, wit, ageit,Xit) = Λ

(
K∑
k=0

bpkφk(ηit, εit, wit, ageit) + γpXit

)
(E30)

where Λ(·) is the logistic function and ϕk is a dictionary of functions.31

Overview of the estimation algorithm. The M-step that corresponds with Buchinsky

and Hahn (1998) is characterized by the following steps. First, I estimate the participation

rule:

max
(bP0 ,...,bPK ,γP )

N∑
i=1

T∑
t=1

M∑
m=1

dit log

[
Λ

(
K∑
k=0

bpkφk(ηit, εit, wit, ageit) + γpXit

)]

+ (1− dit) log

[
1− Λ

(
K∑
k=0

bpkφk(ηit, εit, wit, ageit) + γpXit

)]
. (E31)

31Buchinsky and Hahn (1998) propose to estimate the propensity score with a nonparametric kernel
density estimator, as the propensity score depends on the latent distribution of outcomes. However, this
leads to a less computationally tractable estimation procedure in the context of the nonlinear reduced
form model. Hence, I specify the propensity score with this model. An added advantage is the possibility
of calculating extensive margins of income components and wealth.
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Substituting this, the likelihood function above simplifies to:

f(αT
i , η

T
i , ε

T
i ,m

T
i ,Xi, d

T
i ; θ̄) =

T∏
t=1

[f(α∗
it|ηit, εit,mit,xit)]

dit

T∏
t=1

[p(dit = 0|ηit, εit,mit,xit)]
1−dit

×
T∏
t=2

f(mit|mit−1, ηit−1, yit−1, αit−1,xit)f(mi1|ηi1,xi1)

×
T∏
t=1

f(yit|ηit)
T∏
t=2

f(ηit|ηit−1)f(ηi1) (E34)

F Additional empirical evidence

Figure F1: Average derivative effect of the persistent component of income ηit, Buchinsky
and Hahn (1998)
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Note: The graphs show average derivatives of the propensity score and the risky asset share of stock

market participants, respectively, with respect to wealth wit given wit, persistent component ηit, income

yit, and age ageit, evaluated at different values of wit and ageit that correspond to their τwealth and τage

percentiles. All results are based on estimates from the semi-structural model with the Buchinsky and

Hahn (1998) censored quantile regression estimator.

60

Substituting this, the likelihood function above simplifies to:

f(αT
i , η

T
i , ε

T
i ,m

T
i ,Xi, d

T
i ; θ̄) =

T∏
t=1

[f(α∗
it|ηit, εit,mit,xit)]

dit

T∏
t=1

[p(dit = 0|ηit, εit,mit,xit)]
1−dit

×
T∏
t=2

f(mit|mit−1, ηit−1, yit−1, αit−1,xit)f(mi1|ηi1,xi1)

×
T∏
t=1

f(yit|ηit)
T∏
t=2

f(ηit|ηit−1)f(ηi1) (E34)

F Additional empirical evidence

Figure F1: Average derivative effect of the persistent component of income ηit, Buchinsky
and Hahn (1998)

(a) Propensity score

-0.12
1

-0.06

0.8 1

0

Pa
rti

ci
pa

tio
n 

re
sp

on
se

0.6 0.8

0.06

percentile wealth

0.6

percentile age

0.4

0.12

0.40.2 0.2
0 0

(b) Risky asset share

1

-0.1

-0.05

0.8 1

0

Po
rtf

ol
io

 re
sp

on
se

0.05

0.6 0.8

percentile wealth

0.1

0.6

percentile age

0.4

0.15

0.40.2 0.2
0 0

Note: The graphs show average derivatives of the propensity score and the risky asset share of stock

market participants, respectively, with respect to wealth wit given wit, persistent component ηit, income

yit, and age ageit, evaluated at different values of wit and ageit that correspond to their τwealth and τage

percentiles. All results are based on estimates from the semi-structural model with the Buchinsky and

Hahn (1998) censored quantile regression estimator.

