THE AMPLIFICATION EFFECTS OF ADVERSE SELECTION IN MORTGAGE CREDIT SUPPLY

Documentos de Trabajo
N.º 2316

Salomón García
THE AMPLIFICATION EFFECTS OF ADVERSE SELECTION IN MORTGAGE CREDIT SUPPLY
THE AMPLIFICATION EFFECTS OF ADVERSE SELECTION IN MORTGAGE CREDIT SUPPLY (*)

Salomón García (**)
BANCO DE ESPAÑA

(*) This paper is the second chapter of my doctoral thesis. Special thanks to my advisors Ellen R. McGrattan, V. V. Chari, and Anmol Bhandari. I am grateful to Larry Jones, Loukas Karabarbounis, Christopher Phelan, David Martínez-Miera, and Mark L. J. Wright and two anonymous referees for their feedback. This paper was previously circulated with the title: “Asymmetries of Information in the Housing Market”. I thank participants of the Mid-West Macro Meeting 2018, LACEA 2019, the Macro and Labor Workshop, and the Public Economics Workshop at the University of Minnesota, the Federal Reserve Bank of Minneapolis, SUNY-Buffalo, Banco de España, and Michigan State University. The views expressed herein are those of the author and do not necessarily reflect the views of the Banco de España or the Eurosystem.

(**) salomon.garcia@bde.es.

https://doi.org/10.53479/30138

Documentos de Trabajo. N.º 2316
June 2023
The Working Paper Series seeks to disseminate original research in economics and finance. All papers have been anonymously refereed. By publishing these papers, the Banco de España aims to contribute to economic analysis and, in particular, to knowledge of the Spanish economy and its international environment.

The opinions and analyses in the Working Paper Series are the responsibility of the authors and, therefore, do not necessarily coincide with those of the Banco de España or the Eurosystem.

The Banco de España disseminates its main reports and most of its publications via the Internet at the following website: http://www.bde.es.

Reproduction for educational and non-commercial purposes is permitted provided that the source is acknowledged.

© BANCO DE ESPAÑA, Madrid, 2023

ISSN: 1579-8666 (on line)
Abstract

This paper studies how information frictions in the securitization market amplify the response of mortgage credit supply to house price shocks. We model securitization as an optimal contracting problem between investors and banks. Banks are better informed than investors about the quality of the mortgages they originate, leading to an adverse selection problem. Investors use the quantity sold as a screening device to induce banks to reveal truthful information. We find that adverse selection amplifies the response of a bank's mortgage originations to house price shocks. The degree of amplification is also a function of the technological differences in managing portfolios between banks and investors. The model has implications for the design of policy interventions aimed at stabilizing liquidity in the securitization market and credit provision to households in the credit market.

Keywords: securitization, screening, banking, information frictions, liquidity.

JEL classification: D82, E51, G21, G28, R31.
Resumen

El presente trabajo propone un modelo teórico para identificar los canales por los cuales las fricciones de información, presentes en el mercado de titularización, pueden amplificar la respuesta de la oferta de crédito asociada a aumentos (o contracciones) en los precios de la vivienda. El modelo caracteriza los contratos de titularización óptimos, entre bancos e inversionistas, asumiendo que los bancos poseen información privada sobre la probabilidad de impago de las hipotecas que emiten. Estas fricciones de información entre bancos (vendedores) e inversionistas (compradores) generan un problema de selección adversa en el mercado. Los resultados cuantitativos muestran que la selección adversa en el mercado de titularización amplifica, de forma no lineal, fluctuaciones de la oferta de crédito ante choques exógenos en los precios de vivienda, costos de administración de cartera y diferencias en los retornos de las hipotecas. El modelo es informativo para el diseño de políticas destinadas a estabilizar la provisión de liquidez en el mercado de titularizaciones y en la oferta de crédito.

Palabras clave: titularización, intermediación financiera, fricciones de información, selección adversa, bancos, liquidez.

Códigos JEL: D82, E51, G21, G28, R31.


1 Introduction

The mortgage securitization market in the United States has grown considerably since the 1970s, becoming the main source of mortgage credit for the housing market. However, this source of liquidity is volatile and can rapidly expand or collapse abruptly, as observed during the credit cycle of the 2000s. These are known characteristics of markets that feature Adverse Selection problems. Vast empirical research has documented agency problems arising from information frictions in this market (Adelino et al. (2019), Keys et al. (2010), and Downing et al. (2008)). Specifically, that mortgage originators (sellers) are better informed about the quality of mortgages than investors (buyers). On the theoretical side, extensive literature shows that this agency problem can induce high volatility in asset trading markets. Yet, we have less understanding of the role of information frictions in accounting for aggregate credit dynamics. Given the close connection between these markets, this paper addresses the following questions: how do information frictions in securitization affect credit supply to households? Does adverse selection amplify credit fluctuations? If so, what is the magnitude of this amplification?

To answer these questions, we develop a banking model with an endogenous securitization market to jointly study banks’ lending and loan securitization decisions. The model features mortgage originators, called banks, and security investors interacting in a securitization market affected by information frictions about the quality of loans sold. Investors optimally screen mortgage originators’ pools of loans, which endogenously leads to market segmentation like the one observed in the mortgage-backed security (MBS) market. Dynamics in securitization affect the supply of credit through a securitization liquidity channel. A quantitative application of the model indicates that the response of credit supply to house price shocks can be amplified by a factor between 1.5 to 2.0. These results are consistent with other studies of the aggregate effects of adverse selection in asset markets (Krishnamurthy (2010), Kurlat (2013), Bigio (2015)) and with the magnitudes documented at the micro-level in the mortgage market (Calem et al. (2013)).

The model’s characterization shows that a bank’s lending volume is a function of the volume of securitized mortgages. The liquidity from mortgage securitization expands mortgage lending in line with the data. Mortgage lending fluctuates with the volume of mortgage securitization and experiences quick rises and falls. These aggregate dynamics arise from a non-linear pattern of the liquidity available to banks after securitizing their portfolios. The fraction of securitized mortgages is an endogenous function of (i) the quality of mortgages, (ii) the differences in portfolio management costs between originators and investors and (iii) the growth rate of house prices.

Motivated by the empirical evidence, we assume that banks are better informed about the quality of mortgages than investors. Such information asymmetry creates incentives for banks to sell low-quality mortgages and retain high-quality ones. Investors are aware that such incentives are in place.

---

1 Theoretical work starting with Akerlof (1970) and Bernanke and Gertler (1989) have studied how asymmetries of information about asset qualities have the potential to generate market breakdowns(Guerrieri and Shimer (2014), Kurlat (2013), and Chari et al. (2014), Bigio (2015)).

2 The theory presented does not aim to explain the 2000s boom-bust cycle but rather to show how information frictions may contribute to amplifying credit cycles. A more general approach would need to account for the feedback effects of house price appreciation on default rates.
Consequently, they design incentive-compatible contracts that induce banks to reveal their portfolio’s underlying quality. These contracts offer higher prices for mortgage pools with higher retention rates. Retention rates work as a skin-in-the-game mechanism to separate high-quality mortgage sellers from low-quality ones. In equilibrium, no one is taken advantage of because investors learn the underlying quality of the mortgages backing MBSs. Nevertheless, the asymmetric-information equilibrium contracts are less efficient than those under the complete information because banks with high-quality mortgages cannot sell all of them to investors who can hold them more efficiently.

The model’s equilibrium outcome yields pooling or separating contracts depending on the probability of observing high-quality mortgages in the market. This feature captures some elements of the U.S. securitization market; the pooling equilibrium outcome resembles the to-be-announced (TBA) market, where pools of mortgages of heterogeneous qualities sell at a pooling or average price. In contrast, the separating equilibrium outcome resembles the specified-pool (SP) market, where pools of mortgages sell at differentiated prices that depend directly on the specified quality and quantity sold.

The main quantitative exercise simulates the model’s aggregate stationary distribution of mortgage lending and studies how house price shocks affect aggregate mortgage lending through the securitization liquidity channel. We find that adverse selection amplifies the response of a bank’s lending to house price shocks by a factor of 1.5 to 2. The model is informative on how information frictions and differences in portfolio management technology can induce large fluctuations in credit supply. This observation is relevant for designing macroprudential policies in the mortgage market that alleviate these vulnerabilities and keep a stable credit supply to households.

The paper is structured as follows: Section 2 presents the model, Section 3 the theoretical results, Section 4 presents the quantitative exercise, and Section 5 concludes. The rest of this section briefly on the related literature and institutional details of the U.S. mortgage market.

**Related Literature.** There is extensive literature studying the drivers of credit cycles in the housing market, especially the last episode that led to the Great Financial Crisis (GFC) of 2008. This paper is related to quantitative models (Iacoviello (2005); Elenev et al. (2016); Justiniano et al. (2015, 2019)) who argue that credit supply forces—such as lending constraints that restrict a lender’s available funds for mortgage credit—are quantitatively more important than credit demand forces in explaining fluctuations in mortgage debt and the housing market (Justiniano et al. (2015, 2019)). Our work provides a microeconomic foundation for such lending constraints by modeling the dynamics of securitization as a major source of liquidity for mortgage lenders.

In this line, the paper fits within the ”Credit Supply View” as coined by Mian and Sufi (2009, 2017), which puts mortgage credit supply at the center of the 2000s housing and household debt cycle in the U.S. The credit supply view states that higher credit availability leads to house price growth through expansive housing demand (Mian and Sufi (2009, 2017); Di Maggio and Kermani

---

3 An equilibrium is *separating* if the offers accepted by low and high-quality banks are different.

4 In the model, lenders trade off efficiency gains versus information costs. Securitization can loosen lending constraints and expand mortgage credit. The setup captures some of the advantages of securitization in financial intermediation: lower funding costs; the creation of safe assets by pooling risk; and gains from financial specialization, see Gorton and Metrick (2013) for an in-depth analysis.
Our paper contributes to understanding the feedback effects between credit and house price growth by providing a precise mechanism by which exogenous increases in house price growth lead to a credit expansion through the liquidity securitization channel (Loutskina (2011); Calem et al. (2013); Vickery and Wright (2013); Fuster and Vickery (2014)). The model provides theoretical support for the relevance of mortgage securitization dynamics as a key driver of credit supply (Levitin and Wachter (2012)). The model’s mechanism predicts fluctuations of credit supply without taking a stance on whether credit expands (or contracts) more towards prime (Albanesi et al. (2022)) or subprime borrowers (Mian and Sufi (2009, 2017)). Such a general approach is supported by Adelino et al. (2016); Foote et al. (2020) and Conklin et al. (2022) who document that mortgage debt expanded homogeneously across the income distribution of borrowers during the 2000s housing debt cycle, challenging the initial narrative about a credit expansion towards subprime borrowers only.

