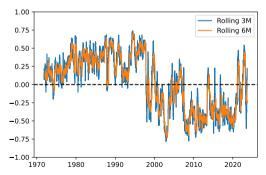
Good Inflation, Bad Inflation, and the Dynamics of Credit Risk

Diego Bonelli 1 – Berardino $\mathrm{Palazzo}^2$ – Ram Yamarthy 2

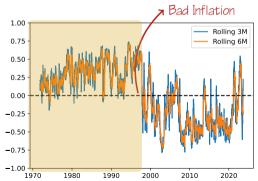
¹Banco de España


²Federal Reserve Board of Governors

17th Research Workshop Banco de España – CEMFI

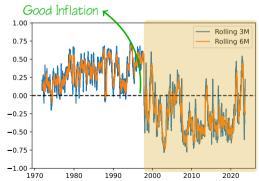
20th October 2025

The views expressed here represent the authors' own and are not necessarily those of the Banco de España, Eurosystem, Federal Reserve Board of Governors, or Federal Reserve System.


- Post-pandemic inflation renewed focus on how markets price inflation risk
- Classic theories (e.g., Fisher (1933)): higher inflation lowers real debt burdens and credit spreads
- These theories assume real cash flows are uncorrelated with inflation
- But recent work (e.g., David and Veronesi (2013)) shows that the relationship between inflation and growth is time-varying
 - \Rightarrow strongly associated with shifts in economic conditions over time

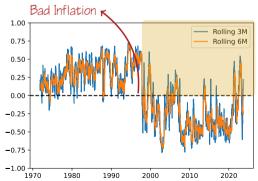
Stock—bond return correlation is a market proxy for the evolving inflation—growth relationship

While the correlation has switched signs post-1999, there has been increased volatility in the last two decades


- Post-pandemic inflation renewed focus on how markets price inflation risk
- Classic theories (e.g., Fisher (1933)): higher inflation lowers real debt burdens and credit spreads
- These theories assume real cash flows are uncorrelated with inflation
- But recent work (e.g., David and Veronesi (2013)) shows that the relationship between inflation and growth is time-varying
 - \Rightarrow strongly associated with shifts in economic conditions over time

Stock—bond return correlation is a market proxy for the evolving inflation—growth relationship

While the correlation has switched signs post-1999, there has been increased volatility in the last two decades


- Post-pandemic inflation renewed focus on how markets price inflation risk
- Classic theories (e.g., Fisher (1933)): higher inflation lowers real debt burdens and credit spreads
- These theories assume real cash flows are uncorrelated with inflation
- But recent work (e.g., David and Veronesi (2013)) shows that the relationship between inflation and growth is time-varying
 - \Rightarrow strongly associated with shifts in economic conditions over time

Stock-bond return correlation is a market proxy for the evolving inflation-growth relationship

While the correlation has switched signs post-1999, there has been increased volatility in the last two decades

- Post-pandemic inflation renewed focus on how markets price inflation risk
- Classic theories (e.g., Fisher (1933)): higher inflation lowers real debt burdens and credit spreads
- These theories assume real cash flows are uncorrelated with inflation
- But recent work (e.g., David and Veronesi (2013)) shows that the relationship between inflation and growth is time-varying
 - \Rightarrow strongly associated with shifts in economic conditions over time

Stock—bond return correlation is a market proxy for the evolving inflation—growth relationship

While the correlation has switched signs post-1999, there has been increased volatility in the last two decades

Our Contribution

- We examine the **time varying response** of credit markets to revisions in inflation expectations
- Empirical Strategy: Exploit movements in inflation expectations around macroeconomic news
 - Measure changes in inflation expectations using daily and intraday inflation swaps
 - Condition these inflation surprises with lagged stock-bond return correlation
- Main Findings: Financial markets exhibit time-varying sensitivity to inflation expectations
 - In procyclical regimes (low stock–bond correlation): \uparrow expected inflation $\rightarrow \downarrow$ CDS spreads
 - Time variation operates primarily through a risk premia and exhibits cross-sectional heterogeneity
 - Inflation swap movements: inflation swaps well capture inflation expectations
 - Movements in narrow event windows highlight the importance of <u>non-headline</u> components
 - Stock-bond correlation as a macroeconomic indicator: subsumes macro-based measures of nominal-real covariance
 - Stronger results when we purge the effect of convenience yield
- Model: A long-run risks framework linking inflation-growth relationship to inflation beta
 - Endogenously delivers the stock-bond correlation as a proxy for the nominal-real covariance

Empirical Overview – Key Data

- Main sample from 2004 to 2023
- Corporate CDS
 - Firm-level 5Y CDS quotes from Markit
- Stock-Bond Correlation
 - Rolling 3-month (3M) and 6-month (6M) correlations of daily VW CRSP stock returns and nominal 5Y Treasury bond returns
- Zero Coupon Inflation Swaps → Plot
 - Daily swap spreads from Bloomberg, 5-year horizon to match the maturity of CDSs
 - Minute-by-minute data from Refinitiv Tick History available from October 2007 (1-10Y maturity)
- Focus on days when there are macroeconomic announcements related to:
 - Key price movements (CPI, core CPI, PPI, core PPI)
 - Economic activity (nonfarm payroll, initial GDP release)

Greater sensitivity to information about the future path of inflation on these days. The variance of swap movements on announcement days is 2 to 3.5x larger

▶ Variance Differences

Summary Stats

Unconditional Response: A Good Inflation Regime

$$\Delta s_{it} = \beta_i + \beta_\pi \Delta \pi^{swap} + \beta_X' X_{i,t-1} + \epsilon_{it}$$

 Δs_{it} is the daily change in CDS. Firm-level controls (X_i) include lagged CDS spreads

	(1)	(2)	(3)	
$\Delta \pi^{swap,5Y}$	-0.90***	-0.81***	-0.79***	
	(-5.19)			
$ ilde{ ho}_{-1}^{bond-mkt,3M}$		-0.03	ewan	
hand mlst 6M		\rightarrow 1- σ \uparrow $\Delta \pi$		0.90 b.p. \ CDS
$ ilde{ ho}_{-1}^{bond-mkt,6M}$				
$\tilde{\rho}_{-1}^{bond-mkt,3M} \times \Delta \pi^{swap,5Y}$				
$ ho_{-1} imes \Delta \pi$				
$\tilde{\rho}_{-1}^{bond-mkt,6M} \times \Delta \pi^{swap,5Y}$				
ρ_{-1} $\times \Delta^n$				
Correlation Horizon	_	3M	6M	
Firm FE	Y			
Obs	418,777			
$Adj.R^2$	0.019	0.024	0.023	

Time Variation in Inflation Beta

Idea: Relate the time-variation in inflation beta to the expected inflation—growth covariance

Assume that the coefficient on inflation swap movements is a function of the above covariance:

$$\Delta s_{it} = \beta_0 + \beta_1 \left(\sigma_{xc\pi, t-1} \right) \Delta \pi_t$$
$$\approx \beta_0 + \beta_1 \left(\tilde{\rho}_{t-1} \right) \Delta \pi_t$$