60

Substituting this, the likelihood function above simplifies to:

f(αT
i , η

T
i , ε

T
i ,m

T
i ,Xi, d

T
i ; θ̄) =

T∏
t=1

[f(α∗
it|ηit, εit,mit,xit)]

dit

T∏
t=1

[p(dit = 0|ηit, εit,mit,xit)]
1−dit

×
T∏
t=2

f(mit|mit−1, ηit−1, yit−1, αit−1,xit)f(mi1|ηi1,xi1)

×
T∏
t=1

f(yit|ηit)
T∏
t=2

f(ηit|ηit−1)f(ηi1) (E34)

F Additional empirical evidence

Figure F1: Average derivative effect of the persistent component of income ηit, Buchinsky
and Hahn (1998)

(a) Propensity score

-0.12
1

-0.06

0.8 1

0

Pa
rti

ci
pa

tio
n 

re
sp

on
se

0.6 0.8

0.06

percentile wealth

0.6

percentile age

0.4

0.12

0.40.2 0.2
0 0

(b) Risky asset share

1

-0.1

-0.05

0.8 1

0

Po
rtf

ol
io

 re
sp

on
se

0.05

0.6 0.8

percentile wealth

0.1

0.6

percentile age

0.4

0.15

0.40.2 0.2
0 0

Note: The graphs show average derivatives of the propensity score and the risky asset share of stock

market participants, respectively, with respect to wealth wit given wit, persistent component ηit, income

yit, and age ageit, evaluated at different values of wit and ageit that correspond to their τwealth and τage

percentiles. All results are based on estimates from the semi-structural model with the Buchinsky and

Hahn (1998) censored quantile regression estimator.

60

Substituting this, the likelihood function above simplifies to:

f(αT
i , η

T
i , ε

T
i ,m

T
i ,Xi, d

T
i ; θ̄) =

T∏
t=1

[f(α∗
it|ηit, εit,mit,xit)]

dit

T∏
t=1

[p(dit = 0|ηit, εit,mit,xit)]
1−dit

×
T∏
t=2

f(mit|mit−1, ηit−1, yit−1, αit−1,xit)f(mi1|ηi1,xi1)

×
T∏
t=1

f(yit|ηit)
T∏
t=2

f(ηit|ηit−1)f(ηi1) (E34)

F Additional empirical evidence

Figure F1: Average derivative effect of the persistent component of income ηit, Buchinsky
and Hahn (1998)

(a) Propensity score

-0.12
1

-0.06

0.8 1

0

Pa
rti

ci
pa

tio
n 

re
sp

on
se

0.6 0.8

0.06

percentile wealth

0.6

percentile age

0.4

0.12

0.40.2 0.2
0 0

(b) Risky asset share

1

-0.1

-0.05

0.8 1

0

Po
rtf

ol
io

 re
sp

on
se

0.05

0.6 0.8

percentile wealth

0.1

0.6

percentile age

0.4

0.15

0.40.2 0.2
0 0

Note: The graphs show average derivatives of the propensity score and the risky asset share of stock

market participants, respectively, with respect to wealth wit given wit, persistent component ηit, income

yit, and age ageit, evaluated at different values of wit and ageit that correspond to their τwealth and τage

percentiles. All results are based on estimates from the semi-structural model with the Buchinsky and

Hahn (1998) censored quantile regression estimator.

60

From here, I can compute the propensity score p(xit); that is, the probability that a

household participates in the stock market. In the second step, I estimate the following

censored quantile regression, which updates the parameters of the portfolio rule:

min
(ba0 ,...,b

a
K)

N
i=1

T
t=2

M
m=1

dit1{hτ (xit) > 0}


hτ (xit)


Λ−1(α∗

it)−
K
k=0

bak(τ)φk(ηit, εit, wit, ageit) + γa(τ)′Xit

+

+(1− hτ (xit))


Λ−1(α∗

it)−
K
k=0

bak(τ)φk(ηit, εit, wit, ageit) + γa(τ)′Xit

−
 (E32)

where hτ (xit) = τ+p(xit)−1
p(xit)

. The role of this function is to “shift” the mass from the

unobserved to the observed part of the distribution of portolio shares. In fact, hτ (xit)

provides the link between Buchinsky and Hahn (1998) and Arellano and Bonhomme

(2017a). This is because the conditional copula of the error terms of the participation

and portfolio rules when there is no exclusion restriction and where the error terms are

the same is the lower Fréchet bound, i.e., G−(τ, p) = max


τ+p(xit)−1
p(xit)

, 0

.

