Discussion of "Interest Rate Risk, Deposit Rates, and Financial Stability"

José-Luis Peydró

(LUISS University & EIEF Einaudi)

Bank of Spain, Madrid, 12th June 2025

General comments and outline of this discussion

Great overall paper!

- Important question, for both academia and policy
- Excellent data and very interesting results
- Work in progress, so the paper can still improve

My discussion:

- Credit risk vs interest rate risk: comments & suggestions
- Other suggestions to improve the paper
 - Bank competition
 - Derivatives

One-page summary of the paper

Question:

Analysis of interest rate risk, deposit rates, and financial stability

Data and shock:

- Supervisory, matched granular German loan & deposit data from the Bundesbank and the ECB
- Exploit the unexpected rise in euro area monetary rates over 2022-23

Key result:

- Banks with higher deposit ratios encountered greater interest rate risk, resulting in significant implicit losses within their asset portfolios
- Nevertheless, banks sustained stable profits by offering lower deposit rates, indicating a natural hedge through their deposit franchise

Interest rate risk vs credit risk

- Interest rate risk and credit risk are mostly separated
 - In policy: Pilar 1 vs 2 Basel regulation
 - But also in academic analyses
- But even credit risk due to higher monetary rates
 - A key exception is a theoretical paper by Martin Hellwig in 1993
- This is despite that **e.g. subprime borrowers** had variable loan interest rates in the **2000s boom**, but when the Fed increased MP rates from 1% to 5.25%, these borrowers (and others) defaulted → banking crisis
- → I think an analysis of both risks associated to higher MP rates is crucial
- Related, key question is what banks hedge: bank value vs cash flows?
- Or hedge profits? In this case, via current IFRS 9 provisions (or the US one), if ECL were calculated well, credit risk could be covered in profits
 - But many banks use a "standardized approach" to provisions (which does not vary much with MP rate changes). For the IRB model, moreover, it has been shown that bank manipulate IRB models

Interest rate risk vs credit risk

- Interest rate risk and credit risk are mostly separated
 - In policy: Pilar 1 vs 2 Basel regulation
 - But also in academic analyses
- But even credit risk due to higher monetary rates
 - A key exception is a theoretical paper by Martin Hellwig in 1993
- This is despite that **e.g. subprime borrowers** had variable loan interest rates in the **2000s boom**, but when the Fed increased MP rates from 1% to 5.25%, these borrowers (and others) defaulted → banking crisis
- → I think an analysis of both risks associated to higher MP rates is crucial
- Related, key question is what banks hedge: bank value vs cash flows?
- Or hedge profits? In this case, via current IFRS 9 provisions (or the US one), if ECL were calculated well, credit risk could be covered in profits
 - But many banks use a "standardized approach" to provisions (which does not vary much with MP rate changes). For the IRB model, moreover, it has been shown that bank manipulate IRB models

Interest rate risk vs credit risk

- Interest rate risk and credit risk are mostly separated
 - In policy: Pilar 1 vs 2 Basel regulation
 - But also in academic analyses
- But even credit risk due to higher monetary rates
 - A key exception is a theoretical paper by Martin Hellwig in 1993
- This is despite that **e.g. subprime borrowers** had variable loan interest rates in the **2000s boom**, but when the Fed increased MP rates from 1% to 5.25%, these borrowers (and others) defaulted → banking crisis
- → I think an analysis of both risks associated to higher MP rates is crucial
- Related, key question is what banks hedge: bank value vs cash flows?
- Or hedge profits? In this case, via current IFRS 9 provisions (or the US one), if ECL were calculated well, credit risk could be covered in profits
 - But many banks use a "standardized approach" to provisions (which does not vary much with MP rate changes). For the IRB model, moreover, it has been shown that bank manipulate IRB models

Monetary policy rates on banking stability: credit vs interest rate risk

- This paper is about understanding monetary policy & financial stability
- We have a very related paper, partly using Bank of Spain data, that addresses both credit risk and interest rate risk and analyzes banking crises associated to higher monetary policy rates
 - "Monetary Policy, Inflation, and Crises: Evidence from History and Administrative Data," G. Jiménez, D. Kuvshinov, J.-L. Peydró, B. Richter Journal of Finance, forthcoming
 - Our paper is mostly country level, not bank level, except for one part, so both papers complement very well each other
- We show that a U-shaped MP rate path increases banking crisis risk, via credit and asset price cycles, analyzing 17 countries over 150 years