Our work also shows how information frictions about mortgage quality play a relevant role in determining liquidity in the securitization market. Information frictions are motivated by a vast body of literature that documents the presence and relevance of private information in the mortgage issuance and securitization chain. Downing et al. (2008), Keys et al. (2010), Calem et al. (2011), Park (2016), and Adelino et al. (2019) consistently find that mortgage originators retain mortgages that are, on average, of better quality than mortgages sold and securitized in the agency and non-agency MBS segments, thereby generating an adverse selection problem. On theoretical grounds, this paper is closely related to the literature that studies the effects of adverse selection in asset market trading—a tradition that dates back to Akerlof (1970). Cutts et al. (2001) study the role of securitization in the evolution of financial markets where agents trade off efficiency costs against adverse selection due to asymmetric information. Cutts and Van Order (2005) study the securitization market structure—prime and subprime—through the lens of asymmetric information models where investors design incentive-compatible contracts for loan sellers to reveal information. Chari et al. (2014) show that adverse selection and traders’ reputational concerns can play an important role in accounting for sharp fluctuations in the volume of securities traded in asset markets. We build upon Chari et al. (2014) static framework, extend it to account for a bank’s mortgage origination decision, and use it to study the effects of house price shocks on aggregate credit supply. Our model also shares elements present in Eisfeldt (2004); Bigio (2015); Vanasco (2017); Caramp (2019), and Asriyan (2020). These papers show that adverse selection can generate

---

5 Among the main documented driving factors of credit supply are: the development of the securitization market (Levitin and Wachter (2012)), regulatory changes in the banking system (Favara and Imbs (2015)), and changes in originators’ screening practices (Griffin and Maturana (2016); Keys et al. (2010)) and lending standards (Choi and Kim (2021)). Kaplan et al. (2020) and Cheng et al. (2014) have also shown that agents’ expectations about house price dynamics played an important role in driving mortgage credit supply.

6 Such analysis would require modeling credit demand as arising from heterogeneous borrowers and possibly segmented markets which are beyond the scope of this paper.

7 Sellers usually make available to buyers vast data describing many characteristics about loans and borrowers—such as credit scores, loan-to-value ratios, income, owner-occupancy status, among others. Despite this, there are several margins along which an originator may still have superior information than MBS’s investors. To name a few: low levels of documentation, the incapacity and the cost of processing soft information, and data misrepresentation by borrowers of which originators may not be aware.
large fluctuations in the volume of traded assets by amplifying the effects of exogenous shocks in the economy.

Motivating Empirical Observations. The mortgage finance system in the U.S. has experienced significant changes since the development of the securitization market of mortgages with the creation of the Government Sponsored Enterprises (GSEs) in the 1970s. Their main objective was to fund mortgages through a combination of deposits and capital markets instead of deposits only. To do so, GSEs issued and guaranteed MBSs—in what is known as the agency segment—effectively shielding market investors from borrowers’ credit risk. Later, in the 1980s, the private MBS segment took off when private securitizers started issuing private-labeled securities (PLS), which carried none or minimal credit guarantees. The remarkable change in mortgage funding is shown in Figure 1 (see the Appendix): from 1985 onwards, non-depository institutions have held more than 50% of all residential mortgages as assets in their portfolios. This new mortgage finance system is known as the originate-to-distribute model as opposed to the traditional originate-to-hold model of the 1960s. We represent these non-depository institutions in our model as investors. Most of these investors are financial institutions that manage large pools of savings, such as pension funds, mutual funds, insurance companies, and sponsors of structured products.

The securitization market is characterized by fast growth and high volatility. Mortgage securitization grew from 207 US$ billions in 1970 to 2.97 US trillions in 2016, and more than half of this growth corresponds to the housing boom period. From 2000 to 2007 the annual growth rate of total MBS issuance averaged 12%. However, from 2007 to 2011, the securitization market shrank considerably, with growth averaging -29% per year. Figure 1 shows the flows of mortgage origination-

![Figure 1: Volume of Mortgage Originations and Mortgage Sales](image)

Source: Home Mortgage Disclosure Act (HMDA) database. Figures correspond to National Aggregates. Conventional Home Mortgage Originations correspond to mortgages on 1-to-4 family dwellings only. Sales (Agency) corresponds to Government Sponsored Enterprises (GSE’s). Sales Private Sector (Non-Agency) corresponds to sales to any other commercial institution that purchases mortgages and it is not a GSE.

8In 1968, the Federal National Mortgage Association (FNMA) was partitioned into a private corporation, Fannie Mae, and a publicly owned institution, Ginnie Mae. This event marks the start of the pass-through securitization era (1970-1984) as defined by Campbell and Hercowitz (2005).

9Due to their government-sponsored nature, investors perceived GSEs credit guarantees as having the implicit backing of the U.S. government. In September 2008, these views became explicit when the Federal Finance Housing Administration (FHFA) placed Freddie Mac and Ginnie Mae in conservatorship.

10During the traditional banking system (1952-1969), banks funded mortgages mostly with deposits and kept them in their portfolio until maturity.

11See Shimer (2014) for detailed documentation of these observations using Securities Industry and Financial Markets Association (SIFMA) data.
tions and mortgage securitized since 2000. Both variables follow each other closely and experience sharp fluctuations. These fluctuations are in line with fluctuations in the value of houses that serve as collateral for mortgages and with the observed path for delinquency rates in residential mortgages. The theoretical model in Section 2 provides a mechanism—microfounded in information frictions—capable of replicating high volatility episodes in the aggregate volumes of mortgage originations and MBS issuance in response to house price shocks dynamics.

A relevant institutional feature for our work is that mortgage pools for MBS trade in two segmented submarkets. One of them is a futures market known as the 'to-be-announced' (TBA) market. In the TBA market, the seller of MBSs agrees upon price and delivery date when trading but does not specify the identity of securities.\textsuperscript{12} Mortgages of different qualities are pooled and traded at a pooling price. The other submarket is the 'specified-pool' (SP) market, where sellers agree upon specific characteristics of the mortgages backing MBSs at the trading date. In this segment, pools of different qualities trade at different prices. The TBA market trades mostly agency MBSs backed by conforming mortgage pools, i.e., loans conforming to GSE’s standards (loan limits, credit scores, among others). In contrast, the SP market trades mostly non-agency MBSs without government credit guarantees. These securities are usually backed by mortgage pools with less standard features, like jumbo mortgages (loans exceeding the GSE’s conforming limits).\textsuperscript{13} The model presented in the following section takes a general perspective and abstracts from modeling the agency and non-agency segmentation, which arises from specific GSE’s policies. Instead, the model shows how market segmentation arises endogenously from an optimal contracting problem when investors screen the bank’s portfolio quality. Also, while our model is silent about the sources of loan quality on a bank’s portfolio, it highlights the economic forces of loan heterogeneity in determining equilibrium outcomes in the securitization market and its feedback on credit supply.\textsuperscript{14}

\section{The Model}

\subsection{Environment}

Time is discrete and has an infinite horizon, $v$ denotes a variable at the current period, and $v'$ denotes variables at the next period.\textsuperscript{15} There is a continuum of mass one of two types of agents: banks and investors. Both are risk-neutral.

\textsuperscript{12}Investors are aware of the scope for private information when dealing in these markets, and various mechanism have been implemented to ameliorate the impact of information asymmetries. For instance, warranties to MBS buyers impose that sellers repurchase or replace loans identified as defective. Credit ratings for MBSs intend to provide an independent assessment of the asset’s quality. Also, tranching and repurchase agreements intend to shield MBS investors against unexpected defaults. These mechanisms show that information asymmetries are a significant concern in these markets, Shimer (2014) performs a comprehensive review of empirical studies documenting major shortcomings of the above mentioned mechanisms in the mortgage market.

\textsuperscript{13}We assume loan quality on a bank’s portfolio follows an exogenous process. Modeling loan quality determination (bank’s screening loans) will add an extra layer of complexity to the model without changing our main conclusions. Vanasco (2017) explores the interactions between asset quality determination and market liquidity in secondary markets. The author shows that screening improves asset quality but leads to asymmetric information, leading to adverse selection.

\textsuperscript{14}All variables within the period respect this notation.
Banks

Each bank can be thought of as a financial firm that, at every period, has access to deposits \( d \) at cost \( R^d \). A bank uses deposits to originate mortgages. A mortgage is a debt contract between the bank and a non-modeled borrower. It is assumed that there is an exogenous household demand that takes on any amount of mortgages originated. The mortgage contract has two parts: \( (R^d l, \phi p_{-1} h_{-1}) \): \( l \) represents the dollar amount lent to a borrower the previous period, which matures today.\(^{16}\) Then, \( R^d l \) is the gross dollar amount owed by the borrower to the bank. It is assumed that at the time of issuance, the mortgage amount is restricted to a fraction \( \phi \) of the market value of the collateral: \( l = \phi p_{-1} h_{-1} \), where \( \phi \) denotes the loan-to-value ratio. Hence, the second term represents the fraction of the pledged housing collateral a bank can claim when the mortgage defaults. Both the amount of collateral, \( h_{-1} \), and its price, \( p_{-1} \), are taken as given by banks.