As the model restrictions and implementation are similar as in the main text, I do

not outline them here. I show, however, the likelihood function implied by the model.

Likelihood function. The corresponding likelihood function has the following form:

f(αT
i , η

T
i , ε

T
i ,m

T
i ,Xi, d

T
i ; θ̄) =

T
t=1

[f(α∗
it|ηit, εit,mit,xit)p(dit = 1|ηit, εit,mit,xit)∇C(u, v; c)]dit

×
T
t=1

[p(dit = 0|ηit, εit,mit,xit)]
1−dit

T
t=2

f(mit|mit−1, ηit−1, yit−1, αit−1,xit)

× f(mi1|ηi1,xi1)
T
t=1

f(yit|ηit)
T
t=2

f(ηit|ηit−1)f(ηi1) (E33)

I can simplify the likelihood function further by noting that I can rewrite the lower

Fréchet bound as follows:

C(u, v; c) =


τ+p(xit)−1

p(xit)
, if p(xit) > 1− τ

0, otherwise

It follows that the first derivative of this function with respect to the first argument is:

∇C(u, v; c) =


1

p(xit)
, if p(xit) > 1− τ

0, otherwise
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Figure F1: Average derivative effect of the persistent component of income ηit, Buchinsky
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Note: The graphs show average derivatives of the propensity score and the risky asset share of stock

market participants, respectively, with respect to wealth wit given wit, persistent component ηit, income

yit, and age ageit, evaluated at different values of wit and ageit that correspond to their τwealth and τage

percentiles. All results are based on estimates from the semi-structural model with the Buchinsky and

Hahn (1998) censored quantile regression estimator.
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Figure F2: Average derivative effect of wealth, Buchinsky and Hahn (1998)
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Figure F3: Observed and implied densities of the risky asset share, Buchinsky and Hahn
(1998)
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Note: The graph shows the observed and predicted unconditional densities of the share of household wealth

in risky assset share based on the nonlinear model. The blue line corresponds to the density implied by

the nonlinear model, while the red line corresponds to the density implied by the data. All results are

based on estimates from the semi-structural model with the Buchinsky and Hahn (1998) censored quantile

regression estimator.
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Figure F4: Impulse response, participation rule, Buchinsky and Hahn (1998)
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Note: The graphs show the difference in average participation rates between a household hit by a shock

τshock at age 37, and a household hit by 0.5 shock at the same age. The blue line corresponds to

low-income households (i.e., rank of τinit = 0.1 in the income distribution). The red line corresponds to

middle-income households (i.e., rank of τinit = 0.5 in the income distribution). The green line corresponds

to high-income households (i.e., rank of τinit = 0.9 in the income distribution). All results are based

on estimates from the semi-structural model with the Buchinsky and Hahn (1998) censored quantile

regression estimator.

Figure F5: Impulse response, participation rule, by participation status, Buchinsky and
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Note: The graphs show the difference in average participation rates between a household with rank

τinit hit by a shock τshock at age 37, and a household hit by 0.5 shock at the same age, conditional

on participation status at age 35. The blue line corresponds to stock market participants. The red line

corresponds to stock market non-participants. All results are based on estimates from the semi-structural

model with the Buchinsky and Hahn (1998) censored quantile regression estimator.
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Note: The graphs show the difference in average participation rates between a household hit by a shock