Monetary policy rates on banking stability: credit vs interest rate risk

- This paper is about understanding monetary policy & financial stability
- We have a very related paper, partly using Bank of Spain data, that addresses both credit risk and interest rate risk and analyzes banking crises associated to higher monetary policy rates
 - "Monetary Policy, Inflation, and Crises: Evidence from History and Administrative Data," G. Jiménez, D. Kuvshinov, J.-L. Peydró, B. Richter Journal of Finance, forthcoming
 - Our paper is mostly country level, not bank level, except for one part, so both papers complement very well each other
- We show that a U-shaped MP rate path increases banking crisis risk,
 via credit and asset price cycles, analyzing 17 countries over 150 years

Jiménez—Kuvshinov—Peydró—Richter (Journal of Finance, forthcoming)

- Monetary rate (MP) hikes (raw or instrumented using the international finance trilemma) materially increase banking crisis risk, but only if preceded by prolonged monetary rate cuts
 - These patterns are unique to banking crises, unlike non-financial-crisis (even deep) recessions
 - Stronger for deeper U-shapes, over the systematic monetary policy component
- For the **mechanism**:
 - Booms: Prolonged MP rate cuts raise the likelihood of "red zones" of high credit and asset price growth, consistent with higher credit supply and risk-taking
 - Bust: Subsequent MP rate hikes strongly reduce credit and asset prices, and substantially increase banks' realized credit risk, rather than interest rate risk
 - Only red zones combined with U-shaped rate paths strongly increase crisis risk
- Finally, we find consistent results in administrative, loan-level data from
 Spain's post-1995 boom and crisis, notably credit supply & loan defaults

Jiménez—Kuvshinov—Peydró—Richter (Journal of Finance, forthcoming)

- Monetary rate (MP) hikes (raw or instrumented using the international finance trilemma) materially increase banking crisis risk, but only if preceded by prolonged monetary rate cuts
 - These patterns are unique to banking crises, unlike non-financial-crisis (even deep) recessions
 - Stronger for deeper U-shapes, over the systematic monetary policy component

For the mechanism:

- Booms: Prolonged MP rate cuts raise the likelihood of "red zones" of high credit and asset price growth, consistent with higher credit supply and risk-taking
- Bust: Subsequent MP rate hikes strongly reduce credit and asset prices, and substantially increase banks' realized credit risk, rather than interest rate risk
- Only red zones combined with U-shaped rate paths strongly increase crisis risk
- Finally, we find consistent results in administrative, loan-level data from Spain's post-1995 boom and crisis, notably credit supply & loan defaults

Jiménez—Kuvshinov—Peydró—Richter (Journal of Finance, forthcoming)

- Monetary rate (MP) hikes (raw or instrumented using the international finance trilemma) materially increase banking crisis risk, but only if preceded by prolonged monetary rate cuts
 - These patterns are unique to banking crises, unlike non-financial-crisis (even deep) recessions
 - Stronger for deeper U-shapes, over the systematic monetary policy component
- For the **mechanism**:
 - Booms: Prolonged MP rate cuts raise the likelihood of "red zones" of high credit and asset price growth, consistent with higher credit supply and risk-taking
 - Bust: Subsequent MP rate hikes strongly reduce credit and asset prices, and substantially increase banks' realized credit risk, rather than interest rate risk
 - Only <u>red zones combined with U-shaped rate paths strongly increase crisis risk</u>
- Finally, we find consistent results in administrative, loan-level data from Spain's post-1995 boom and crisis, notably credit supply & loan defaults

You want to isolate a "pure interest rate risk", BUT you have to deal with

Reach for longer maturity vs higher credit risk-taking in your paper:

- When MP rates are low for long, there is both higher risk-taking via longer maturities and also via higher borrower risk
 - Your paper mentions and tries to exploit one: maturity
 - But you treated banks during 2014-2021 took on both risks, so separate them may be very difficult
 - So it is better to use both of them, as higher MP rates affect both

Other suggestions to improve the paper

- Bank competition: The intro and motivation is about bank competition, but then not any regression analysis → exploit differential bank competition within Germany
 - Do you find stronger effects of the natural hedge and hence higher interest rate risk on the asset side (more duration risk) where bank competition is lower?
- Balance sheet ("natural") vs derivative hedging: As you can have access to the individual data on hedging via derivatives © you could also analyze it:
 - Are balance sheet ("natural") hedging vs derivative hedging substitutes or complements (or independent)?