Baseline Specification:

$$\Delta s_{it} = \beta_i + \beta_\pi \Delta \pi_t^{swap} + \beta_\rho \tilde{\rho}_{t-1} + \beta_{\rho\pi} \left(\tilde{\rho}_{t-1} \cdot \Delta \pi_t^{swap} \right) + \beta' X_{i,t-1} + \varepsilon_{it}$$

Proxy for $\tilde{\rho}_{t-1}$: Stock-bond return correlation (3M or 6M horizon)

Interpretation:

- When $ilde{
 ho}_{t-1}$ is high \Rightarrow inflation is <u>bad news</u> for growth
- When $ilde{
 ho}_{t-1}$ is low \Rightarrow inflation is good news for growth

Time Variation in Inflation Beta

$$\Delta s_{it} = \beta_i + (\beta_{\pi} + \beta_{\rho\pi}\tilde{\rho}_{t-1}) \times \Delta \pi^{swap} + \beta_{\rho}\tilde{\rho}_{t-1} + \beta_X' X_{i,t-1} + \varepsilon_{it}$$

		(2)	(3)
$\Delta \pi^{swap,5Y}$	-0.90***	-0.81***	-0.79***
		(-5.27)	(-5.27)
$ ilde{ ho}_{-1}^{bond-mkt,3M}$		-0.03	
		(-0.38)	
$ ilde{ ho}_{-1}^{bond-mkt,6M}$			-0.12
-			(-1.57)
$\tilde{ ho}_{-1}^{bond-mkt,3M} imes \Delta \pi^{swap,5Y}$		0.61***	
		(5.05)	
$ ilde{ ho}_{-1}^{bond-mkt,6M} imes \Delta \pi^{swap,5Y}$			0.52***
•			(4.48)
Correlation Horizon	_	3M	6M
Firm FE		Y	Y
Obs		410,129	410,129
$Adj.R^2$		0.024	0.023

- When inflation signals stronger growth (negative $\tilde{\rho}),$ credit spreads fall more after inflationary news

Credit Risk Premia

- We decompose CDS spreads into expected losses and risk premia following Berndt et al. (2018)

 $s_{it} = \mathrm{ExpLoss}_{it} + \mathrm{RiskPrem}_{it}$

	(1)	(2)	(3)	(4)	(5)	(6)
$\Delta \pi^{swap,5Y}$	-0.82***	-0.25***	-0.53***	-0.79***	-0.25***	-0.51***
	(-5.28)	(-3.07)	(-3.97)	(-5.24)	(-3.14)	(-3.93)
$\tilde{\rho}_{-1}^{bond-mkt,3M}$	-0.06	-0.02	-0.04			
_	(-0.85)	(-0.67)	(-0.63)			
$\tilde{\rho}_{-1}^{bond-mkt,6M}$, ,			-0.15**	-0.03	-0.12*
				(-1.97)	(-0.98)	(-1.90)
$\tilde{\rho}_{-1}^{bond-mkt,3M} \times \Delta \pi^{swap,5Y}$	0.63***	0.16**	0.44***		(/	(/
-	(5.15)	(2.48)	(4.16)			
$\tilde{\rho}_{-1}^{bond-mkt,6M} \times \Delta \pi^{swap,5Y}$, ,	, ,	0.54***	0.13**	0.38***
-1				(4.56)	(2.01)	(3.85)
Dependent Variable	Δs_i (b.p.)	ΔEL_i	ΔRP_i	Δs_i (b.p.)	ΔEL_i	ΔRP_i
Correlation Horizon		3M	-		6M	-
Firm FE	Y	Y	Y	Y	Y	Y
Clustering		Firm-Time			Firm-Time	
Obs	200,303	200,281	200,279	200,303	200,281	200,279
$Adj.R^2$	0.026	0.010	0.013	0.025	0.009	0.013

Time-Variation in the Cross-Section

- We assess cross-sectional heterogeneity by splitting firms by CDS spreads before each macro day

	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
$\Delta \pi^{swap,5Y}$	-0.82***	-0.20***	-0.77***	-2.21***	-0.53***	-0.17***	-0.59***	-1.21***
	(-5.29)	(-4.54)	(-5.38)	(-4.74)	(-3.98)	(-4.14)	(-4.17)	(-3.33)
$\tilde{\rho}_{-1}^{bond-mkt,3M}$	-0.05	-0.02	0.01	-0.11	-0.02	-0.01	0.04	-0.02
P-1	(-0.69)	(-0.97)	(0.17)	(-0.41)	(-0.28)	(-0.74)	(0.64)	(-0.08)
$\tilde{\rho}_{-1}^{bond-mkt,3M} \times \Delta \pi^{swap,5Y}$	0.63***	0.16***	0.54***	1.74***	0.44***	0.14***	0.40***	1.06***
ρ_{-1} $\wedge \Delta n$	(5.15)	(4.55)	(4.78)	(4.81)	(4.16)	(4.22)	(3.61)	(3.78)
$s_{i,-1}$	0.20**	0.11	0.62	0.24***	0.15**	0.09	0.61	0.19***
$\circ i, -1$	(2.51)	(0.41)	(1.40)	(2.98)	(2.28)	(0.33)	(1.44)	(2.76)
Dependent Variable		Δ	s_i			ΔI	RP_i	
Which Risk Group	_	1	3	5	_	1	3	5
Firm FE	Y	Y	Y	Y	Y	Y	Y	Y
Clustering		Firm	-Time			Firm	-Time	
Obs	200,279	41,610	46,006	30,322	200,279	41,610	46,006	30,322
$Adj.R^2$	0.025	0.070	0.069	0.034	0.011	0.052	0.038	0.010

- Results are skewed: the riskiest firms show the strongest time-variation
- Focusing on unconditional responses limits our understanding of the firm-level response

Interpreting $\Delta \pi^{\text{swap}}$: Beyond Headline Surprises

- Macroeconomic surprises affect forward inflation expectations (e.g., Bauer (2015))
 - But explain only a small share of asset prices variation (in swap case: $R^2 \approx 12\%$).
- Focusing on headline surprises overlooks information in announcements priced into swaps
- Key Question: do credit spreads reflect macro news or the endogenous update afterwards?
- Two approaches (yielding similar results):
 - 1. Regression decomposition of daily swap changes: $\Delta \pi_t^{\text{swap}} = \underbrace{\Delta \hat{\pi}_{\text{surp}_t}}_{\text{news}} + \underbrace{\Delta \hat{\pi}_{\text{resid}_t}}_{\text{belief update}}$
 - 2. Heteroskedasticity-based identification (Gürkaynak, Kısacıkoğlu, and Wright, 2020)
 - Use the cross-section of intraday swaps at maturities $i \in \{1, 2, 3, 5, 7, 10\}$ over the same time window on announcement vs. non-announcement days, to estimate:

$$\Delta \pi_t^{\text{swap},i} = \beta_i h_t + \gamma_i d_t f_t + \eta_t^i$$

- $h_t = \text{surprise (realized median forecast)}$
- $-d_t = \text{announcement day dummy}$
- f_t = latent common component: belief update, explains over 60% of the variation in 5Y swaps