τshock at age 37, and a household hit by 0.5 shock at the same age. The blue line corresponds to

low-income households (i.e., rank of τinit = 0.1 in the income distribution). The red line corresponds to

middle-income households (i.e., rank of τinit = 0.5 in the income distribution). The green line corresponds

to high-income households (i.e., rank of τinit = 0.9 in the income distribution). All results are based

on estimates from the semi-structural model with the Buchinsky and Hahn (1998) censored quantile

regression estimator.
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Note: The graphs show the difference in average participation rates between a household with rank

τinit hit by a shock τshock at age 37, and a household hit by 0.5 shock at the same age, conditional

on participation status at age 35. The blue line corresponds to stock market participants. The red line

corresponds to stock market non-participants. All results are based on estimates from the semi-structural

model with the Buchinsky and Hahn (1998) censored quantile regression estimator.
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Note: The graphs show the difference in average participation rates between a household hit by a shock

τshock at age 37, and a household hit by 0.5 shock at the same age. The blue line corresponds to

low-income households (i.e., rank of τinit = 0.1 in the income distribution). The red line corresponds to

middle-income households (i.e., rank of τinit = 0.5 in the income distribution). The green line corresponds

to high-income households (i.e., rank of τinit = 0.9 in the income distribution). All results are based

on estimates from the semi-structural model with the Buchinsky and Hahn (1998) censored quantile

regression estimator.
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Note: The graphs show the difference in average participation rates between a household with rank

τinit hit by a shock τshock at age 37, and a household hit by 0.5 shock at the same age, conditional

on participation status at age 35. The blue line corresponds to stock market participants. The red line

corresponds to stock market non-participants. All results are based on estimates from the semi-structural

model with the Buchinsky and Hahn (1998) censored quantile regression estimator.
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Note: The graphs show the difference in average participation rates between a household hit by a shock

τshock at age 37, and a household hit by 0.5 shock at the same age. The blue line corresponds to

low-income households (i.e., rank of τinit = 0.1 in the income distribution). The red line corresponds to

middle-income households (i.e., rank of τinit = 0.5 in the income distribution). The green line corresponds

to high-income households (i.e., rank of τinit = 0.9 in the income distribution). All results are based

on estimates from the semi-structural model with the Buchinsky and Hahn (1998) censored quantile

regression estimator.
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Note: The graphs show the difference in average participation rates between a household with rank

τinit hit by a shock τshock at age 37, and a household hit by 0.5 shock at the same age, conditional

on participation status at age 35. The blue line corresponds to stock market participants. The red line

corresponds to stock market non-participants. All results are based on estimates from the semi-structural

model with the Buchinsky and Hahn (1998) censored quantile regression estimator.
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Note: The graphs show the difference in average participation rates between a household hit by a shock

τshock at age 37, and a household hit by 0.5 shock at the same age. The blue line corresponds to

low-income households (i.e., rank of τinit = 0.1 in the income distribution). The red line corresponds to

middle-income households (i.e., rank of τinit = 0.5 in the income distribution). The green line corresponds

to high-income households (i.e., rank of τinit = 0.9 in the income distribution). All results are based

on estimates from the semi-structural model with the Buchinsky and Hahn (1998) censored quantile

regression estimator.
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Note: The graphs show the difference in average participation rates between a household with rank

τinit hit by a shock τshock at age 37, and a household hit by 0.5 shock at the same age, conditional

on participation status at age 35. The blue line corresponds to stock market participants. The red line

corresponds to stock market non-participants. All results are based on estimates from the semi-structural

model with the Buchinsky and Hahn (1998) censored quantile regression estimator.
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Note: The graphs show the difference in average participation rates between a household hit by a shock

τshock at age 37, and a household hit by 0.5 shock at the same age. The blue line corresponds to

low-income households (i.e., rank of τinit = 0.1 in the income distribution). The red line corresponds to

middle-income households (i.e., rank of τinit = 0.5 in the income distribution). The green line corresponds

to high-income households (i.e., rank of τinit = 0.9 in the income distribution). All results are based

on estimates from the semi-structural model with the Buchinsky and Hahn (1998) censored quantile

regression estimator.
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Note: The graphs show the difference in average participation rates between a household with rank