There are three prices of interest to the bank: the gross interest rate it pays on deposits, \( R^d \), the lending rate it charges on mortgages it originates, \( R^i \), and the change in house prices between origination \( p_{-1} \) and maturity \( p \), which we define as \( \pi = \frac{p}{p_{-1}} \). For simplicity, it is assumed that these prices, \( \{R^d, R^i, \pi\} \), are exogenous and deterministic over time.\(^{17}\)

**Partial Default.** There is partial default at maturity, meaning every period, only a fraction \( \theta \) of the amount owed gets repaid, and the remaining fraction \( 1 - \theta \) is recovered by selling the foreclosed housing collateral. The repayment rate \( \theta \) is stochastic and governed by an exogenous process, it is a source of idiosyncratic risk to a bank. We assume \( \theta \sim i.i.d. \in \{\theta_h, \theta_l\} \), with probabilities \( \mu = \Pr(\theta = \theta_h) \), and \( 1 - \mu = \Pr(\theta = \theta_l) \), and that \( 1 > \theta_h > \theta_l > 0 \). Let \( y \) denote the gross cash payout of a mortgage:

\[
y = \theta R^d l + (1 - \theta)\zeta \phi p h_{-1},
\]

where \( \zeta \in [0, 1] \) represents the recovery value of housing at foreclosure.\(^{18}\) From a bank’s perspective, the payoff of its portfolio has two components: the mortgage payments and the recovery value from the foreclosed housing collateral. Then, the gross cash payout is:

\[
y = l \left[ \frac{\theta R^d l + (1 - \theta)\zeta \phi p h_{-1}}{l} \right] \\
= l \left[ \theta R^d + (1 - \theta)\zeta \pi \right] \\
= lM(\theta),
\]

where \( M(\theta) \equiv M(\theta; R^i, \pi) \) is the net rate of return of a mortgage which is a function of the stochastic repayment rate \( \theta \), the lending interest rate \( R^i \), and the growth rate of housing prices \( \pi = \frac{p}{p_{-1}} \). The market value of the collateral is public information, every agent observes \( \pi \). The repayment rate \( \theta \) is a bank’s private information. Given that we have assumed the repayment rate takes on two values only, high and low, it effectively translates into the mortgage’s return rate being

\(^{16}\)We can think each bank issues one mortgage, which amounts to \( l \), or interpret \( l \) as a bank’s portfolio size.

\(^{17}\)The focus of this paper is on the interactions between banks and security investors. This assumption keeps movements in the mortgage rate isolated from the dynamics of the deposit rate and the markup a bank sets on a particular mortgage. The quantitative section studies the effect of house price fluctuations on credit supply.

\(^{18}\)Bank incurs in costs when selling the foreclosed housing collateral, moreover, foreclosed houses may sell at a discount because financial institutions usually want to sell them quickly, see Campbell et al. (2011).
$M(\theta) \in \{M(\theta_h), M(\theta_l)\}$. Banks with high-return mortgages are referred to as high-type banks, and banks with low-return mortgages as low-type banks.\(^\text{19}\)

**Technology.** A bank faces three types of costs that capture the main features of the mortgage lending industry.

\[
o(l) = \nu l^2
\]

\[c \in [0, 1]\]

\[
\kappa(div) = \kappa(div - \tilde{div})^2
\]

First, a mortgage origination cost (3) is represented by a convex and increasing function in the amount of the mortgage. The bank pays this cost as part of the mortgage origination process. It captures potential borrowers’ administrative and screening costs, which grow with the client base. Second, a bank faces a portfolio management cost (4). This cost is paid after the mortgage has matured and yielded a return, and it represents non-interest costs faced by banks when managing a portfolio. This portfolio management cost can be avoided if the bank sells its mortgage to a third party. Additionally, each bank faces a dividends adjustment cost (5). This cost captures the tendency of banks to smooth dividend payments to shareholders.\(^\text{20}\)

### 2.1.1 Investors

There is a unit mass of risk-neutral investors. Investors cannot issue mortgages or take deposits, but they have a comparative advantage in managing mortgages; their management cost $c$ is normalized to zero. This assumption captures the technological differences between originators and investors in performing liquidity transformation, bearing prepayment risk, and (for the private label MBS) credit risk. Such technological differences motivate trading between them. Investors know $\theta$‘s stochastic process and understand the payoff structure of mortgages, given by (2). However, they do not observe $\theta$, and hence they are uncertain about the mortgage’s net return $M(\theta)$.

**Securitization market.** We model a securitization market where banks can sell a pool of mortgages, partially or completely, to deep-pocket investors. Banks are offered a menu of contracts by investors. A contract is an equilibrium object that specifies a fraction $x_i \in [0, 1]$ of a bank’s portfolio to be purchased and an associated per-unit loan price $q_i$ intended for each bank type $i \in \{h, l\}$. Since at any point in time, there can be two types of banks selling high or low-return mortgages, a contract $z$ is a quadruple $(x_h, q_h, x_l, q_l)$ that contains two pairs of offers, $(x_i, q_i)$.

### 2.2 Bank’s Decisions

The timeline is as follows: a bank starts each period with a stock of mortgages and a stock of deposits; $\{l, d\}$ are a bank’s endogenous state variables at the start of the period. The only

---

\(^{19}\)The function $M(\cdot)$ is indexed on $\theta$ to highlight the nature of the differences in returns due to differences in repayment rates, and because banks’ private information about $\theta$ plays a central role in determining the equilibrium contracts in the securitization market.

\(^{20}\) Banks are assumed risk-neutral; hence a quadratic adjustment cost on dividends introduces concavity on its objective function, guaranteeing the recursive problem of the bank is well defined. Additionally, dividends are restricted to be positive.
exogenous state variable is the realization of the repayment rate θ. A period has two stages: a securitization stage and an origination stage. At the securitization stage, a bank privately observes its mortgage repayment rate and has the option to sell its portfolio, partially or entirely. At the origination stage, a bank decides on the volume of new originations based on the securitization cash proceeds and on the payments from maturing mortgages. Mortgages not sold in the securitization stage mature at the beginning of the origination stage. Figure 2 shows the timeline of the model.

**Securitization stage.** A bank meets with a potential investor in the securitization market. The investor understands that a bank has incentives to sell low-quality loans first and retain high-quality ones; hence, she offers an incentive-compatible contract z to induce the bank to truthfully reveal the quality of mortgages sold. Meaning that if a bank accepts a contract, it chooses its intended offer. The problem of a bank type θ in the securitization stage, given states \{l, d; θ\} is:

\[
\max_{(x,t)} \quad l \cdot [q_i x_i + (1 - x_i)(M(θ) - c)] \\
\quad \text{where} \quad z = (x_h, q_h, x_l, q_l) \in \mathbb{Z},
\]

where the first term, \(l q_i x_i\), is the payment a bank obtains from selling fraction \(x_i\) of its portfolio. The second term, \(l(1 - x_i)(M(θ) - c)\), corresponds to a bank’s net return from the retained portfolio.\(^{21}\)

**Origination Stage.** After choosing a contract \(z \in \mathbb{Z}\) in the securitization market, a bank type \(θ\) enters the origination stage with stock of mortgages, \(l(1 - x_i)\), and liabilities, \(R^d d - l q_i x_i\). Let \(\tilde{y}\) be the net cash (liquid funds) available to a bank type \(θ\) after securitization:

\[
\tilde{y}(l, d; θ, z) = l(1 - x_i)(M(θ) - c) + l q_i x_i - R^d d,
\]

then, taking prices \{\(R^d\), \(R^d\), \(π\)\} as given, the Recursive Problem of a bank type \(θ\) in the origination stage is:

\[
V(l, d; θ) = \max_{\{l', d', div\}} \quad \text{div} + β \mathbb{E}_θ V(l', d'; θ') \\
\quad \text{subject to} \quad l' + \sigma(l') + \text{div} + \kappa(\text{div}) = \tilde{y}(l, d; θ, z) + d' \\
\tilde{y}(l, d; θ, z) - \text{div} - \kappa(\text{div}) \geq b \\
\theta' \sim \text{i.i.d} \in \{θ_h, θ_l\}, \quad l' \geq 0, \quad d' \geq 0, \quad \text{div} \geq 0,
\]

\(^{21}\)In this setup, given that repayment rates are i.i.d. across time, investors only care about a bank’s current payoff from selling mortgages when designing the incentive-compatible contracts. This assumption delivers persistent adverse selection. Chari et al. (2014) shows that adverse selection can also persist over time when investors take into account the bank’s reputational concerns.
where $\beta$ is the bank’s discount rate. A bank maximizes the value of dividends by choosing new mortgage originations $l'$, deposits for the next period $d'$, and dividends payouts $\text{div}$ subject to its flow of funds constraint (9), and to a capital requirement constraint (10).

The flow of funds constraint represents all cash-relevant transactions. A bank’s uses of funds are shown on the left-hand side; a bank allocates its resources to new mortgages $l'$, payment of origination costs $o(l')$, and distributes dividends to shareholders, $\text{div}$, net of adjustment costs $\kappa(\text{div})$. A bank’s sources of funds show on the right-hand side; net cash proceeds from its operations in the securitization stage plus new deposits $d'$. The capital requirement constraint (10) restricts net cash holdings after dividends payout to be above a level $b \in R^+$, which is effectively a restriction on the amount of lending a bank can make.

### 2.3 Stationary Equilibrium

An individual bank’s recursive problem is characterized by the states vector $s = (l, d, \theta)$. The aggregate state of the economy is the distribution of banks across states $\lambda(l, d, \theta)$. Here, we define the appropriate mathematical structure for $\Lambda$ to be a probability measure.

Let $D \equiv [d, \overline{d}]$ and let $L \equiv [l, \overline{l}]$ be the set of admissible values for deposits and mortgage originations respectively.\(^{22}\) The state space is defined by $S = L \times D \times \{\theta_h, \theta_l\}$ with Borel $\sigma$ algebra $\mathcal{B}$ and typical subset $S = \mathcal{L} \times \mathcal{D} \times \theta$. Then, the space $(S, S)$ is a measurable space, and for any set $S \in \mathcal{B}$, $\lambda(S)$ is the measure of banks in the set $S$. Finally, let $\Lambda$ denote the set of all probability measures over $(S, \mathcal{B})$. Next, define $Q(s, S)$ as the probability that a bank with current state vector $s = (l, d, \theta)$ transits to the set $S = \mathcal{L} \times \mathcal{D} \times \theta$ next period, formally: $Q : S \times \mathcal{B} \rightarrow [0, 1]$, and

$$Q(s, S) = \sum_{\theta' \in \Theta} I\{l'(l, d, \theta) \times d'(l, d, \theta) \in \mathcal{L} \times \mathcal{D}\} : \mu(\theta', \theta)$$

where $I$ is the indicator function, $l'(l, d, \theta)$ is the optimal mortgage origination policy and $\mu(\theta', \theta)$ is the transition probability function.\(^{23}\) Then $Q$ is the transition function and the associated operator $\Gamma$ defines the law of motion of the transition function,

$$\lambda'(S) = \Gamma(\lambda) = \int_S Q(s, S) d\lambda(s)$$

which indicates the measure of banks that move to the set $S$ from across the entire state space $S$, from the current to the next period.