Approach 1: Daily Decomposition

	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
		All Anno	uncements		Pr			
$\Delta \pi^{swap,5Y}$ $\Delta \pi^{surp,5Y}$	-0.90*** (-5.19)	-0.81*** (-5.27)	-0.16 (-1.42)	-0.23* (-1.93)	-0.95*** (-3.82)	-0.96*** (-4.14)	-0.12 (-0.92)	-0.20 (-1.32)
$\Delta\pi^{resid,5Y}$			-0.89*** (-5.38)	-0.79*** (-5.46)				
$\tilde{\rho}_{-1}^{bond-mkt,3M} \times \Delta \pi^{swap,5Y}$		0.61*** (5.05)						
$\tilde{ ho}_{-1}^{bond-mkt,3M} imes \Delta \pi^{surp,5Y}$				0.28*** (3.68)				
$\tilde{\rho}_{-1}^{bond-mkt,3M} \times \Delta \pi^{resid,5Y}$				0.53*** (4.59)				
$ ilde{ ho}_{-1}^{bond-mkt,3M}$		-0.03 (-0.38)		-0.04 (-0.51)				
Firm FE	Y	Y	Y	Y	Y	Y	Y	Y
Obs	418,777	410,129	418,777	$410,\!129$	250,980			
$Adj.R^2$	0.019	0.024	0.019	0.024	0.023			

Approach 1: Daily Decomposition

	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
					Pr	rice-Based A	Announcements	
$\Delta \pi^{swap,5Y}$	-0.90***	-0.81***			-0.95***	-0.96***		
					(-3.82)	(-4.14)		
$\Delta \pi^{surp,5Y}$							-0.12	-0.20
							(-0.92)	(-1.32)
$\Delta\pi^{resid,5Y}$							-0.97***	-0.95***
							(-4.04)	(-4.19)
$\tilde{\rho}_{-1}^{bond-mkt,3M} \times \Delta \pi^{swap,5Y}$						0.75***		
_						(4.33)		
$\tilde{\rho}_{-1}^{bond-mkt,3M} \times \Delta \pi^{surp,5Y}$								0.30***
								(3.21)
$\tilde{\rho}_{-1}^{bond-mkt,3M} \times \Delta \pi^{resid,5Y}$								0.65***
								(3.81)
$\tilde{\rho}_{-1}^{bond-mkt,3M}$						0.04		-0.05
•						(0.46)		(-0.52)
Firm FE	Y	Y	Y	Y	Y	Y	Y	Y
Obs					250,980	247,215	250,980	247,215
$Adj.R^2$					0.023	0.030	0.024	0.031

Heteroskedasticity Decomposition

	(1)	(2)	(3)	(4)	(5)	(6)
$\Delta \pi^{swap,5Y}$	-1.00***	-0.85***				
	(-5.41)	(-5.12)				
$\tilde{\rho}_{-1}^{bond-mkt,3M}$		-0.02		-0.04		-0.05
		(-0.28)		(-0.39)		(-0.59)
$\tilde{\rho}_{-1}^{bond-mkt,3M} \times \Delta \pi^{swap,5Y}$		0.59***				
		(4.34)				
$\Delta\pi^{idswap,5Y}$			-0.22	-0.28*		
			(-1.55)	(-1.79)		
$\tilde{\rho}_{-1}^{bond-mkt,3M} \times \Delta \pi^{idswap,5Y}$				0.37***		
***				(2.77)		
$\Delta \pi^{surp,5Y}$					-0.12	-0.20
Lateral EV					(-0.89)	(-1.31)
$\Delta \pi^{latent,5Y}$					-0.34***	-0.39***
1 1 1 1 1 5 V					(-2.64)	(-2.76)
$\tilde{\rho}_{-1}^{bond-mkt,3M} \times \Delta \pi^{surp,5Y}$						0.23***
hand only 2M Jatan FV						(2.64)
$\tilde{\rho}_{-1}^{bond-mkt,3M} \times \Delta \pi^{latent,5Y}$						0.33**
						(2.58)
Firm FE	Y	Y	Y	Y	Y	Y
Obs	358,035	350,067	358,035	350,067	358,035	350,067
$Adj.R^2$	0.024	0.028	0.011	0.012	0.012	0.015

 $^{-\,}$ Latent component plays a larger role in driving time-varying inflation sensitivity in credit spreads.

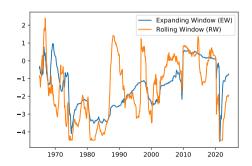
Interpreting $\Delta \pi^{\text{swap}}$: Inflation Expectations vs Inflation Risk Premia

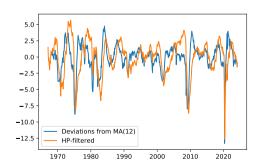
- We decompose swap rate movements into inflation expectation and risk premia using:
 - 1. Term structure model of D'Amico, Kim, and Wei (2018)
 - 2. PCA decomposition of relevant data series
 - Novel approach: real bond yields correlate negatively with expected inflation measures (e.g., Pennacchi (1991), Kandel, Ofer, and Sarig (1996), Ang, Bekaert, and Wei (2008)).
- We extract an inflation expectation and a risk premium using daily changes in inflation swaps, treasury yields and real bond yields component

	Δ Inflation Swaps		Δ BE Infl	ation Rate	Δ Real Yield	
Expectation Component	3.937*** (90.42)	3.937*** (146.42)	4.063*** (129.07)	4.063*** (135.72)	-3.822*** (-49.25)	-3.822*** (-300.52)
Risk Component		2.075*** (77.17)		0.590^{***} (19.73)		4.638*** (364.66)
Obs.	3,672	3,672	3,672	3,672	3,672	3,672
R^2	0.690	0.882	0.819	0.837	0.398	0.984

Interpreting $\Delta \pi^{\text{swap}}$: Inflation Expectations vs Inflation Risk Premia

	(1)	(2)	(3)	(4)
$\Delta \pi^{ExpInfl}$	-0.65***		-0.94***	
	(-4.70)		(-6.94)	
$\tilde{\rho}_{-1}^{bond-mkt,3M} \times \Delta \pi^{ExpInfl}$	0.41***		0.55***	
	(4.58)		(5.05)	
$\Delta\pi^{InflRP}$		-0.47***		-0.49***
		(-3.45)		(-3.92)
$\tilde{\rho}_{-1}^{bond-mkt,3M} \times \Delta \pi^{InflRP}$		0.34***		0.41***
		(3.48)		(4.94)
Decomposition Methodology	Dk	W	PC	CA
Firm FE	Y	Y	Y	Y
Clustering	Firm-Time		Firm-	Time
Obs	410,129	410,129	403,873	$403,\!873$
$Adj.R^2$	0.016	0.012	0.026	0.014


- Expected inflation plays a pivotal role in generating time-variation in the inflation sensitivity