τinit hit by a shock τshock at age 37, and a household hit by 0.5 shock at the same age, conditional

on participation status at age 35. The blue line corresponds to stock market participants. The red line

corresponds to stock market non-participants. All results are based on estimates from the semi-structural

model with the Buchinsky and Hahn (1998) censored quantile regression estimator.
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Figure F6: Impulse response, portfolio rule, Buchinsky and Hahn (1998)
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(b) τshock = 0.9
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Note: The graphs show the difference in average portfolio shares conditional on participation between a

household hit by a shock τshock at age 37, and a household hit by 0.5 shock at the same age. The blue

line corresponds to low-income households (i.e., rank of τinit = 0.1 in the income distribution). The red

line corresponds to middle-income households (i.e., rank of τinit = 0.5 in the income distribution). The

green line corresponds to high-income households (i.e., rank of τinit = 0.9 in the income distribution).

All results are based on estimates from the semi-structural model with the Buchinsky and Hahn (1998)

censored quantile regression estimator.
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Note: The graphs show the difference in average portfolio shares conditional on participation between a

household hit by a shock τshock at age 37, and a household hit by 0.5 shock at the same age. The blue

line corresponds to low-income households (i.e., rank of τinit = 0.1 in the income distribution). The red

line corresponds to middle-income households (i.e., rank of τinit = 0.5 in the income distribution). The

green line corresponds to high-income households (i.e., rank of τinit = 0.9 in the income distribution).

All results are based on estimates from the semi-structural model with the Buchinsky and Hahn (1998)

censored quantile regression estimator.
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Note: The graphs show the difference in average portfolio shares conditional on participation between a

household hit by a shock τshock at age 37, and a household hit by 0.5 shock at the same age. The blue

line corresponds to low-income households (i.e., rank of τinit = 0.1 in the income distribution). The red

line corresponds to middle-income households (i.e., rank of τinit = 0.5 in the income distribution). The

green line corresponds to high-income households (i.e., rank of τinit = 0.9 in the income distribution).

All results are based on estimates from the semi-structural model with the Buchinsky and Hahn (1998)

censored quantile regression estimator.
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Figure F7: Impulse responses to an income shock, by income and wealth at age 35,
Buchinsky and Hahn (1998)

(a) Extensive margin, τshock = 0.1
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(b) Extensive margin, τshock = 0.9
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(c) Intensive margin, τshock = 0.1
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(d) Intensive margin, τshock = 0.9
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Note: The graphs show the difference between a household hit by a shock τshock at age 37, and a household

hit by a 0.5 shock at the same age, by income and wealth categories. The blue line corresponds to low

income, low wealth households. The red line corresponds to low income, high wealth households. The

green line corresponds to high income, low wealth households. The orange line corresponds to high

income, high wealth households. All results are based on estimates from the semi-structural model with

the Buchinsky and Hahn (1998) censored quantile regression estimator.
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(b) Extensive margin, τshock = 0.9
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(c) Intensive margin, τshock = 0.1
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(d) Intensive margin, τshock = 0.9
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Note: The graphs show the difference between a household hit by a shock τshock at age 37, and a household

hit by a 0.5 shock at the same age, by income and wealth categories. The blue line corresponds to low

income, low wealth households. The red line corresponds to low income, high wealth households. The

green line corresponds to high income, low wealth households. The orange line corresponds to high

income, high wealth households. All results are based on estimates from the semi-structural model with

the Buchinsky and Hahn (1998) censored quantile regression estimator.
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Note: The graphs show the difference between a household hit by a shock τshock at age 37, and a household

hit by a 0.5 shock at the same age, by income and wealth categories. The blue line corresponds to low

income, low wealth households. The red line corresponds to low income, high wealth households. The

green line corresponds to high income, low wealth households. The orange line corresponds to high

income, high wealth households. All results are based on estimates from the semi-structural model with

the Buchinsky and Hahn (1998) censored quantile regression estimator.
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Figure F8: Impulse responses to an income shock, by income and wealth at age 51,
Buchinsky and Hahn (1998)