**Definition of Stationary Equilibrium.** A Stationary Recursive Equilibrium in this environment is a value function $V : S \rightarrow \mathbb{R}_+$; policy functions for the bank $l' : S \rightarrow L$, and $d' : S \rightarrow D$, a stationary measure $\lambda^* \in \Lambda$, a vector of prices $\{R^d, R^l, \pi\}$, and an equilibrium contract $z^*$ from the securitization market, such that:

1. given prices $\{R^d, R^l, \pi\}$, and an equilibrium contract $z^*$ from the securitization market, policy functions $\{l', d'\}$ solve the bank’s problem in (8) and $V$ is the associated value function.

---

\(^{22}\) Bounds $\underline{d}$ and $\overline{d}$ define the lower and upper bounds for deposits, $\underline{l}$ is derived from (10) after setting values for $b \in R^+$ and $d = \overline{d}$, and $\overline{l}$ is the maximum amount of lending allowed in the economy.

\(^{23}\) Thanks to the assumption of $\theta \sim \text{i.i.d.}$, the transition probability function $\mu(\theta', \theta)$ is the vector $(\mu, 1 - \mu)$. 

2. for all $S \in B$, the invariant probability measure $\lambda^*$ satisfies:

$$\lambda^*(S) = \int_{L \times \mathcal{D} \times \{\theta_h, \theta_l\}} Q(s, S) d\lambda^*(s),$$

(13)

where $Q$ is the transition function defined in (11).

## 3 Characterization

There are two main parts to the model characterization. First, we characterize a bank’s lending decisions in the origination stage. Then, we characterize a bank’s mortgage sales decisions in the securitization stage.

### 3.1 Origination Stage

The origination problem is characterized by backward induction. Origination decisions are a function of the equilibrium contract outcomes from the securitization stage. We can rewrite a bank’s flow of funds constraint as:

$$l' + \nu l'^2 + \text{div} + \kappa (\text{div} - \bar{d} \text{iv})^2 = \bar{y}(l, d; \theta, z) + d'$$

solving for dividends obtains:

$$\text{div} = a_0 + \kappa^{-1/2} \left[ a_1 + \bar{y}(l, d; \theta, z) + d' - l' - \nu l'^2 \right]^{1/2},$$

where $a_0 = \bar{d} \text{iv} - \frac{1}{2 \kappa}$, and $a_1 = \frac{1}{4 \kappa} - \bar{d} \text{iv}$. Which indicates that dividend payouts are an increasing and concave function of a bank’s cash holdings and a decreasing function in new originations. A bank’s problem in the origination stage can be re-expressed as:

$$V(l, d; \theta) = \max_{\{l', d', \text{div}\}} a_0 + \kappa^{-1/2} \left[ a_1 + \bar{y}(l, d; \theta, z) + d' - l' - \nu l'^2 \right]^{1/2} + \beta E_{\theta'} V(l', d'; \theta')$$

$$b \leq \bar{y}(l, d; \theta, z) - \text{div} - \kappa (\text{div})$$

$$\theta' \sim \text{i.i.d.} \in \{\theta_h, \theta_l\}, \ l' \geq 0, \ d' \geq 0, \ \text{div} \geq 0$$

**Proposition 1.** A high-type bank originates more mortgages than a low-type bank.

This result is derived from the liquidity value of drawing a high repayment rate on a bank’s portfolio; the liquidity associated with it is higher than that of a lower repayment rate. Intuitively, this is the case because a high-type bank can always securitize completely or partially its mortgage portfolio and avoid the cost of managing it.

**Proposition 2.** Mortgage securitization increases a bank’s mortgage credit supply.

By trading in the securitization market, a bank saves resources in management costs. And transform the current mortgage portfolio into liquid funds. These extra resources are then channeled into a higher credit supply. A securitization market allows for a more efficient allocation of resources. This endogenous connection between securitization and the credit markets is known as the securitization liquidity channel (Loutskina (2011); Calem et al. (2013); Vickery and Wright (2013)).

### 3.2 Securitization Stage

The characterization first focuses on the contract that an individual investor offers to a bank and then extends the analysis to aggregate outcomes. Investors engage in a Bertrand-style competition,
simultaneously offering contracts to banks to screen their portfolio types. As mentioned before, a contract $z$ is a quadruple $(x_h, q_h, x_l, q_l)$ that contains two pairs of offers specifying the fraction and the price intended for each type of bank. Since a bank can freely choose which offer to accept, we restrict attention to incentive-compatible contracts, meaning that at any period, a bank’s payoffs from contracts must satisfy:

\[ q_h x_h + (1 - x_h)(M_h - c) \geq q_l x_l + (1 - x_l)(M_h - c), \]
\[ q_l x_l + (1 - x_l)(M_l - c) \geq q_h x_h + (1 - x_h)(M_l - c), \]

where $M_h \equiv M(\theta_h)$, and $M_l \equiv M(\theta_l)$ to avoid notation cluttering. Rothschild and Stiglitz (1976) have shown that in this type of adverse selection model, equilibria under pure strategies might not exist. However, mixed strategy equilibria have been proven to exist (Dasgupta and Maskin (1986); Rosenthal and Weiss (1984)). As in Rosenthal and Weiss (1984) and Chari et al. (2014), we allow investors to play in mixed strategies and banks in pure strategies and follow their refinement strategy. Define $Z$ to be the set of incentive-compatible contracts. A strategy for an investor $j = 1, 2$ is a distribution function $F_j(z)$ over $Z$. A strategy for the bank is an action $\delta_j(z_1, z_2; M) \in [0, 1]$ for $j = 1, 2$, where $\delta_j$ represents the probability that contract from investor $j$ is accepted. Given the mixed strategy by the other investor, $F_{-j}$, and the strategy of the bank, $\delta$, the profits earned by an investor offering contract $z$ are given by:

\[ \Pi = \int [\mu \delta_j(z, z_{-j}; M_h)(M_h x_h - q_h x_h) + (1 - \mu) \delta_j(z, z_{-j}; M_l)(M_l x_l - q_l x_l)] dF_{-j}(z_{-j}) \]  

**Equilibrium in the securitization market.** An equilibrium consists of strategies for investors $F_j(z)$ for $j = 1, 2$, strategies for banks $\delta_j(z_1, z_2; M) \in [0, 1]$ for $j = 1, 2$, such that:

1. for all $z_j$ in the support of $F_j$ no other contract $\hat{z}_j$ earns strictly higher profits,
2. bank’s strategy specifies that its choice maximizes its payoff.

We further refine the equilibrium, requiring it to be monotone in the sense that a low-quality bank prefers a contract $\hat{z}$ to a $z$ if and only if a high-quality bank also prefers $\hat{z}$ to a $z$. Hence in any monotone equilibrium $\delta_j(z, z_{-j}; M_h) = 1$ if and only if $\delta_j(z, z_{-j}; M_l) = 1$. Additionally, any monotone equilibrium outcome satisfies four key properties: i) for all $z$ in the support of $F$, the low-type bank sells all its newly originated mortgages, $x_l = 1$; ii) the incentive constraint (15) binds for a low-quality bank; iii) investors make zero profits (16) for every contract $z$ in the support of $F$; and iv) offers to low-types do not yield positive profits: $q_l x_l \geq M_l x_l$.

### 3.3 Equilibrium Contracts

The main result of this section is the derivation of specific functional forms for mortgage securitization contracts as a function of the probability of trading with a high-type bank, $\mu$.

**Proposition 3.** Contracts in the securitization market correspond to a separating equilibrium. If $\mu \leq \bar{\mu}$, the equilibrium outcome has banks and investors playing pure strategies under the contract:
where \( \rho = \frac{1}{\epsilon}(M_h - M_l) \) is defined as the adverse selection discount. If \( \mu \geq \tilde{\mu} \), then the equilibrium outcome has mixed strategies by investors and the distribution of contracts is given by

\[
F(q_l) = \left( \frac{(q_l - M_l)}{\mu(M_h - M_l)} \right)^{(1-\rho)\epsilon^{-1}}
\]

with support given by \([M_l, \hat{p}(\mu)]\). Hence, given any payment \( q_l \in [M_l, \hat{p}(\mu)] \), we obtain a contract \( z(q_l; \mu) \). The threshold is defined by \( \tilde{\mu} = \frac{\rho}{1+\rho} \). And \( \hat{p}(\mu) \) is the pooling price obtained from accepting a zero-payoff pooling contract: \( \hat{p}(\mu) = \mu M_h + (1 - \mu) M_l \).

Proposition 3 states that the model always has a separating equilibrium. An equilibrium is separating if the offers accepted by low and high-quality banks are different. In terms of players’ strategies, banks and investors, there are two possible equilibrium outcomes; the pure strategies equilibrium outcome (PSEO) and the mixed strategies equilibrium outcome (MSEO). Hence, there are two regions defining two types of equilibrium contracts as a function of \( \mu \). Figure 3 shows a diagram summarizing this result.

**Figure 3: Equilibrium outcome regions**

**Separating Equilibrium with Pure Strategies.** In this case, investors and banks play pure strategies. Rothschild and Stiglitz (1976) show that any pure strategy equilibrium must have investors breaking even on each type of bank i.e., payments for each type must equate its corresponding returns: \( q_l = M_l \) and \( q_h = M_h \). Substituting \( q_l \) and \( q_h \) in the binding incentive constraint for low-type bank (15) yields the fraction of loans securitized by the high-quality bank

\[
x_h = \frac{1}{1 + \frac{M_h - M_l}{c}} = \frac{1}{1 + \rho},
\]

which leads to (17). In this environment, the intensity of the adverse selection problem is measurable and maps into an endogenous adverse selection discount \( \rho \) defined in Proposition 3. Its size depends on the size of frictions faced by banks, the portfolio management cost, and the spread of the mortgage’s payoff. Which further depends on the underlying risk of a bank’s portfolio and the performance of the collateral based on house price dynamics.

