The Heterogenous Bank Lending Channel of Monetary Policy

Jorge Abad[†] Saki Bigio[‡] Salomon Garcia-Villegas[†] Joel Marbet[†] Galo Nuño[†]

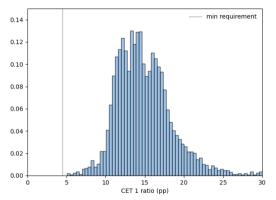
Fifth Conference on Financial Stability – Banco de España & CEMFI Madrid, June 12, 2025

Disclaimer: The views expressed here do not necessarily represent the views of Banco de España or the Eurosystem

Bank heterogeneity and monetary policy transmission

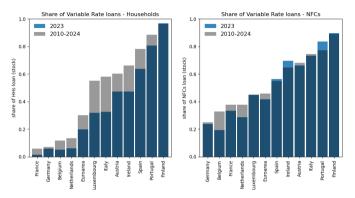
- Transmission of monetary policy to lending depends on bank-level characteristics
 - Liquid assets and size (Kashyap and Stein, 2000)
 - Leverage (Jimenez et al., 2012; Dell'Ariccia et al., 2017; Altavilla et al., 2020)
 - Interest rate risk exposure (Gomez et al., 2021)
 - Loan-rate fixation (Altunok, Arslan and Ongena, 2023)
- Structural models can complement this empirical work by allowing to
 - Recover the effect of heterogeneity on aggregate responses, and
 - Implement counterfactual exercises

Our contribution


- 1. We document EA banks' heterogeneity in capital ratios and loan-rate fixation
- 2. We build a heterogeneous-banks quantitative macro model with
 - Ex-post heterogeneity in capital ratios
 - Ex-ante heterogeneity in loan-rate fixation: fixed vs. variable rates

Preview of the results

- Model can replicate long-run distributional features of EA banks
 - \rightarrow Cross-sectional distribution of assets and capital ratios
- Aggregate and individual IRFs to monetary policy shocks depend on bank characteristics
 - Stronger contraction in credit of banks with...
 - Fixed-rate loans
 - Lower capital ratios
 - Also: implications for financial stability


Heterogeneity in bank leverage

CET1 capital ratios distribution across European banks

Data sources: S&P Global and ESRB supervisory data on European banks' capital requirements. CET1 capital ratios are defined as CET1 capital over risk-weighted assets. The sample corresponds to 163 large and medium-sized European banks from 2013 to 2020.

Heterogeneity in loan-rate fixation

Data sources: ECB Statistical Data Warehouse. Lending to households includes mortgage loans, consumer loans, and other loans.

- Fixed raters: Germany, France, Belgium, and Netherlands
- Variable raters: Spain, Portugal, Italy, Finland
- Loan-rate fixation patterns are highly persistent over time

The model – Banking sector

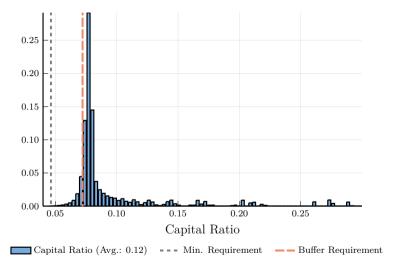
- Continuum of perfectly competitive banks
- Assets: Hold both short- and long-term assets
 - Reserves are safe and short-term, earning the policy rate
 - Risky long-term loans, with fixed or variable rates, incur origination costs, mature stochast.
- Liabilities: Funded through short-term, insured deposits and (accumulated) equity
- Regulation:
 - Minimum capital requirement: Failure to comply results in resolution of the bank
 - Buffer requirement: Failure to comply restricts dividend payouts
 - Liquidity requirement: Requires reserves proportional to deposits

The model – Bank problem and environment

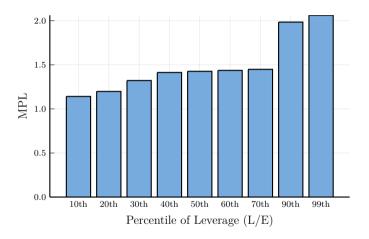
- Problem of a bank: Maximize expected discounted dividend payments
 - Banks choose new loan origination, deposits, reserves, and dividends subject to constr.
 - → Ex-post heterogeneity in equity and leverage due to idiosyncratic loan default shocks
 - ightarrow Ex-ante heterogeneity due to fixed-rate and variable-rate loans (ightarrow two sep. economies)
- **Environment:** Banking sector is embedded in an environment where
 - · Entrepreneurs demand loans to fund long-term investment projects, sensitive to loan rates
 - Households supply deposits and own banks
 - Central bank sets policy rate; government runs deposit insurance