(a) Extensive margin, τshock = 0.1
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(b) Extensive margin, τshock = 0.9
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(c) Intensive margin, τshock = 0.1
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(d) Intensive margin, τshock = 0.9
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Note: The graphs show the difference between a household hit by a shock τshock at age 53, and a household

hit by a 0.5 shock at the same age, by income and wealth categories. The blue line corresponds to low

income, low wealth households. The red line corresponds to low income, high wealth households. The

green line corresponds to high income, low wealth households. The orange line corresponds to high

income, high wealth households. All results are based on estimates from the semi-structural model with

the Buchinsky and Hahn (1998) censored quantile regression estimator.
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Note: The graphs show the difference between a household hit by a shock τshock at age 53, and a household

hit by a 0.5 shock at the same age, by income and wealth categories. The blue line corresponds to low

income, low wealth households. The red line corresponds to low income, high wealth households. The

green line corresponds to high income, low wealth households. The orange line corresponds to high

income, high wealth households. All results are based on estimates from the semi-structural model with

the Buchinsky and Hahn (1998) censored quantile regression estimator.
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Figure F8: Impulse responses to an income shock, by income and wealth at age 51,
Buchinsky and Hahn (1998)
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Note: The graphs show the difference between a household hit by a shock τshock at age 53, and a household

hit by a 0.5 shock at the same age, by income and wealth categories. The blue line corresponds to low

income, low wealth households. The red line corresponds to low income, high wealth households. The

green line corresponds to high income, low wealth households. The orange line corresponds to high

income, high wealth households. All results are based on estimates from the semi-structural model with

the Buchinsky and Hahn (1998) censored quantile regression estimator.
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Figure F9: Impulse response, participation rule, linear earnings process
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Note: The graphs show the difference in average participation rates between a household hit by a shock

τshock at age 37, and a household hit by a median shock at the same age. All results are based on

estimates from a linear portfolio choice rule with a linear earnings process via Tobit regressions.

Figure F10: Impulse response, linear approximation to the portfolio rule, linear earnings
process
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Note: The graphs show the difference in average risky asset shares between a household hit by a shock

τshock at age 37, and a household hit by a median shock at the same age. All results are based on

estimates from a linear portfolio choice rule with a linear earnings process via Tobit regressions.
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Note: The graphs show the difference in average participation rates between a household hit by a shock

τshock at age 37, and a household hit by a median shock at the same age. All results are based on

estimates from a linear portfolio choice rule with a linear earnings process via Tobit regressions.
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Note: The graphs show the difference in average risky asset shares between a household hit by a shock

τshock at age 37, and a household hit by a median shock at the same age. All results are based on

estimates from a linear portfolio choice rule with a linear earnings process via Tobit regressions.
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Note: The graphs show the difference in average participation rates between a household hit by a shock

τshock at age 37, and a household hit by a median shock at the same age. All results are based on

estimates from a linear portfolio choice rule with a linear earnings process via Tobit regressions.
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Note: The graphs show the difference in average risky asset shares between a household hit by a shock

τshock at age 37, and a household hit by a median shock at the same age. All results are based on

estimates from a linear portfolio choice rule with a linear earnings process via Tobit regressions.
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Note: The graphs show the difference in average participation rates between a household hit by a shock

τshock at age 37, and a household hit by a median shock at the same age. All results are based on

estimates from a linear portfolio choice rule with a linear earnings process via Tobit regressions.
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Note: The graphs show the difference in average risky asset shares between a household hit by a shock

τshock at age 37, and a household hit by a median shock at the same age. All results are based on

estimates from a linear portfolio choice rule with a linear earnings process via Tobit regressions.
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Note: The graphs show the difference in average participation rates between a household hit by a shock

τshock at age 37, and a household hit by a median shock at the same age. All results are based on

estimates from a linear portfolio choice rule with a linear earnings process via Tobit regressions.
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Note: The graphs show the difference in average risky asset shares between a household hit by a shock