Next, we determine the range of values of \( \mu \) for which we can obtain the above pure strategy equilibrium outcome. This range is expressed in terms of a threshold, \( \tilde{\mu} \), which defines the maximum value of \( \mu \) for which the model yields a pure strategy equilibrium outcome. To determine this

---

See proof in the Appendix A.3. An equilibrium outcome refers to a contract that is the result of trade between banks and investors, each playing their set of strategies.
threshold, we compare the payoffs of the high-quality bank under the PSEO against the payoffs it would receive from accepting a zero-payoff full trade pooling contract, in which $x_h = x_l = 1$ and $q_h = q_l = \hat{p}(\mu)$, where $\hat{p}(\mu)$ is derived from the zero profit condition for investors:

$$\hat{p}(\mu) = \mu M_h + (1 - \mu) M_l$$

(20)

The idea is to associate a bank’s payoffs to $\mu$. Thus, we look for the value of $\mu$ that leaves the high-quality bank indifferent between choosing the PSEO contract or the full-trade pooling contract.\(^{25}\)

Straightforward algebra obtains:

$$\hat{\mu} = \frac{\rho}{1 + \rho}$$

(21)

**Separating Equilibrium with Mixed Strategies.** Above $\hat{\mu}$ the high-quality bank strictly prefers a zero-profit pooling contract to the PSEO. If offered a PSEO contract, investors have incentives to deviate to an allocation near the pooling outcome, since such deviation would be profitable. However, it is possible to construct mixed strategies that preclude deviations, so any deviation attracts low-quality banks with disproportionate probability. This is known as the *best \(l\) deviation approach*, we follow Chari et al. (2014) to obtain the MSEO contracts in (18). A relevant feature of this type of contract is the cross-subsidization between types. An investor’s offers to the low type are such that $q_l \geq M_l$, and payment to the high type are such that $q_h \leq M_h$ which imply investors make zero profits in expectation. Intuitively, $\mu \geq \hat{\mu}$ indicate that the probability of meeting a high type is relatively high, hence, it becomes more costly to separate low types from high types, and it is necessary to provide a higher payment to low type in order to induce it to choose the offer intended for it.

Contracts in (17) and (18) show that investors understand that banks have incentives to securitize low-quality mortgages and retain high-quality ones. Consequently, they design incentive-compatible contracts that pay higher prices for mortgage pools with higher retention requirements— as a signal of quality. Contracts let the low-type bank securitize the entire portfolio at lower prices than those offered to high-type banks. Nevertheless, this asymmetric-information equilibrium is less efficient than the complete-information equilibrium, because the originators of high-quality mortgages cannot sell all of them to investors who can hold them more efficiently.

These contracts also capture key dynamics observed in the MBS market; when house prices rise, the spread between the returns of high and low-type mortgage pools falls. Investors become less concerned about the asymmetries of information on mortgage qualities and increase their purchases of high-type pools. Also, the separating equilibrium contracts resemble the structure of the *specified pool market* for MBSs in the U.S., where quality-specific pools of mortgages sell at differentiated prices. While the *pooling equilibrium outcome* resembles the to-be-announced (TBA) market, where pools of mortgages of heterogeneous qualities sell at a pooling or average price. The model shows that banks trade off the benefits of liquidity and savings in management costs against the adverse selection discount associated with information frictions.\(^{26}\)

\(^{25}\)The threshold is derived by equating the payoffs a high-type bank obtains from the PSEO offer to the payoff it would obtain under the pooling contract.

\(^{26}\)Fusari et al. (2022) document how mortgage heterogeneity affects prices and volumes in both TBA and SP markets. Garcia (2022) develops a general equilibrium model with TBA securitization to study the effects of information frictions and the role of GSE’s policy in smoothing credit cycles.
Contracts under Complete Information. Absent information asymmetries, the equilibrium contract between banks and investors is trivial. Investors can easily identify between high- and low-type mortgage pools. Thus, they make type-specific offers to buy a bank’s entire portfolio \( x_h = x_l = 1 \), paying exactly their return \( q_h = M_h \), and \( q_l = M_l \). This contract is attractive for banks since, by selling their mortgages, they can avoid the portfolio management cost \( c \), and it respects the investor’s zero profit condition (16).

\[
z_{Cf} = (1, M_h, 1, M_l)
\]

Aggregate Securitization Volume. This setup delivers an equilibrium relation between mortgage credit supply and securitization volumes. Consider the case \( \mu \leq \tilde{\mu} \), the equilibrium outcome is the PSEO, then (17) implies that the expected aggregate volume of security issuance (or mortgage sales) is:

\[
T_L(\mu) = \mu x_h + (1 - \mu) x_l = \frac{\mu}{1 + \rho} + (1 - \mu)
\]

On the other hand, if the probability \( \mu \) of observing a high type is such that \( \mu \geq \tilde{\mu} \), the equilibrium contracts are determined by mixed strategies, and the expected aggregate volume of security issuance is:

\[
T_H(\mu) = \mu x_h + (1 - \mu) x_l = \mu \left[ 1 - \frac{1 - \mu}{\mu} \left( \frac{1}{\rho} + \frac{1}{\rho^2} \right)^{-1} \right] + (1 - \mu)
\]

Proposition 4. Security issuance and credit volumes are lower in the asymmetric information economy than in the complete information economy.

Both aggregate functions are decreasing on the adverse selection discount \( \rho \). An increase in the spread between repayment rates will increase the mortgages’ return spread between banks, increasing the adverse selection discount and reducing security issuance in the aggregate. Furthermore, shocks to the spread that induces a switch from the mixed strategies to the pure strategies equilibrium contract also imply a reduction in aggregate securitization. To see this, note that the threshold \( \tilde{\mu} \) increases as \( \rho \) increases (21). Then, suppose \( \mu \) is initially slightly above \( \tilde{\mu} \). In that case, the increase in the threshold induces a switch to the PSEO, causing expected aggregate security issuance for banks to fall. Thus, in all three different cases, the volume of mortgage securitization falls when the adverse selection discount increases, as stated in Proposition 4.

4 Quantitative Outcomes

The following numerical simulation illustrates how information asymmetries amplify banks’ mortgage credit supply and securitization volumes in response to house price shocks.\(^{27}\) Parameters are calibrated based on annual targets for 1990 to 2007, a period in which the private label securitization...
tion segment accounted for a significant fraction of the market. Table 2 in the Appendix shows the parameters for the simulation.

The bank’s discount rate $\beta$ is set to 0.985 to target an average real rate of 1.56% from the one-year treasury bill. Repayment rates $\{\theta_h, \theta_l\}$ are set to $\{0.906, 0.841\}$, based on estimates of the average default rates for mortgage pools acquired by GSEs (Fannie Mae and Freddie Mac) and privately securitizers as reported by Adelino et al. (2019). The probability of observing a high repayment rate $\mu$ does not have a direct counterpart in the data; we set $\mu$ to 0.7, which resembles the fraction of all prime mortgages traded from 2002 to 2007 according to the McDash sample reported by Adelino et al. (2019). The foreclosure recovery rate $\zeta$ is set to 0.75 to target mortgage severities of 25% (Elenev et al. (2016)). The real lending rate is set to 6.26% to match the 30-year fixed mortgage rate from 1990 to 2007, including fees, as reported by Freddie Mac Primary Mortgage Market Survey 2018. The real interest rate on deposits is set to 0.5% based on the overnight deposit rate from the Federal Reserve Economic Data. Average house price inflation, $\pi = 5\%$, corresponds to the average growth rate of the all-transaction house price index from 1990 to 2007, as reported by the FHFA. The portfolio management cost is set to $c = 1.2\%$ to target the average fraction of all mortgages sold every year from 1990 to 2007 according to HMDA. Dividend adjustment costs are calibrated to target a dividend payout of 0.7% of a bank’s assets from the U.S. Call Report data (84-07). The minimum requirement is to set $b = 0$, which lets a bank operate as long as its net cash proceeds from operations are not negative, these also captures the minimum restrictions faced by non-bank mortgage originators. These calibrated parameters imply a return’s spread between the high and low type of $M(\theta_h) - M(\theta) = 1.79\%$, an average securitization rate of 73% for the entire market, with high type banks retaining on average 30% of new mortgage in their portfolio, which is in line with HMDA data reports for the period of analysis.

4.1 Shocks to House Prices

Securitization Contracts. Shocks to the house price growth rate $\pi$ affect the spread of the portfolio’s returns. The dynamics are similar for a shock to the spread in repayment rates, $\theta_h - \theta_l$. Both cases will induce changes in the adverse selection discount $\rho$ and into the space of equilibrium outcomes contracts. Figure 4, shows prices $q$ and fractions securitized $x$ for each type of bank for a sequence of house price shocks. The gray shaded area corresponds to the region of the equilibrium contracts under pure strategies, and the white area to the mixed strategy equilibrium contracts.

Securitization prices in the pure strategy equilibrium outcome are equivalent to the expected returns of its portfolio (shaded area). In contrast, in the mixed strategy equilibrium, prices feature subsidization across types. Investors induce the low-type to separate by paying them a higher price and paying a lower price to the high types than they would under complete information. Consequently, a higher fraction of mortgages are securitized in the aggregate.

The cross-subsidization that occurs in contracts under mixed strategy reduces the differences in liquid funds available after securitization across banks of different types. Securitization helps

---

$^{28}$Adelino et al. (2019) define a default as a mortgage delinquent 90 days or more in a horizon of 60 months after origination. They report average default rates for a sample of 20 million mortgages (covering about 80% of all mortgages issued in the U.S.) from McDash Analytics for 2002 to 2007.
banks to insure against their idiosyncratic risk on repayment rates. Although banks are exposed to different repayment shocks, securitization allows them to hold similar levels of cash and originate similar volumes of new lending.

*Bank’s Cash Flows.* Figure 5 shows the cash flows (liquid funds) for each bank type for a sequence of \( \pi \) shocks. Continuous red and blue lines represent cash holdings for each type after securitization for the complete information case. The blue and red markers represent cash holdings for each type after securitization for the asymmetric information case. 

The left panel shows the implied sequence of prices under asymmetric information (AI) and complete information (CI) for each type of bank. The right panel shows the sequence of securitized fractions for each type of bank under asymmetric information.

**Figure 4:** Simulated contracts for a sequence of house price shocks, \( \pi \)

after securitization for the asymmetric information case. In all cases, a bank’s cash holdings are increasing in \( \pi \). Cash holdings for high-type are always lower under asymmetric information than complete information, whereas the low-type cash holdings can be as low as the complete information case or higher.

Taking into account asymmetries of information induces a non-linear pattern in a bank’s cash flows from securitization. This nonlinearity is at the heart of the amplification effects observed in the numerical simulation. The vertical distance between red and blue markers represents the differences in cash holdings between banks after securitization (Figure 5); such difference decreases as the value of \( \pi \) increases. The level of cash holdings affects the dispersion of the cross-sectional distribution of lending; for negative values of \( \pi \), the cross-sectional distribution of lending becomes more dispersed across banks, as banks tend to be more different in their cash holdings. The opposite effect obtains for high values of \( \pi \), banks benefit from securitization, reducing their differences in cash holdings, which reduces the dispersion of the cross-sectional distribution of lending.\(^{29}\) This feature speaks
Banco de España

Calem et al. (2013) find that the contraction in mortgage credit by commercial banks that an expansive (contractive) shock on house prices will amplify a credit expansion (contraction).