The model – Main frictions

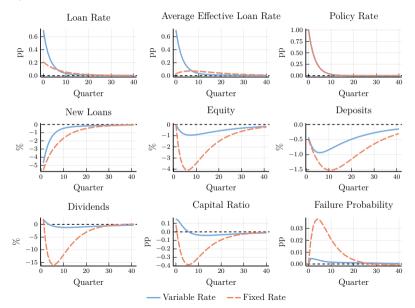
- Deposit insurance + limited liability ⇒ Incentives to increase leverage
- Loan adjustment costs + slow moving equity ⇒ Slow moving leverage
- ullet Credit risk + capital regulation + slow moving leverage \Rightarrow Endogenous capital buffers
- Main amplification channel:

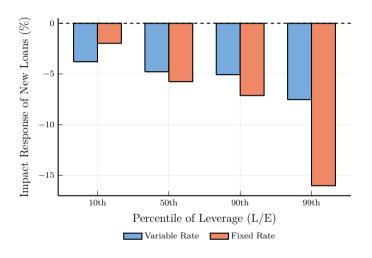

MP shocks \rightarrow equity accumulation \rightarrow lending

Calibration


- Quarterly frequency
- Matches euro area bank balance sheets (capital ratios, liquid assets, loan maturities)
- Replicates Basel III requirements
- Targets empirical responses of loan rates to monetary policy shocks

- ightarrow Today: full pass-through of monetary policy shocks to bank liabilities
- \rightarrow WIP: imperfect pass-through


Long-run results: Capital ratios


Long-run results: Leverage and marginal propensities to lend

Aggregate responses to a MP shock

Cross-sectional heterogeneity in the transmission to lending

Concluding remarks

- We document stylized facts about bank heterogeneity in the EA
- We develop a model of banks with heterogeneous leverage and loan-rate fixation
- We study aggregate and individual responses to monetary policy shocks:
 - Stronger contraction in credit of banks with...
 - Fixed-rate loans
 - Lower capital ratios

Banks' balance sheet

- Bank j starts with a portfolio of legacy loans L_{jt} and accumulated pre-dividend equity E_{jt}
- Need to choose origination of new loans N_{jt} , deposits D_{jt} , and reserves B_{jt}
- Dividends X_{it} follow an exogenous rule
- The bank's balance sheet:

$$L_{jt} + N_{jt} + B_{jt} = D_{jt} + K_{jt},$$

with $K_{jt} \equiv E_{jt} - X_{jt}$ post-dividend equity

Assets

Loan portfolio: continuum risky long-term loans with atomistic size

- Principal of 1 and per-period avg. effective rate \bar{r}_{jt}^L
- Mature with iid prob. δ (as in Leland and Toft, 1996)
- Default with prob. p and suffer loss λ
- Loan defaults correlated at the bank level $\rightarrow \omega_{jt+1}$: stochastic default rate
- Law of motion: $L_{jt+1} = (1 \omega_{jt+1})(1 \delta)(L_{jt} + N_{jt})$
- ullet Technology: Issuance of new loans N_{jt} incurs an increasing and convex cost $f\left(rac{N_{jt}}{E_{jt}}
 ight)E_{jt}$
- ullet Banks can also invest in short-term reserves B_t remunerated at the policy rate r_t^B

Equity and profits

Equity is accumulated through retained earnings

$$E_{jt+1} = E_{jt} - X_{jt} + (1-\tau)\Pi_{jt+1},$$

where au is the corporate tax rate and profits Π_{jt+1}

Profits:

$$\Pi_{jt+1} = \bar{r}_{jt}^L (1 - \omega_{jt+1}) (L_{jt} + N_{jt}) - \lambda \omega_{jt+1} (L_{jt} + N_{jt}) \qquad \text{(return of loans)}$$

$$+ r_t^B B_{jt} \qquad \text{(return of reserves)}$$

$$- r_t^D D_{jt} \qquad \text{(remuneration of liabilities)}$$

$$- f (N_{jt}/E_{jt}) E_t - \bar{\pi} E_{jt} \qquad \text{(operational costs)}$$

Regulation

• Pre-dividend equity needs to satisfy a *minimum capital requirement*:

$$E_{jt} \geq \frac{\gamma}{2} L_{jt}$$

- \rightarrow Failure to comply results in resolution of the bank
- New lending and dividends constrained by a *buffer requirement*:

$$K_{jt} \equiv E_{jt} - X_{jt} \geq (1 + \kappa_t) \gamma (L_{jt} + N_{jt})$$

• Liquidity requirement proportional to bank deposits:

$$B_t \geq \frac{\theta}{\theta} D_t$$

Non-financial sector

Aggregate credit demand by entrepreneurs:

$$\mathcal{N}_t = \left\{ egin{array}{ll} g(r_t^L), & ext{for fixed-rate loans} \ \\ g\left(r_t^L, r_{t+1}^L, ...
ight), & ext{for variable-rate loans} \end{array}
ight.$$

- Aggregate deposit demand by households: $D_t = h(r_t^D)$
- Central bank supplies reserves B_t and sets policy rate r_t^B
- Government collects taxes and runs a deposit insurance scheme

Entrepreneurs

- Every period there is a mass of new risk-neutral, penniless entrepreneurs
 - Need one unit of initial investment
 - Project produces A_t units of final good in every period it operates
 - ullet Project ends regularly with probability δ
 - Project fails with probability p (1 λ of initial investment can be recovered)
 - Starting an investment project incurs a utility cost of $a(N_t)$ to the entrepreneur
- Due to free entry, entrepreneurs enter until the value of entering V_{it} equals $a(N_t)$
- V_{it} depends on the type of loan contract: fixed-rate vs. variable rate loans
- If $A_t = A$, one can show that the loan demand is given by

$$N_{t} = \left\{ \frac{\beta(1-p)(1-\chi)}{\zeta_{1}} \left[(A - r_{t}^{L}) + (1-\delta)\zeta_{1}N_{t+1}^{\zeta_{2}} \right] \right\}^{1/\zeta_{2}}, \qquad \text{(Variable Rate)}$$

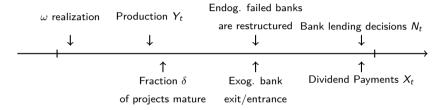
$$N_{t} = \left\{ \frac{1}{\zeta_{1}} \frac{\beta(1-p)(1-\chi)(A - r_{it}^{L})}{1-\beta(1-p)(1-\chi)(1-\delta)} \right\}^{1/\zeta_{2}}. \qquad \text{(Fixed Rate)}$$

Remaining Model Elements

 Households solve a consumption saving problem with an asset-in-advance constraint similar to Bianchi and Bigio (2019), which yields a demand schedule of the form

$$D_t + B_t^H = \epsilon_1 (1 + r_t^D)^{\epsilon_2},$$

which implies that the demand for deposits is fully elastic (for sufficiently large ϵ_1)


- Furthermore, since households hold both deposits and bonds, there is a one-to-one pass-through in rates, i.e., $r_t^D=r_t^B$
- The consolidated government has the a budget constraint of the form

$$T_t + (B_t + B_t^H) + \tau \Pi_t = (1 + r_{t-1}^B) (B_{t-1} + B_{t-1}^H) + \Upsilon_t,$$
 (1)

where Π_t are aggregate profits from banks, and Υ_t represents the net operating deficit of the deposit insurance scheme, including the bank resolution cost.