Information content of the Stock–Bond Correlation: Macro-Based Measures

- We compare the stock-bond return correlation with slow-moving measures of real-nominal covariance
- Measure the RNC through an expanding window, predictive regression (e.g., Boons et al. (2020))

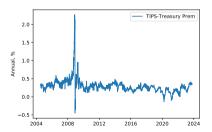
$$\Delta C_{s+1:s+12} = \alpha_t + \beta_t \Pi_s + e_{s+1:s+12}, \text{ for } s = 1, \dots, t-12$$

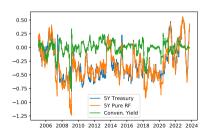
- Use a measure of economic slack (e.g., Elenev et al. (2024))

Stock-Bond Correlation vs. Macro-Based Measures

	(1)	(2)	(3)	(4)	(5)	(6)	(7)
$\Delta \pi^{swap,5Y}$	-0.81***	-1.01***	-0.93***	-0.78***	-0.89***	-0.83***	-0.76***
	(-5.27)	(-5.92)	(-5.35)	(-5.56)	(-6.06)	(-5.32)	(-5.59)
$\tilde{\rho}_{-1}^{bond-mkt,3M} \times \Delta \pi^{swap,5Y}$	0.61***				0.53***	0.58***	0.60***
	(5.05)				(3.95)	(4.51)	(4.92)
$\widetilde{NRC}_{-1}^{EW} \times \Delta \pi^{swap,5Y}$		-0.41***			-0.20		
		(-3.59)			(-1.53)		
$\widetilde{NRC}_{-1}^{RW} \times \Delta \pi^{swap,5Y}$			-0.33***			-0.06	
_1			(-3.83)			(-0.63)	
$\widetilde{TCU}_{-1} imes \Delta \pi^{swap,5Y}$				0.17			0.09
-•				(1.34)			(0.77)
Firm FE	Y	Y	Y	Y	Y	Y	Y
Clustering	Firm-Time					${\bf Firm\text{-}Time}$	
Obs	410,129	418,777	418,777	418,777	410,129	410,129	410,129
$Adj.R^2$	0.024	0.021	0.021	0.021	0.024	0.024	0.025

- Stock-bond return correlation is extremely strong, even in horse race regressions.
- Subsumes a macro-based correlation that has a clear connection between expected inflation and future real growth


Information content of the Stock-Bond Correlation: Convenience Yield


- We decompose the nominal Treasury yield at maturity n into three components (Acharya and Laarits (2025)):

$$yield^n = yield^{*,n} + CDS^{US,n} - convenyield^n$$

- Taking covariances with stock returns and dividing through by standard deviations we obtain:

$$\rho^{bond-mkt} = \underbrace{w_1 \rho^{bond^*-mkt}}_{\text{Frictionless}} + \underbrace{w_2 \rho^{CDS-mkt}}_{\text{Default}} - \underbrace{w_3 \rho^{conyld-mkt}}_{\text{Convenience}},$$

Time-Varying Inflation Sensitivity and the Convenience Yield

	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
$\Delta \pi^{swap,5Y}$	-0.81***	-0.78***	-0.78***	-0.83***	-0.83***	-0.89***	-0.95***	-0.97***
	(-5.27)	(-5.14)	(-5.14)	(-5.30)	(-5.26)	(-6.22)	(-6.39)	(-5.96)
$\tilde{\rho}_{-1}^{bond-mkt,3M} \times \Delta \pi^{swap,5Y}$	0.60***					0.62***		
	(5.00)					(5.47)		
$\tilde{\rho}_{-1}^{bond^{*ND}-mkt,3M} \times \Delta \pi^{swap,5Y}$		0.39***		0.64***			0.70***	0.70***
		(3.83)		(4.79)			(5.26)	(5.56)
$\tilde{\rho}_{-1}^{bond^{*D}-mkt,3M} \times \Delta \pi^{swap,5Y}$			0.40***		0.62***			
			(3.91)		(4.89)			
$\tilde{\rho}_{-1}^{conyld-mkt,3M} \times \Delta \pi^{swap,5Y}$				-0.25**	-0.21**			0.04
				(-2.46)	(-2.15)			(0.28)
Which Sample		Full Sample)	Full S	ample		Non-GFC	
Firm FE	Y	Y	Y	Y	Y	Y	Y	Y
SE Clustering		${\bf Firm\text{-}Time}$		Firm-	-Time		${\bf Firm\text{-}Time}$	
Obs	409,903	409,903	409,903	409,903	409,903	374,600	374,600	374,600
$Adj.R^2$	0.024	0.023	0.022	0.025	0.025	0.017	0.018	0.018

⁻ While relevant for Treasury, convenience yields play a minor role in inflation sensitivity beyond the GFC.

Model in a Nutshell What model ingredients generate realistic patterns in expected inflation beta?

What model ingredients generate realistic patterns in expected inflation beta?

- Endowment economy asset pricing model

Representative investor has Epstein and Zin (1989) recursive preferences:

$$V_t = \left[(1 - \delta) C_t^{\frac{1 - \gamma}{\theta}} + \delta \left(E_t \left(V_{t+1}^{1 - \gamma} \right) \right)^{\frac{1}{\theta}} \right]^{\frac{\theta}{1 - \gamma}}$$

The investor's (log) pricing kernel:

$$m_{t+1} = \theta \log \delta - \frac{\theta}{\psi} \Delta c_{t+1} - (1 - \theta) r_{c,t+1},$$

$$r_{c,t+1} = \kappa_0 + \kappa_1 p c_{t+1} - p c_t + \Delta c_{t+1},$$

with Δc the log-growth rate of consumption, pc log price-to-consumption ratio, and r_c the return on the consumption asset

What model ingredients generate realistic patterns in expected inflation beta?

- Endowment economy asset pricing model
- Persistent macro expectations (e.g., Bansal and Yaron (2004), Bansal and Shaliastovich (2012))

Consumption and inflation follow:

$$\Delta c_{t+1} = \mu_c + x_{ct} + \sigma_c \varepsilon_{c,t+1},$$

$$\pi_{t+1} = \mu_{\pi} + x_{\pi t} + \sigma_{\pi} \varepsilon_{\pi,t+1},$$

where x_{ct} and $x_{\pi t}$ (expected real growth & inflation) are persistent processes:

$$X_t \equiv \begin{pmatrix} x_{ct} \\ x_{\pi t} \end{pmatrix} = \Pi X_{t-1} + \Sigma_{t-1} \eta_t, \quad \Sigma_t = \begin{pmatrix} \sigma_{xc} & 0 \\ 0 & \sigma_{x\pi} \end{pmatrix}$$

What model ingredients generate realistic patterns in expected inflation beta?