An environment with asymmetric information increases the average lending 1.5 times more and reduces the per-dollar of deposits by 8.2% and reduces dispersion by 15%. Whereas the same shock in an environment with complete information is linear. In contrast, when taking into account asymmetric information, this growth rate becomes non-linear. This pattern is transmitted to a bank’s mortgage credit decision and generates a non-linear response of the aggregate credit supply to exogenous shocks.

4.2 The Amplification Effect

The response of banks’ credit supply to house price growth-rate shock is amplified in an environment that features asymmetric information. These dynamics arise from changes in the cross-sectional distribution of lending. Figure 6 shows the stationary distribution for lending for the baseline calibration (blue), and for a negative (gray) and positive (orange) house price shock of 7% in two scenarios, under asymmetric and complete information. A positive shock to the house price growth rate reduces the spread in returns across banks, and increases securitization and aggregate liquidity, and expands lending. It also reduces dispersion in the cross-section, since returns for low-type banks are higher and closer to the high-types. A negative shock moves the distribution to the left; it increases the mortgage’s return spread across banks, which reduces securitization and aggregate liquidity for lending and increases dispersion. In the aggregate, the volume of security issuance will be highly correlated to the volume of mortgage credit, consistent with the dynamics observed in the data (see Figure 1).

Table 1 reports that the effects of a house price shock are amplified in an environment with asymmetric information. Under complete information, a positive shock increases mortgage lending per-dollar of deposits by 8.2% and reduces dispersion by 15%. Whereas the same shock in an economy with asymmetric information increases the average lending 1.5 times more and reduces the dispersion of the distribution 2.1 times more. In the context of the credit market, this result states that an expansive (contractive) shock on house prices will amplify a credit expansion (contraction). The amplification effect is not symmetric, showing larger effects on contractive shocks. Large collateral values can support higher production of low-quality MBSs (because the return of low-quality mortgages \( M(\theta) \) increases). Investors become less concerned about borrowers defaulting because of the rising value of house prices.
The amplification effect is not symmetric, showing larger effects on contractive shocks. Large that an expansive (contractive) shock on house prices will amplify a credit expansion (contraction).

asymmetric information. Under complete information, a positive shock increases mortgage lending the aggregate effects of information frictions in asset markets (see Krishnamurthy (2010), Kurlat micro-level. Calem et al. (2013) find that the contraction in mortgage credit by commercial banks amplification effects from the securitization liquidity channel have also been documented at the economy with asymmetric information increases the average lending 1.5 times more and reduces the result is consistent with models—albeit those not specific to the mortgage market—that study the aggregate effects of information frictions in asset markets (see Krishnamurthy (2010), Kurlat (2013), Bigio (2015), and Asriyan (2020)).

Each density represents the cross-sectional distribution of credit. Baseline refers to the economy under the baseline calibration. ∆π refers to the new steady state distribution after the baseline economy has been shocked with a positive and negative house price shock of 7%.

Figure 6: Cross-sectional lending distributions

amplification effects from the securitization liquidity channel have also been documented at the micro-level. Calem et al. (2013) find that the contraction in mortgage credit by commercial banks that were highly exposed to securitization liquidity was six times greater than that of similar banks that were not dependent on securitization during the collapse of the non-agency MBS market. This result is consistent with models—albeit those not specific to the mortgage market—that study the aggregate effects of information frictions in asset markets (see Krishnamurthy (2010), Kurlat (2013), Bigio (2015), and Asriyan (2020)).

<table>
<thead>
<tr>
<th>House price shock</th>
<th>Asymmetric Information</th>
<th>Complete Information</th>
<th>Amplification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Expansive ∆π = +7%</td>
<td>12.2</td>
<td>-32.0</td>
<td>8.2</td>
</tr>
<tr>
<td>Contractive ∆π = -7%</td>
<td>-20.5</td>
<td>84.9</td>
<td>-10.5</td>
</tr>
</tbody>
</table>

Statistics obtained from simulating the stationary distribution of credit across banks for different scenarios of a shock to the growth rate of house prices. Level and Dispersion refer to the percentage changes in the mean and the standard deviation of the distribution, respectively. Amplification corresponds to the ratio of the percentage change of asymmetric information to that of complete information.

Table 1: Percentage change in aggregate lending from a house price shock

5 Conclusion

This paper provides a theoretical connection between a bank’s mortgage lending and securitization decisions. And it shows that adverse selection in securitization (Downing et al. (2008); Calem et al. (2011); Keys et al. (2010); Adelino et al. (2019)) amplifies fundamental shocks and their transmission to banks’ credit supply. A quantitative application of the theory indicates that the response of lending to house price shocks can be amplified by a factor that ranges between 1.5 to 2.0 with respect to an economy that abstracts from information frictions. These results are consistent with other studies of the aggregate effects of adverse selection in asset markets (Krishnamurthy
(2010), Kurlat (2013), Bigio (2015)) and with the magnitudes documented at the micro-level in the mortgage market (Calem et al. (2013)). This observation is relevant for designing macroprudential policies in the mortgage market that alleviate these vulnerabilities and keep a stable credit supply to households.
References


A Proofs for the Characterization Section

A.1 Proof to Proposition 1

Proposition 1. A high-type bank originates more mortgages than a low-type bank. We start by taking first order conditions (FOC) from problem (8) with respect to \{l', d'\}:

\[
l' : \quad g_{d\nu}(\theta)(-1 - 2\nu l') + \beta \left[ \frac{\partial V(l', d'; \theta^h)}{\partial l'} + (1 - \mu) \frac{\partial V(l', d'; \theta^l)}{\partial d'} \right] + \lambda(1 + 2\nu l') = 0
\]

\[
d' : \quad g_{d\nu}(\theta)(1) + \beta \left[ \frac{\partial V(l', d'; \theta^h)}{\partial d'} + (1 - \mu) \frac{\partial V(l', d'; \theta^l)}{\partial d'} \right] - \lambda = 0
\]

where \(\lambda\) is the Lagrange multiplier associated to the capital requirement constraint and \(g_{d\nu}\) represents the marginal change in dividends,

\[
g_{d\nu}(\theta) = -\frac{\kappa}{2} \left[ a_1 + \bar{y}(l, d; \theta, z) + d' - l' - \nu l'^2 \right]^{-1/2}
\]

Suppose \(d = d' = 1\), then

\[
\bar{y}(l; \theta, z) = l(1 - x)[M(\theta) - c] - (R^d - qxl)
\]

and

\[
g_{d\nu}(\theta) = -\frac{\kappa}{2} \left[ a_1 + l(1 - x)[M(\theta) - c] - (R^d - qxl) + 1 - l' - \nu l'^2 \right]^{-1/2}
\]

consider the case in which there are no sales \(z = (x_h, t_h, x_l, t_l) = (0, 0, 0, 0)\):

\[
g_{d\nu}(\theta) = -\frac{\kappa}{2} \left[ a_1 + l[M(\theta) - c] - R^d + 1 - l' - \nu l'^2 \right]^{-1/2}
\]

notice that since \(M(\theta^h) \geq M(\theta^l)\):

\[
g_{d\nu}(\theta^h) \leq g_{d\nu}(\theta^l)
\]

This difference in the marginal change of dividends implies a difference in the level of originations between high and low type i.e., it translates in the policy functions being parallel arrays with the policy function for high type above that of the low type.

A.2 Proof to Proposition 2

Proposition 2. Mortgage securitization increases a bank’s mortgage credit supply.

Using envelope condition, we obtain the Euler equation for deposits:

\[
g_{d\nu} - \lambda = \beta \left[ R^d \mu g_{d\nu}(\theta^h) + R^d(1 - \mu) g_{d\nu}'(\theta^l) \right]
\]

\[
g_{d\nu} - \lambda = \beta \mathbb{E}_\theta g_{d\nu}(\theta^l)
\]

and the Euler equation for loans:

\[
\frac{(1 + 2\nu l')}{\text{marginal cost}}(g_{d\nu} - \lambda) = \beta \mathbb{E}_\theta g_{d\nu}(\theta^l) \left[ (1 - x(\theta^l))[M(\theta^l) - c] + xq(\theta^l) \right]
\]

Notice that the right-hand-side of the above equation depends on the securitization contract, \(z = (x_h, q_h, x_l, q_l)\) which is a function of the model’s fundamentals.
For instance if there are no securitization, the contract is $z = (0, 0, 0, 0)$, hence:

$$\left(1 + 2\mu’\right)(g_{\text{div}} - \lambda) = \beta\mathbb{E}_{\theta’}g_{\text{div}}(\theta’) \left[M(\theta’) - c\right]$$

A.3 Proof to Proposition 3

The first step consists of showing that there is always a separating equilibrium outcome.

**Separating Equilibrium.** Since contracts are monotone, and satisfy the four properties mentioned in the definition of *Equilibrium in the securitization market*, we have that $\delta_j(z, z_{-j}; M_l) = 1 \iff \delta_j(z, z_{-j}; M_h) = 1$. Using the fact that $x_l = 1$, the zero profit condition for investors (16) can be re-written as:

$$\mu (M_h x_h - q_h x_h) + (1 - \mu) (M_l - q_l) = 0 \quad (26)$$

also, by properties of monotone equilibrium, the incentive constraint for low-quality bank binds, hence:

$$q_l = q_h x_h + (1 - x_h)(M_l - c) \quad (27)$$

The next step is to show that depending on the value of $\mu$, the equilibrium outcome will be different. In particular, there will be two regions defining two types of equilibrium contracts.