τshock at age 37, and a household hit by a median shock at the same age. All results are based on

estimates from a linear portfolio choice rule with a linear earnings process via Tobit regressions.
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Figure F11: Parametric bootstraps, average derivative effect of the persistent component
ηit, Arellano et al. (2017) estimation
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Note: The graphs show the 95% pointwise confidence bands of the average derivatives of the propensity

score and the risky asset share of stock market participants, respectively, with respect to wealth wit

given wit, persistent component ηit, income yit, and age ageit, evaluated at different values of wit and

ageit that correspond to their τwealth and τage percentiles. All results are based on estimates from the

semi-structural model with the Arellano and Bonhomme (2017a) quantile selection model estimator.

Parametric bootstrap with 100 replications.

Figure F12: Parametric bootstraps, average derivative effect of wealth, Arellano et al.
(2017) estimation
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Note: The graphs show the 95% pointwise confidence bands of the average derivatives of the portfolio

rule with respect to wealth wit and persistent income ηit, respectively, given wit, persistent component

ηit, income yit, and age ageit, evaluated at different values of wit and ageit that correspond to their

τwealth and τage percentiles. All results are based on estimates from the semi-structural model with the

Arellano and Bonhomme (2017a) quantile selection model estimator. Parametric bootstrap with 100

replications.
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Note: The graphs show the 95% pointwise confidence bands of the average derivatives of the propensity

score and the risky asset share of stock market participants, respectively, with respect to wealth wit

given wit, persistent component ηit, income yit, and age ageit, evaluated at different values of wit and

ageit that correspond to their τwealth and τage percentiles. All results are based on estimates from the

semi-structural model with the Arellano and Bonhomme (2017a) quantile selection model estimator.

Parametric bootstrap with 100 replications.
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Note: The graphs show the 95% pointwise confidence bands of the average derivatives of the portfolio

rule with respect to wealth wit and persistent income ηit, respectively, given wit, persistent component

ηit, income yit, and age ageit, evaluated at different values of wit and ageit that correspond to their

τwealth and τage percentiles. All results are based on estimates from the semi-structural model with the
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given wit, persistent component ηit, income yit, and age ageit, evaluated at different values of wit and
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given wit, persistent component ηit, income yit, and age ageit, evaluated at different values of wit and
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Parametric bootstrap with 100 replications.
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Note: The graphs show the 95% pointwise confidence bands of the average derivatives of the portfolio

rule with respect to wealth wit and persistent income ηit, respectively, given wit, persistent component

ηit, income yit, and age ageit, evaluated at different values of wit and ageit that correspond to their
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Figure F13: Parametric bootstraps, average derivative effect of the persistent component
ηit, Buchinsky and Hahn (1998) estimation
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Note: The graphs show the 95% pointwise confidence bands of the average derivatives of the propensity

score and the risky asset share of stock market participants, respectively, with respect to wealth wit

given wit, persistent component ηit, income yit, and age ageit, evaluated at different values of wit and

ageit that correspond to their τwealth and τage percentiles. All results are based on estimates from

the semi-structural model with the Buchinsky and Hahn (1998) censored quantile regression estimator.

Parametric bootstrap with 100 replications.

Figure F14: Parametric bootstraps, average derivative effect of wealth, Buchinsky and
Hahn (1998) estimation
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Note: The graphs show the 95% pointwise confidence bands of the average derivatives of the portfolio

rule with respect to wealth wit and persistent income ηit, respectively, given wit, persistent component

ηit, income yit, and age ageit, evaluated at different values of wit and ageit that correspond to their

τwealth and τage percentiles. All results are based on estimates from the semi-structural model with

the Buchinsky and Hahn (1998) censored quantile regression estimator. Parametric bootstrap with 100

replications.
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Note: The graphs show the 95% pointwise confidence bands of the average derivatives of the propensity

score and the risky asset share of stock market participants, respectively, with respect to wealth wit

given wit, persistent component ηit, income yit, and age ageit, evaluated at different values of wit and

ageit that correspond to their τwealth and τage percentiles. All results are based on estimates from
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