- Endowment economy asset pricing model
- Persistent macro expectations (e.g., Bansal and Yaron (2004), Bansal and Shaliastovich (2012))
- Time-varying covariance between expected real growth and inflation shocks (e.g. Song (2017))

Consumption and inflation follow:

$$\Delta c_{t+1} = \mu_c + x_{ct} + \sigma_c \varepsilon_{c,t+1},$$

$$\pi_{t+1} = \mu_{\pi} + x_{\pi t} + \sigma_{\pi} \varepsilon_{\pi,t+1},$$

where x_{ct} and $x_{\pi t}$ (expected real growth & inflation) are persistent processes:

$$X_{t} \equiv \begin{pmatrix} x_{ct} \\ x_{\pi t} \end{pmatrix} = \Pi X_{t-1} + \Sigma_{t-1} \eta_{t}, \quad \Sigma_{t} = \begin{pmatrix} \sigma_{xc} & \sigma_{xc\pi}(s_{t}) \\ 0 & \sigma_{x\pi} \end{pmatrix}$$

Key difference: Markov-switching covariance $\sigma_{xc\pi}(s_t)$

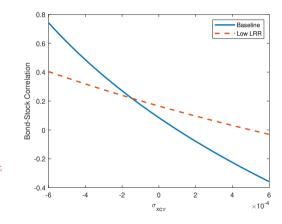
What model ingredients generate realistic patterns in expected inflation beta?

- Endowment economy asset pricing model
- Persistent macro expectations (e.g., Bansal and Yaron (2004), Bansal and Shaliastovich (2012))
- Time-varying covariance between expected real growth and inflation shocks (e.g. Song (2017))
- Pricing of credit securities (Augustin (2018))

Assume that default dynamics are exogenous and related to key state variables. Realized default at t+1 is given by:

$$D_{t,1} = \begin{cases} 0 & \text{w/probability } \exp{(-\lambda_t)} \\ 1 & 1 - \exp{(-\lambda_t)} \end{cases} \qquad \lambda_t = \beta_{\lambda 0}(s_t) + \beta'_{\lambda x} X_t$$

As given in Berndt et al. (2018), CDS of maturity K periods is a rate C_t that satisfies:


$$\Delta C_t \sum_{k=1}^{K/\Delta} E_t \left[\tilde{M}_{t+k\Delta}^{\$} \left(1 - D_{t,(k-1)\Delta} \right) \right] = \sum_{k=1}^{K/\Delta} E_t \left[\tilde{M}_{t+k\Delta}^{\$} \times (1-R) \times D_{t+(k-1)\Delta,\Delta} \right]$$
protection holder

where, Δ is the time between payments, $\tilde{M}_{t+z}^{\$}$ is the nominal SDF from t to t+z.

Model-Implied Stock Bond Correlation

- We compute the stock-bond return correlation using:
 - Nominal returns on the consumption claim $(r_{ct}^{\$})$
 - Long-term risk-free bond $(r_{ft}^{5Y,\$})$
- The covariance parameter $\sigma_{xc\pi}(s_t)$:
 - Governs expected inflation and growth shocks
 - Maps into the stock-bond correlation: $\rho(r_{ct}^{\$}, r_{ft}^{5Y,\$})$
- Persistence of expected growth component plays a key role:
 the more persistently expected inflation shocks affect consumption growth, the greater their impact on asset prices

Stock-bond correlation as a function of $\sigma_{xc\pi}$

Baseline Calibration

- Calibration is quarterly and parameter values are chosen to match standard macro-financial moments from the long-run risks literature
- Using simulated model data we run regressions similar to our data exercise:

$$\Delta s_t^{5Y} = \gamma_0 + \gamma_1 \Delta x_{\pi t} + \eta_t$$

- Model exhibits intuitive time-variation in stock-bond correlation and inflation beta of CDS

	Value	Notes
$\rho(r_{ct}^{\$}, r_{ft}^{5Y,\$})$	-0.148	Stock-bond correlation
$\rho(r_{ct}^\$, r_{ft}^{5Y,\$}) - \text{Regime } 1$	-0.451	_
$\rho(r_{ct}^{\$}, r_{ft}^{5Y,\$})$ – Regime 2	0.284	_
$\beta(\Delta s_t^{5Y} \sim \Delta x_{\pi t}) \text{ (b.p.)}$	-1.603	Spread change regression coefficient
$\beta(\Delta s_t^{5Y} \sim \Delta x_{\pi t})$ – Regime 1	-6.265	
$\beta(\Delta s_t^{5Y} \sim \Delta x_{\pi t})$ – Regime 2	3.073	

Comparative Statics

	$\sigma_{xc\pi} = 0$	Symmetric $\sigma_{xc\pi}$	$\Pi_{cc} = 0.85$	Baseline
$E\left[r_{ct}-r_{ft} ight]$	0.857	0.875	0.369	0.908
$E\left[s_{t}^{5Y} ight]$	1.332	1.326	1.284	1.337
$\sigma \left[\Delta s_t^{5Y} \right] \text{ (b.p.)}$	5.095	5.009	4.601	5.371
$\rho(r_{ct}^{\$}, r_{ft}^{5Y,\$})$	0.085	0.073	0.162	-0.148
$ ho(r_{ct}^\$, r_{ft}^{5Y,\$})$ – Regime 1	0.084	-0.289	-0.007	-0.451
$\rho(r_{ct}^{\$}, r_{ft}^{5Y,\$})$ – Regime 2	0.086	0.501	0.349	0.284
$\beta(\Delta s_t^{5Y} \sim \Delta x_{\pi t}) \text{ (b.p.)}$ $\beta(\Delta s_t^{5Y} \sim \Delta x_{\pi t}) - \text{Regime 1}$	-0.005	-0.017	0.011	-1.603
$\beta(\Delta s_t^{5Y} \sim \Delta x_{\pi t})$ – Regime 1	0.042	-4.673	-2.417	-6.265
$\beta(\Delta s_t^{5Y} \sim \Delta x_{\pi t})$ – Regime 2	-0.052	4.641	2.439	3.073
$\beta(r_{ct} - r_{ft} \sim \Delta x_{\pi t})$	-0.009	-0.006	-0.007	0.231
$\beta(r_{ct}-r_{ft}\sim\Delta x_{\pi t})$ – Regime 1	-0.015	0.692	0.227	0.933
$\beta(r_{ct} - r_{ft} \sim \Delta x_{\pi t})$ – Regime 2	-0.003	-0.705	-0.241	-0.475

- Time-variation in $\sigma_{xc\pi}$ needed to match patterns in data
- Persistence of real growth expectations affects volatility of stock—bond correlations and magnitude of inflation beta (similar to Chernov, Lochstoer, and Song (2021))

Additional Robustness and Extensions

- Equity Results

- We show that all our results hold in a matched equity sample
- When inflation signals stronger growth (low $\tilde{\rho}$), equity prices increase more after inflationary news

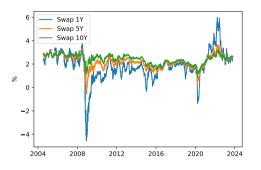
- Sign Switches Across Regimes

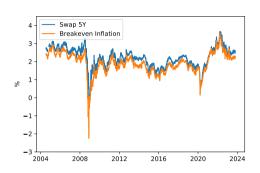
- We extend our analysis to pre-1999 using inflation expectations from D'Amico, Kim, and Wei (2018)
- Results suggest a clear sign switch in inflation beta based on the sign of the stock-bond correlation
- Using Breakeven Inflation Expectations: Results hold using TIPS breakeven inflation expectations
- CDS Liquidity: Results are not driven by low liquidity periods in CDS markets
- Swap-Market Correlation: Results are robust to using correlation of changes in inflation swaps and market
- Non-Announcements: Time-variation is present also in non-announcements days