**Separating Equilibrium with Pure Strategies (PSEO).** This is a specific type of outcome of the previous characterization. In this case, investors and banks play pure strategies. Rothschild and Stiglitz (1976) show that any pure strategy equilibrium must have investors breaking even on each type of bank i.e., payments for each type must equate its corresponding returns: $q_l = M_l$ and $q_h = M_h$. Substituting $q_l$ and $q_h$ in the binding incentive constraint for low-type bank (27) yields the fraction of loans sold by the high-quality bank:

$$x_h = \frac{1}{1 + \frac{M_h - M_l}{c}} = \frac{1}{1 + \rho} \quad (28)$$

where $\rho = \frac{1}{\epsilon}(M_h - M_l)$ is known as the *adverse selection discount*, which is a function of the spread of payoffs between mortgages and the operation cost that banks face. Notice that in the absence of differences in returns between high and low type $M_h - M_l = 0$, the information asymmetries about mortgages’ payoffs would be irrelevant $\rho = 0$, consequently, both high and low type banks would sell their entire portfolio. This discount in quantity is informative about how the adverse selection reduces securitization volume compared to the complete information case. Also, notice how changes in operation cost can induce fluctuations in securitized volume, or make them more acute. This result characterizes the pure strategies equilibrium outcome, which corresponds to the contract:

$$z = (x_h, q_l, x_l, q_l) = \left(\frac{1}{1 + \rho}, M_h, 1, M_l\right). \quad (29)$$

**Equilibrium Outcomes Regions.** Next, I determine the range of values of $\mu$ for which we can obtain the above pure strategy equilibrium outcome. This range is expressed in terms of a threshold, $\hat{\mu}$, which defines the maximum value of $\mu$ for which the model yields a pure strategy
equilibrium outcome, for any value above the threshold, the model yields a mixed strategy equilibrium outcome. To determine this threshold we compare the payoffs of the high-quality bank under the PSEO against the payoffs it would receive from accepting a zero-payoff full trade pooling contract, in which \( x_h = x_l = 1 \) and \( q_h = q_l = \hat{p}(\mu) \), where \( \hat{p}(\mu) \) is given from the zero profit condition for investors: \( \hat{p}(\mu) = \mu M_h + (1 - \mu) M_l \). The idea is to associate bank’s payoffs to \( \mu \). Thus, look for the value of \( \mu \) that leaves the high-quality bank indifferent between choosing the PSEO contract or the full trade pooling contract \( q_h x_h + (1 - x_h)(M_h - c) = \hat{p}(\mu) \). Performing algebra it obtains:

\[
\hat{\mu} = \frac{\rho}{1 + \rho}
\]

(30)

**Separating Equilibrium with Mixed Strategies.** Above \( \hat{\mu} \) the high-quality bank strictly prefers the zero-profit pooling contract to the PSEO. Hence, investors have incentives to deviate from the pure strategy outcome to an allocation near the pooling outcome, since such deviation is profitable. However, it is possible to construct mixed strategies that preclude deviations, so that any deviation attracts low-quality banks with disproportionate probability. This is the best deviation approach followed by Rosenthal and Weiss (1984) and Chari et al. (2014). The relevant feature of these equilibrium contracts is the cross-subsidization between types. Investors’ offer to the low type are such that \( q_l \geq M_l \), and payment to the high type are such that \( q_h \leq M_h \) which implies that if they buy from a low type they make losses, and if they buy from a high type they make a profit, however, in expected value investors make zero profits. Intuitively, \( \mu \geq \hat{\mu} \) indicate that the probability of meeting a high type is relatively high, hence it becomes more costly to separate low types from high types, and it is necessary to provide a higher payment to low type in order to induce it to choose the offer intended for it.

In sum, the type of contracts investor offer satisfy: (i) contract payments to the low type are chosen from the support \([q_l, p(\mu)]\), and allow for \( x = 1 \) (ii) contracts are incentive compatible, (iii) contracts yield zero profits to investors in expectation. Given that a continuum of contracts satisfies these properties and probabilities are continuous, the MSEO is characterized by the probability density function \( F \) (introduced in Proposition 3):

\[
F(q_l) = \left( \frac{q_l - M_l}{\mu(M_h - M_l)} \right)^{\frac{\mu}{(1 + \rho)}}^{-1}
\]

(31)

with support given by \([M_l, \hat{p}(\mu)]\).

Then, to derive a contract, it is only left to solve for the high-quality offer \( q_h \) and \( x_h \) from the system of equations (26) and (27) for a given value of \( q_l \). This characterizes any contract \( z = (x_h, q_h, x_l, q_l) \) in the Mixed Strategies Equilibrium.

A.4 Proof to Proposition 4

Securitization volumes are always lower in the asymmetric information economy than in the complete information economy. This follows directly from the equilibrium contracts, note that in the

---

30This contract is called mixed strategies equilibrium outcome because investors play in mixed strategies i.e., they offer a continuum of contracts according to a probability density function \( F \). Remember that banks always play pure strategies, always accept or reject a contract, this is one of the properties of monotone equilibria.
complete information economy both bank-types securitize their entire portfolio (22). Whereas in the asymmetric information economy, the average fraction of portfolio securitization is lower than one regardless of the equilibrium outcome, see (23) and (24). The statement regarding credit volumes follows from a straightforward comparison of a bank’s Euler equation for loans in each scenario. First, for the complete information economy, the corresponding Euler equation for a generic bank type $\theta$ is:

$$(1 + 2\nu l')(g_{div} - \lambda) = \beta \mathbb{E} \phi g_{div}(\theta') M(\theta)'$$.

The concavity of bank’s preferences over dividends, implies an interior solution for the level of credit. Let $l_{CI}^*$ be the optimal average level of credit for a generic bank in the complete information economy. Next, for the economy with asymmetries of information, since $c > 0$ and some banks do not get to securitize their entire portfolio $x(\theta) < 1$, on average, the marginal benefit of originating a loan will be lower than the complete information economy but higher than the case of no securitization, i.e.

$$\mathbb{E} \phi g_{div}(\theta') M(\theta') \geq \mathbb{E} \phi g_{div}(\theta') (1 - x(\theta)) [M(\theta') - c] + xq(\theta')$$

and given that the marginal cost of origination is independent of the securitization outcome, the level of credit supply is the highest for the complete information economy, the lowest for the economy with no securitization, and the level of credit for the economy with asymmetric information is bounded above and below by those cases:

$$l_{CI}^* > l_{AI}^* \geq l_{NS}^*,$$

where $l_{AI}^*$ and $l_{NS}^*$ represent the optimal level of credit in the economy with asymmetric information economy and the no securitization economy, respectively.

### B Parameters for Quantitative Exercise

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Value</th>
<th>Target</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\beta$</td>
<td>Bank discount factor</td>
<td>0.985</td>
<td>Real 1YT-bill rate: 1.56% (90-07).</td>
</tr>
<tr>
<td>${\theta_l, \theta_h}$</td>
<td>Repayment rates</td>
<td>0.91, 0.84</td>
<td>Default rates in MBS pools (01-07). Adelino et al. (2019).</td>
</tr>
<tr>
<td>$\mu$</td>
<td>Prob. of high type</td>
<td>0.70</td>
<td>Prime and subprime MBS pools (01-07). Adelino et al. (2019).</td>
</tr>
<tr>
<td>$\zeta$</td>
<td>Foreclosure recovery rate</td>
<td>0.75</td>
<td>Mortgage severities of 25% (Elenev et al. (2016)).</td>
</tr>
<tr>
<td>$\kappa$</td>
<td>Dividends adj. cost</td>
<td>10</td>
<td>Dividends to assets ratio (0.7%) U.S. Call Reports (84-07).</td>
</tr>
<tr>
<td>$\nu_l$</td>
<td>Loan origination cost</td>
<td>0.00033</td>
<td>Scale parameter.</td>
</tr>
<tr>
<td>$R^d$</td>
<td>Gross lending rate (pp)</td>
<td>6.26</td>
<td>30Y FRM plus fees. Freddie Mac and Fannie Mae (90-07).</td>
</tr>
<tr>
<td>$R^{fd}$</td>
<td>Gross deposits rate (pp)</td>
<td>0.50</td>
<td>Overnight deposits rate. St Louis FRED (90-07).</td>
</tr>
<tr>
<td>$\pi$</td>
<td>House price growth (pp)</td>
<td>5.00</td>
<td>Growth rate of FHFA’s house price index (90-07).</td>
</tr>
<tr>
<td>$c$</td>
<td>Bank’s operation cost (pp)</td>
<td>1.20</td>
<td>Fraction of all securitized mortgages: 70%, HMDA (90-07).</td>
</tr>
</tbody>
</table>

All parameters are calibrated based on annual targets for the U.S. mortgage market from 1990 to 2007, a period in which the private label securitization segment accounted for a significant fraction of the market.
Here we present the calibration strategy. The bank’s discount rate $\beta$ is set to 0.985 to target an average real rate of 1.56% from the one-year treasury bill. Repayment rates $\{\theta_h, \theta_l\}$ are set to $\{0.906, 0.841\}$, based on estimates of the average default rates for mortgage pools acquired by GSEs (Fannie Mae and Freddie Mac) and privately securitizers as reported by Adelino et al. (2019).  The probability of observing a high repayment rate $\mu$ does not have a direct counterpart in the data; we set $\mu$ to 0.7, which resembles the fraction of all prime mortgages traded from 2002 to 2007 according to the McDash sample reported by Adelino et al. (2019). The foreclosure recovery rate $\zeta$ is set to 0.75 to target mortgage severities of 25% (Elenev et al. (2016)). The real lending rate is set to 6.26% to match the 30-year fixed mortgage rate from 1990 to 2007, including fees, as reported by Freddie Mac Primary Mortgage Market Survey 2018. The real interest rate on deposits is set to 0.5% based on the overnight deposit rate from the Federal Reserve Economic Data. Average house price inflation, $\pi = 5\%$, corresponds to the average growth rate of the all-transaction house price index from 1990 to 2007, as reported by the FHFA. The portfolio management cost is set to $c = 1.2\%$ to target the average fraction of all mortgages sold every year from 1990 to 2007 according to HMDA. Dividend adjustment costs are calibrated to target a dividend payout of 0.7% of a bank’s assets from the U.S. Call Report data (84-07). The minimum requirement is to set $b = 0$, which lets a bank operate as long as its net cash proceeds from operations are not negative, these also captures the minimum restrictions faced by non-bank mortgage originators. These calibrated parameters imply a return’s spread between the high and low type of $M(\theta_h) - M(\theta) = 1.79\%$, an average securitization rate of 73% for the entire market, with high type banks retaining on average 30% of new mortgage in their portfolio, which is in line with HMDA data reports for the period of analysis.

C Computational Algorithm

The algorithm to solve the steady state of this model follows the structure presented in the timeline in section 2.2. Given a set of parameters that characterize the economy $\Omega = \{\theta^h, \theta^l, c, \zeta, \nu_l, \kappa, d, \beta, \mu\}$, and prices $\{R^d, R^l, \pi\}$:

- First, solve for the equilibrium contracts from the Securitization Stage,
- Second, given prices $\{R^d, R^l, \pi\}$ and equilibrium contract $z^* = (x_h, q_h, x_l, q_l)$, solve the Recursive Problem of each bank in the 2.2, which yields policy and value function is $\{l'(l, d; \theta, z), d'(l, d; \theta, z), V(l, d; \theta, z)\}_{\theta \in \{\theta^h, \theta^l\}}$ for every type of bank.
- Third, obtain the stationary distribution, (13), by iterating over the law of motion of the transition function, (12), until convergence.