Timeline

Calibration - Preset Parameters

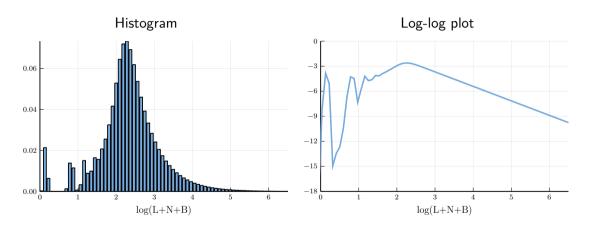
Bank's Technology

Parameter	Description	Value	Target/Source
р	Loan default rate, mean (pp)	2.65	Mean annual corporate default, EA 1992-2016.
λ	Loan loss-given-default	0.30	Mendicino, Nikolov, Suarez, and Supera, 2020
μ	Bank resolution cost	0.30	Mendicino et al., 2020
δ	Loans maturity	0.20	Standard.
χ	Bank's exogenous exit rate	0.028	Gertler and Karadi, 2011
ξ	Largest deposit shock	0.11	Average liquidity (reserves) buffer. SDW ECB
η_1	Loan origination cost, level	0.022	Bank's marginal propensity to lend.
η_2	Loan origination cost, power	2.0	Quadratic convex origination cost.
r^D	Deposits rate (annual, pp)	1.0	Mean composite overnight deposits rate, 2003-2022.
r^B	Reserves rate (annual, pp)	1.0	Mean Deposits Facility Rate (DFR), 1999-2022.
ϵ_1	Deposit demand (level)	1.00	Level parameter.
ϵ_2	Deposit demand (power)	2.00	Standard.

Calibration - Policy Parameters

Policy parameters

Parameter	Description	Value	Target/Source
θ	Reserve requirement	0.01	Minimum Reserve Requirement. ECB
γ	Capital Requirement	0.0825	Basel III risk-weighted formula. See Appendix.
κ	Capital buffer req.	0.3125	Avg. combined buffer requirements (2.5%) .
au	Corporate tax rate	0.20	Standard


Calibration - Jointly Estimated Parameters

Parameter	Description	Value	Target	Data	Model
β	Bankers' discount factor	0.994	Banks return on equity (ROE), annual	6.4	5.8
ho	Loan default correlation	0.46	Bank failure probability, annual	0.66	0.67
ψ	Target bank dividend	0.05	Voluntary buffer (excess capital).	5.1	6.3
ζ_1	Ent. entry cost (level)	14.14	Average lending rates	3.0	3.0
ζ_2	Ent. entry cost (power)	0.0025	Monetary shock pass-through on lending rates	0.4	0.3

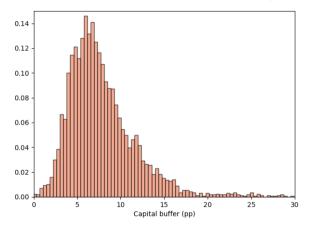
Note: All moments are in percentage points.

Long-run results: Distribution of bank assets

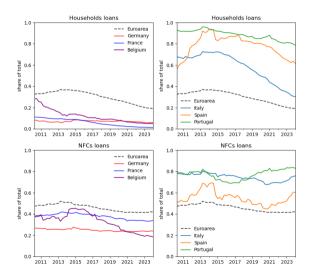
Dataset for Capital Ratios

Bank-level panel w/ 163 European banks. 2008.Q1-2020.Q4.

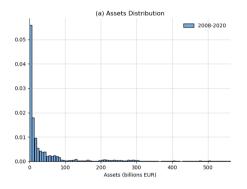
- S&P Global (proprietary): CET 1 ratios, total assets, total risk-weighted assets.
- Supervisory (ECB, ESRB): CCoB, CCyB, bank specific: GSII, OSII, SRB, P2R.

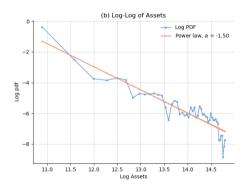

Two measures:

- ullet CET1 ratio = Common Equity Tier 1 / Risk-Weigthed Assets.
- CET1 buffer = CET 1 ratio min requirement (4.5pp) CCoB CCyB
 max{GSSI, OSII, SRB} P2R.



Heterogeneity in bank leverage: capital buffers


CET1 capital buffer distribution across European banks



Lending at variable rates

Banks Asset Distribution follows a Power Law

EA Banks Balance Sheet

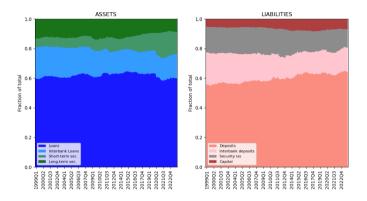


Figure 2: Euro Area MFIs Balance Sheet Composition, 1999-2023

EA Banks Balance Sheet

Assets		Liabilities	
Loans	0.62	Deposits	0.60
Interbank loans	0.17	Interbank deposits	0.17
Short-term security holdings	0.09	Security issuance	0.16
Long-term security holdings	0.12	Capital	0.07

Table 1: MFIs Balance Sheet Composition, 1999 - 2023

Assets	Liabilities
Legacy Loans L_{jt}	Deposits D_{jt}
New Loans N_{jt}	Capital $K_{jt} \equiv E_{jt} - X_{jt}$
Reserves B_{jt}^R	