Conclusion

We empirically and theoretically explore time-variation in inflation beta

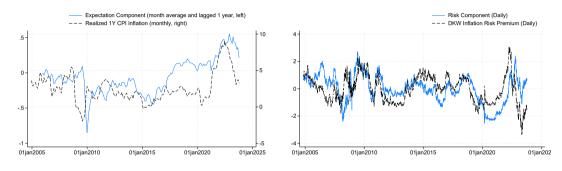
- Empirics:


- Study transmission of macro news into inflation swaps at the daily and intra-day frequency
- Display time-varying sensitivity of credit markets to inflation expectations movements
- Highlight risk premia, cross-sectional effects, and role of headline vs non-headline news


- Theory:

- Construct a parsimonious long-run risk model with time-varying inflation-growth covariance
- Draws clear link between real-nominal relationship and endogenous stock-bond correlation
- Generates regime-specific inflation beta for risky assets through cash flow channel

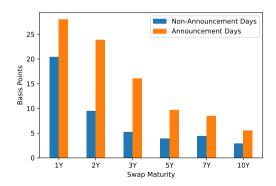
Inflation Swaps


- Inflation swaps provide better forecasts of realized inflation than survey-based measures (Diercks et al. (2023))
- Significant illiquidity premium in TIPS (D'Amico, Kim, and Wei (2018))

Summary Stats

	Count	Mean	Std. Dev.	Min	Max				
Panel A: Aggregate Measures									
** ** M									
$\pi^{swap,1Y}$	730	1.903	1.168	-4.274	5.856				
$\pi^{swap,5Y}$	730	2.222	0.533	-0.515	3.593				
$\pi^{swap,10Y}$	734	2.423	0.379	0.992	3.190				
$\Delta \pi^{swap,5Y}$	728	0.000	0.049	-0.285	0.191				
$\rho\left(R_{bond}, R_{mkt}\right)^{3M}$	819	-0.293	0.280	-0.778	0.544				
$\rho\left(\Delta \pi^{swap}, R_{mkt}\right)^{3M}$	701	0.292	0.218	-0.348	0.746				
p (\(\text{\Delta}n\), remkt)	101	0.202	0.210	-0.040	0.140				
Panel B: Firm-Level Data									
Spread	418911	2.257	3.767	0.101	33.054				
$\Delta Spread$ (b.p.)	418808	0.139	8.359	-52.475	65.279				
ExpLoss	204936	0.639	1.529	0.029	14.191				
RiskPrem	204757	1.206	1.922	-2.686	16.365				
R_i (%)	207853	0.032	2.276	-9.615	9.253				
$R_i - R_f$ (%)	207853	0.027	2.276	-9.619	9.250				
Panel C: Intraday Swaps									
$\Delta \pi^{idswap,5Y}$	622	0.116	3.364	-28.000	24.500				
$\Delta \pi^{surp,5Y}$	622	0.052	1.208	-5.279	10.559				
$\Delta \pi^{latent,5Y}$	622	0.097	2.703	-29.574	22.233				

PCA-Derived Inflation Expectations and Risk Premium



Inflation Swaps More Volatile on Macro Announcement Days

Following Gürkaynak, Kısacıkoğlu, and Wright (2020), extract announcement and non-announcement day residuals and compare variances:

$$\begin{split} \Delta \pi_t^{idswap,n} &= \beta_0^n + \beta_s^{n'} s_t + \eta_t^A & \text{where } t \in \{CPI, PPI, GDP, Nonfarm\} \\ \Delta \pi_t^{idswap,n} &= \eta_t^{NA} & \text{otherwise} \end{split}$$

Intraday Swap Prices and Macroeconomic Surprises

- Regression of 60-minute changes in inflation swaps onto standardized surprise measures
- Surprises are defined as the difference between a realized value and the Bloomberg median economist survey

	(1)	(2)	(3)	(4)	(5)	(6)	(7)
$\varepsilon^{corecpi}$	1.75***						0.91***
	(8.18)						(2.95)
$_{arepsilon}^{cpi}$		1.89***					1.28***
		(9.13)					(4.17)
$_{\varepsilon}^{nonfarm}$			0.42**				0.45**
			(2.04)				(1.98)
ε^{gdp}				1.18			1.18***
c				(1.47)			(2.71)
$\varepsilon^{coreppi}$					0.40**		0.13
ε					(2.00)		(0.45)
$arepsilon^{ppi}$						***	`
ε' '						0.54*** (2.72)	0.46 (1.63)
Dependent Variable			Intraday	$\Delta \pi^{swap}$	5y (b.p.)	(=:12)	(=:00)
Obs	184	184	196	54	188	188	622
$Adj.R^2$	0.265	0.310	0.016	0.022	0.016	0.033	0.120

Latent Factor Estimation from Intraday Swaps

	(1)	(2)	(3)	(4)	(5)	(6)
$\varepsilon^{corecpi}$	3.35***	2.79***	1.71***	0.90***	1.04***	0.65***
	(4.55)	(4.26)	(5.53)	(2.82)	(5.76)	(4.68)
ε^{cpi}	2.68***	2.41***	1.12***	1.30***	0.69***	0.79***
	(4.04)	(4.73)	(3.22)	(4.07)	(3.27)	(4.84)
$\varepsilon^{nonfarm}$	-0.11	0.01	0.06*	0.45***	0.38***	0.28***
	(-1.29)	(0.23)	(1.66)	(23.57)	(15.17)	(16.01)
$\varepsilon^{oldsymbol{g} oldsymbol{d} oldsymbol{p}}$	-0.19	-0.26	0.86	1.18***	-0.40	0.11
	(-0.23)	(-0.39)	(1.29)	(3.34)	(-1.08)	(0.42)
$\varepsilon^{coreppi}$	0.42	-0.71	0.73***	0.13	0.39***	-0.25
	(1.42)	(-0.98)	(2.78)	(1.19)	(2.61)	(-1.24)
$arepsilon^{ppi}$	0.47**	0.41	0.48***	0.47***	0.44***	0.74***
	(2.34)	(1.42)	(2.92)	(3.56)	(3.27)	(3.28)
$\Delta\pi^{latent}$	2.56***	2.64***	3.46***	2.70***	2.33***	1.94***
	(4.09)	(6.32)	(21.15)	(29.57)	(17.21)	(16.23)
Dependent Variable			Intraday			
Horizon	1Y	2Y	3Y	5Y	7Y	10Y
Observations	622	622	622	622	622	622
R ² without latent	0.235	0.208	0.119	0.120	0.091	0.096
R ² with latent	0.410	0.434	0.769	0.771	0.665	0.709