C.1 An Illustration of Equilibrium Contracts

This section provides descriptive and numerical examples of the equilibrium contracts that can arise in the model. As shown in Proposition 3, there are two possible types of equilibrium outcomes (see Adelino et al. (2019) define a default as a mortgage delinquent 90 days or more in a horizon of 60 months after origination. They report average default rates for a sample of 20 million mortgages (covering about 80% of all mortgages issued in the U.S.) from McDash Analytics for 2002 to 2007.
Figure 3). We start by illustrating contracts in the pure strategies equilibrium in the non-negative orthant of \((x, q)\) space.

**Pure Strategies.** The PSEO contract (17) is a quadruple containing an offer for each bank type. In Figure 7, Panel (a), the offer to the low-type bank \((x_l, q_l) = (1, M_l)\) is labeled \(A\), and the offer to the high-type bank \((x_h, q_h) = \left(\frac{1}{1+\rho}, M_h\right)\) is represented by point \(B\). Straight-line indifference curves with negative slopes represent banks’ preferences over offers; these are derived from each bank’s linear payoffs function in the securitization stage, equation (7). The low-type bank indifference line runs through points \(B\) and \(A\), indicating that the low-type is indifferent between her offer and the offer to the high-type. Let \(C\) represent the point at which the high-type indifference line through \(B\) intersects the vertical line denoting \(x = 1\). Let the point \(P\) illustrate a pooling contract containing the same offer \((1, \hat{p}(\mu))\) to each bank-type with pooling price \(\hat{p}(\mu) = \mu M_h + (1 - \mu) M_l\).

The point \(P\) may be below (as in panel (a)), on, or above \(C\) (as in panel (b)). In panel (a), we have illustrated \(P\) for a value of \(\mu\) that satisfies \(\mu \leq \hat{\mu}\) (See Proposition 3). More generally, whenever \(P\) is below \(C\), there is a unique pure strategy separating equilibrium: all investors offer the contract \((B,A)\) to banks. Notice that although the low type might prefer the pooling contract, such offer is not attractive to the high type. Hence, contract \((B,A)\) dominates the pooling contract \(P\) and constitutes a unique equilibrium (see the Appendix A.3 for the proof).

![Figure 7: Illustration of Equilibrium Contracts](image)

According to the model’s baseline calibration (Table 2), the threshold defining the equilibrium regions takes a value of \(\hat{\mu} = 0.598\). For example, consider the probability of observing high-type banks to be \(\mu = 0.50\), so it’s equally probable to observe low and high types. Since \(0.5 < \hat{\mu}\), this would imply steady-state securitization contracts in the PSEO region, with the following values \(z = (1/(1+\rho), M_h, 1, M_l) = (0.402, 1.037, 1.00, 1.019)\) obtained from equation (17). In this case, the optimal contract requires almost sixty percent portfolio retention from the high type as a screening (skin-in-the-game) device to separate them from the low types. Intuitively, whenever the probability of observing high-type banks is low \((\mu \leq \hat{\mu})\) it is possible to separate between types by offering a contract requiring high retention levels to the high-type.

---

This contract is known as the least-cost separating outcome (Rothschild and Stiglitz (1976)).
Mixed Strategies. On the other hand, for values of $\mu$ above $\hat{\mu}$, whenever banks and investors play in pure strategies, a (separating) equilibrium does not exist. In our environment, the non-existence of equilibrium means that the pair of offers $(B, A)$ intended to separate banks are dominated by the pooling contract, as both bank types strictly prefer such contract if available—represented by point $P$ in the panel (b) of Figure 7. In this case, Rosenthal and Weiss (1984) have shown that a (separating) equilibrium in the region $\mu > \hat{\mu}$ exists if investors are allowed to play in mixed strategies. In the Appendix A.3, we follow Rosenthal and Weiss (1984) and Chari et al. (2014)’s approach to derive the set of mixed strategies equilibrium contracts. The main idea is to design contracts that pay low-types a price above their break-even return (for instance, point $D$ in panel (b) of Figure 7 offers a price $q_l > M_l$) and find the corresponding offer to the high-type (point $E$) by riding along the low-type indifference line that crosses the line connecting $B$ and $P$. An example of a possible contract in the MSEO is given by the pair of offers $(E, D)$. In general, these class of contracts feature the following properties: (i) contract payments to the low type are chosen from the support $[M_l, \hat{p}(\mu)]$, (ii) contracts are incentive compatible, and (iii) investors make zero profits in expectation. Panel (b) in Figure 7 shows the continuum of contracts satisfying these properties, offers to the high-type—represented by the dashed blue array $BP$—feature some level of loan retention ($x_h < 1$) and lower prices than the break-even return $q_h < M_h$. Offers to the low-type—represented by the solid blue vertical array $AP$—feature zero loan retention ($x = 1$) and prices $q_l \in [M_l, \hat{p}(\mu)]$ higher than their break-even return $M_l$. Since investors are allowed to play in mixed strategies, i.e. assign probabilities to the continuum of offers to the high and low types that define the above contracts, the MSEO is characterized by the cumulative distribution function $F(q_l)$ with support $[M_l, \hat{p}(\mu)]$ given by (18). In the baseline calibration (Table 2), we set $\mu$ to 0.7. This implies steady-state securitization contracts in the MSEO region given that $\mu$ is above the threshold $\hat{\mu} = 0.598$. Straight forward computation—using the cdf in 18 and following the steps in Appendix A.3—yields the expected contract $z = (x_h, q_h, x_l, q_l) \equiv (0.618, 1.034, 1.00, 1.023)$.

D Comparing Different Economies

D.1 Opening the securitization market

In this section we analyze the Stationary Distribution of loans before and after opening the securitization market for the complete information economy. Figure 8 shows the cross-section of the aggregate stationary distribution of lending (mortgage credit) across banks normalized for 1 unit of deposits.

Securitization allows for a significant expansion of mortgage credit (Proposition 2). The lending distribution shifts to the right, both low- and high-type banks expand their loan originations by selling their entire portfolios and saving on management costs. This is consistent with the idea securitization was a key economic driver of credit supply in the 2000s and can account for fluctuations in mortgage debt and the housing market (Justiniano et al. (2015, 2019))

---

33See Rothschild and Stiglitz (1976); Dasgupta and Maskin (1986) for the formal proof and arguments in the classical insurance market model, Rosenthal and Weiss (1984) extend the exposition to a signaling model of education.
D.1.1 Securitization with asymmetric information

Figure 9 adds to the previous figure the stationary distribution of lending for the asymmetric information case (blue line). There are two results in this figure: first, under asymmetric information there is less lending than under complete information. This result is consistent with the literature of asymmetries of information frictions, see Bernanke and Gertler (1989), Kurlat (2013).

Under asymmetric information, the distribution of lending becomes more concentrated around its mean, the second moment of the distribution is half the magnitude that under complete information. This reduction in dispersion comes from the structure of contracts in the model (Proposition 3). Given the calibration in Table 2, the equilibrium contracts correspond to the Mixed Strategies Equilibrium contract from (31), with payments \( q_h < M_h \) and \( q_l > M_l \), which means that this equilibrium features cross-subsidization across types, profits from high-type banks are used by investors to subsidize low-type banks. Low-type banks get paid more than in the case of complete information, and high-type gets paid less, overall both types are more similar in their liquid funds’ holdings after securitization (7).

Figure 9: Distributions of lending for different economies

Asymmetric Information contract \( z = (x_h, q_h, x_l, q_l) \): \( x_h = 0.618, q_h < M_h, x_l = 1, q_l > M_l \).
Given the calibration in Table 2, the equilibrium contracts correspond to the Mixed Strategies Equilibrium contract from (31), with payments $q_h < M_h$ and $q_l > M_l$, which means that this equilibrium features cross-subsidization across types, profits from high-type banks are used by investors to subsidize low-type banks. Low-type banks get paid more than in the case of complete information, and high-type gets paid less, overall both types are more similar in their liquid funds' holdings after securitization (7).

Figure 9: Distributions of lending for different economies

Figure 10: Stock of Residential Mortgages Loans, by holder

BANCO DE ESPAÑA PUBLICATIONS

WORKING PAPERS

2141 JULIO A. CREGO and JULIO GÁLVEZ: Cyclical dependence in market neutral hedge funds.
2142 HERVÉ LE Bihan, MAGALI MARX and JULIEN MATHERON: Inflation tolerance ranges in the new keynesian model.
2143 DIEGO COMIN, JAVIER QUINTANA, TOM SCHMITZ and ANTONELLA TRIGARI: Measuring TFP: the role of profits, adjustment costs, and capacity utilization.
2145 BEATRIZ GONZÁLEZ, GALO NUÑO, DOMINIK THALER and SILVIA ABRIZIO: Firm heterogeneity, capital misallocation and optimal monetary policy.
2201 RYAN BANERJEE and JOSÉ-MARÍA SERENA: Dampening the financial accelerator? Direct lenders and monetary policy.
2202 JUAN S. MORA-SANGUINETTI and ISABEL SOLER: The propagation of worldwide sector-specific shocks.
2203 CORINNA GHIRELLI, DANILO LEIVA-LEÓN and ALBERTO URTASUN: Housing prices in Spain: convergence or decoupling?
2204 MONICA MARTINEZ-BRAVO and CARLOS SANZ: Financial exclusion and sovereign default: The role of official lenders.
2205 ROCOLFO G. CAMPOS, ILLIANA REGGIO and JACOPO TIMINI: Thick borders in Franco’s Spain: the costs of a closed economy.
2206 RICARDO GIMENO and CLARA I. GONZÁLEZ: The role of a green factor in stock prices, When Fama & French go green.
2207 JOSE GARCIA-LOUZAO, LAURA HOSPIDO and ALESSANDRO RUGGIERI: Dual returns to experience.
2208 JAVIER QUINTANA: The role of a green factor in stock prices. When Fama & French go green.
2209 MARIO IZQUIERDO, ENRIQUE MORAL-BENITO, ELVIRA PRADES and JAVIER QUINTANA: The propagation of worldwide sector-specific shocks.
2210 MARIO BAJO and EMILIO RODRÍGUEZ: Integrating the carbon footprint into the construction of corporate bond portfolios.