Equity Results

We run our regression using a matched sample of equity excess returns

	(1)	(2)	(3)
$\Delta \pi^{swap,5Y}$	0.38***	0.35***	0.35***
	(3.91)	(3.82)	(3.92)
$\tilde{\rho}_{-1}^{bond-mkt,3M}$		0.05	
ρ_{-1}		0.05	
		(1.00)	
$\tilde{\rho}_{-1}^{bond-mkt,3M} \times \Delta \pi^{swap,5Y}$		-0.22***	
r=1=		(-2.58)	
		(2.00)	
$\tilde{ ho}_{-1}^{bond-mkt,6M}$			0.07
			(1.59)
			, ,
$\tilde{\rho}_{-1}^{bond-mkt,6M} \times \Delta \pi^{swap,5Y}$			-0.16**
			(-2.02)
(4 6)			
$\left(R^i - R^f\right)_{-1}$	0.00	0.00	0.00
	(0.22)	(0.17)	(0.15)
	. ,	` ′	, ,
$s_{i,-1}$	-0.00	-0.00	0.00
	(-0.10)	(-0.01)	(0.12)
Correlation Horizon	-	3M	6M
Firm FE	Y	Y	Y
Clustering		${\bf Firm\text{-}Time}$	
Obs	207,717	205,837	205,837
$Adj.R^2$	0.028	0.036	0.034

Results Using Breakeven Inflation

Instead of daily movements in inflation swaps, we test TIPS-implied breakeven inflation movements on macroeconomic announcement days

	(1)	(2)	(3)	(4)	(5)	(6)
$\Delta \pi^{be,5Y}$	-0.99***	0.37***	-0.30***	-0.65***	-0.94***	0.35***
	(-6.68)	(4.80)	(-4.07)	(-5.05)	(-7.07)	(4.73)
hand mbt 2M						
$\tilde{ ho}_{-1}^{bond-mkt,3M}$					0.02	0.04
					(0.29)	(0.83)
$\tilde{\rho}_{-1}^{bond-mkt,3M} \times \Delta \pi^{be,5Y}$					0.57***	0.00***
ρ_{-1} $\times \Delta \pi$						-0.23***
					(4.99)	(-3.07)
$s_{i,-1}$	0.17***	-0.00	0.05	-0.00	0.17***	0.00
-1,-1	(3.07)	(-0.14)	(1.42)	(-0.04)	(3.20)	(0.01)
	(0.01)	(0.14)	(1.12)	(0.04)	(0.20)	(0.01)
$(R^i - R^f)_{-1}$		-0.00				-0.00
, , ,		(-0.01)				(-0.01)
$ExpLoss_{i,-1}$			-0.17***	0.55^{***}		
			(-3.17)	(5.27)		
Dependent Variable	Δs_i	$R^i - R^f$	$\Delta ExpLoss_i$	$\Delta RiskPrem_i$	Δs_i	$R^i - R^f$
Firm FE	Y	Y	Y	Y	Y	Y
Clustering	Firm	-Time	Firm-Time		Firm-Time	
Obs	440,133	223,199	210,332	210,330	432,551	221,319
$Adj.R^2$	0.020	0.028	0.009	0.012	0.025	0.038

Alternative Correlation Measure

We replace daily bond returns with movements in inflation swaps and use a rolling swap-market return correlation measure

	(1)	(2)	(3)	(4)	(5)	(6)
$\Delta \pi^{swap,5Y}$	-0.90***	-1.02***	-1.03***	0.38***	0.46***	0.47***
	(-5.19)	(-6.33)	(-6.04)	(3.91)	(4.97)	(4.92)
$\tilde{\rho}_{-1}^{swap-mkt,3M}$		-0.20**			0.02	
•		(-2.58)			(0.55)	
$\tilde{ ho}_{-1}^{swap-mkt,6M}$			-0.20**			0.04
7-1			(-2.55)			(0.84)
$\tilde{\rho}_{-1}^{swap-mkt,3M} \times \Delta \pi^{swap,5Y}$		-0.68***			0.38***	
7-1		(-5.55)			(5.73)	
$\tilde{\rho}_{-1}^{swap-mkt,6M} \times \Delta \pi^{swap,5Y}$			-0.56***			0.34***
•			(-4.56)			(4.91)
Dependent Variable		Δs_i			$R^i - R^f$	
Correlation Horizon	-	3M	6M	_	3M	6M
Firm FE	Y	Y	Y	Y	Y	Y
Clustering		Firm-Time			Firm-Time	
Obs	418,777	405,195	400,641	207,717	202,603	199,661
$Adj.R^2$	0.019	0.026	0.024	0.028	0.056	0.049

Results robust to alternative correlation measure.

Time-Varying Inflation Sensitivities and CDS Liquidity

	(1)	(2)	(3)
$\Delta\pi^{swap,5Y}$	-0.81***	-1.11***	-0.42***
	(-5.27)	(-5.47)	(-4.18)
$\tilde{ ho}_{-1}^{swap-mkt,3M}$	-0.03	-0.02	-0.03
1 -1	(-0.38)	(-0.20)	(-0.51)
$\tilde{\rho}_{-1}^{swap-mkt,3M} \times \Delta \pi^{swap,5Y}$	0.61***	0.78***	0.38***
	(5.05)	(5.12)	(4.45)
$s_{i,-1}$	0.18***	0.22***	0.14***
	(3.21)	(2.62)	(2.65)
Number of Dealers	_	High (≥ 50%)	Low ($< 50\%$)
$\operatorname{Firm} \operatorname{FE}$	Y	Y	Y
Clustering		Firm-Time	
Obs	410,129	234,586	175,517
$Adj.R^2$	0.024	0.037	0.020

Long Sample Analysis

Using firm-level equity returns back to 1983 and daily inflation expectations estimates from $D^{\prime}Amico$, Kim, and Wei (2018) we replicate our analysis:

	(1)	(2)	(3)	(4)
$\tilde{\rho}_{-1}^{bond-mkt,3M}$	0.045*			
$\tilde{\rho}_{-1}^{bond-mkt,6M}$	(1.875)	0.042* (1.745)		
${}^1_{\{\rho^{3M}>0\}}$		(=====)	0.069 (1.428)	
${}^{1}{}_{\{\rho^{6M}>0\}}$				0.090^* (1.847)
$\Delta\pi^{exp,5Y}$	0.068** (2.124)	0.055 (1.629)	0.341*** (5.292)	0.280*** (4.769)
$\Delta\pi^{exp,5Y}\times\tilde{\rho}_{-1}^{bond-mkt,3M}$	-0.288***	(1.029)	(3.292)	(4.709)
$\Delta\pi^{exp,5Y}\times\tilde{\rho}_{-1}^{bond-mkt,6M}$	(-9.578)	-0.253*** (-7.684)		
$\Delta\pi^{exp,5Y}\times 1_{\{\rho^{3M}>0\}}$		(-7.004)	-0.539***	
$\Delta\pi^{exp,5Y}\times 1_{\{\rho^{6M}>0\}}$			(-7.789)	-0.470***
$r_{i,-1}$	-0.046*** (-7.984)	-0.046*** (-7.884)	-0.046*** (-7.977)	(-7.305) -0.046*** (-7.889)
Firm FE	Y	Y	Y	Y
Observations R^2	$7,259,306 \\ 0.017$	$7,259,306 \\ 0.015$	$7,\!259,\!306 \\ 0.015$	7,259,306 0.013

Longer sample allows us to uncover a sign switch in inflation beta

Model Setup (1)

- Representative investor has Epstein and Zin (1989) recursive preferences:

$$V_t = \left[(1 - \delta) C_t^{\frac{1 - \gamma}{\theta}} + \delta \left(E_t \left(V_{t+1}^{1 - \gamma} \right) \right)^{\frac{1}{\theta}} \right]^{\frac{\theta}{1 - \gamma}}$$

where δ is the time discount factor, γ risk aversion, ψ intertemporal elasticity of substitution, and $\theta \equiv \frac{1-\gamma}{1-\frac{1}{\psi}}$ preference for the early resolution of uncertainty

- The investor's (log) pricing kernel:

$$m_{t+1} = \theta \log \delta - \frac{\theta}{\psi} \Delta c_{t+1} - (1 - \theta) r_{c,t+1},$$

$$r_{c,t+1} = \kappa_0 + \kappa_1 p c_{t+1} - p c_t + \Delta c_{t+1},$$

with Δc the log-growth rate of consumption, pc log price-to-consumption ratio, and r_c the return on the consumption asset

Model Setup (2)

- Consumption and inflation follow:

$$\Delta c_{t+1} = \mu_c + x_{ct} + \sigma_c \varepsilon_{c,t+1},$$

$$\pi_{t+1} = \mu_{\pi} + x_{\pi t} + \sigma_{\pi} \varepsilon_{\pi,t+1},$$

where x_{ct} and $x_{\pi t}$ (expected real growth & inflation) are persistent processes:

$$X_t \equiv \begin{pmatrix} x_{ct} \\ x_{\pi t} \end{pmatrix} = \Pi X_{t-1} + \Sigma_{t-1} \eta_t, \quad \Sigma_t = \begin{pmatrix} \sigma_{xc} & \sigma_{xc\pi}(s_t) \\ 0 & \sigma_{x\pi} \end{pmatrix},$$

Key difference: Markov-switching covariance $\sigma_{xc\pi}(s_t)$

State variables: X_t and covariance regime s_t

$$pc_t = A_1' X_t + A_2(s_t)$$

$$\exp\left(r_{f,t+1}^{\$,n}\right) = \exp\left(p_{f,t+1}^{\$,n-1} - p_{f,t}^{\$,n}\right), \text{ where } p_{f,t}^{\$,n} = P_1^{n'} X_t + P_2^n(s_t)$$

▶ Back

Extension to Credit Risk

- To derive implications for credit spreads (CDS), we extend Augustin (2018)
- As given in Berndt et al. (2018), CDS of maturity K periods is a rate C_t that satisfies:

$$\underline{\Delta C_t \sum_{k=1}^{R/\Delta} E_t \left[\tilde{M}_{t+k\Delta}^{\$} \left(1 - D_{t,(k-1)\Delta} \right) \right]} = \underbrace{\sum_{k=1}^{R/\Delta} E_t \left[\tilde{M}_{t+k\Delta}^{\$} \times (1-R) \times D_{t+(k-1)\Delta,\Delta} \right]}_{\text{protection holder}}$$

where, Δ is the time between payments, $\tilde{M}_{t+z}^{\$}$ is the nominal SDF from t to t+z, and $D_{t,z}$ is a default indicator between t and t+z

— We assume that default dynamics are exogenous and related to key state variables. Realized default at t+1 is given by:

$$D_{t,1} = \begin{cases} 0 & \text{w/probability } \exp\left(-\lambda_{t}\right), \\ 1 & 1 - \exp\left(-\lambda_{t}\right), \end{cases}$$

where
$$\lambda_t = \beta_{\lambda 0}(s_t) + \beta'_{\lambda x} X_t$$

Extension to Credit Risk

- Assuming quarterly time frequency and that payments are made each quarter ($\Delta = 1$), 5Y CDS can be written as:

$$C_{t} = \frac{\sum_{k=1}^{20} E_{t} \left[\tilde{M}_{t+k}^{\$} \times (1-R) \times D_{t+k-1,1} \right]}{\sum_{k=1}^{20} E_{t} \left[\tilde{M}_{t+k}^{\$} \left(1 - D_{t,k-1} \right) \right]} = (1-R) \times \left(1 - \frac{\sum_{k=1}^{20} \exp \left(B_{1}^{k'} X_{t} + B_{2}^{k}(s_{t}) \right)}{\sum_{k=1}^{20} \exp \left(C_{1}^{k'} X_{t} + C_{2}^{k}(s_{t}) \right)} \right)$$

– The coefficients $\{B_1^k, B_2^k(s_t), C_1^k, C_2^k(s_t)\}$ depend on the fundamental parameters of the model and are solved using a recursive numerical algorithm

Model Parameters

Table 1: Model Parameters

	Value	Notes
γ	20	Bansal and Shaliastovich (2013)
ψ	2.5	Target risk-free rate
δ	0.998	Bansal and Shaliastovich (2013)
μ_c	0.00474	Target consumption growth mean
μ_{π}	0.009	Bansal and Shaliastovich (2013)
Π_{cc}	0.95	Bansal and Yaron (2004)
$\Pi_{\pi\pi}$	0.988	Bansal and Shaliastovich (2013)
σ_{xc}	0.0000583	Target expected growth vol
$\sigma_{x\pi}$	0.000986	Target expected inflation vol
$\sigma_{xc\pi}(s_1)$	0.0008	"Good Inflation" regime
$\sigma_{xc\pi}(s_2)$	-0.0004	"Bad Inflation" regime
p_{11}	0.9	_
p_{22}	0.9	_
σ_c	0.00359	Target consumption growth vol
σ_{π}	0.00557	Target inflation vol
$\beta_{\lambda 0}$	0.00505	Target 2% annual default rate
$\beta_{\lambda xc}$	-0.5	Countercyclical default rates
R	0.4	Average recovery rate from Markit

Unconditional Model Moments

Table 2: Unconditional Model Moments

	Value	Notes
$E\left[pc_{t}\right]$	7.607	Log price-consumption ratio
$E\left[r_{ct} ight]$	2.011	Real return on consumption
$E\left[r_{ct}^{\$} ight]$	5.538	Nominal return on consumption
$E\left[r_{ft}^{\$} ight]$	4.629	Nominal risk-free rate
$E\left[r_{ct} - r_{ft}\right]$	0.908	Risk premium
$E\left[r_{ft}^{5Y,\$} ight]$	3.466	Nominal return on 5Y risk-free bond
$E\left[s_t^{5Y}\right]^2$	1.337	5Y CDS spread
$\sigma \left[\Delta s_t^{5\vec{Y}} \right] $ (b.p.)	5.371	Volatility of spread changes