Artificial intelligence and relationship lending

by **Leonardo Gambacorta** Fabiana Sabatini Stefano Schiaffi

Discussion by

Gianmarco Ruzzier

Banco de España

8th Annual Research Conference – Economics of Artificial Intelligence Madrid - November, 14th 2025

This Paper in a Nutshell

Research Question:

- Does AI adoption in credit scoring change relationship lending behavior?
- Specifically: Does it alter the countercyclical insurance role of bank relationships?

This Paper in a Nutshell

Research Question:

- Does AI adoption in credit scoring change relationship lending behavior?
- Specifically: Does it alter the countercyclical insurance role of bank relationships?

Setting: Italian banks during COVID-19 crisis (2019:Q1-2020:Q4)

Data:

- AnaCredit: Quarterly loan volumes & interest rates (bank-firm level)
- RBLS Survey: Direct measure of AI adoption for credit scoring
- Credit Registry: Relationship duration since 2008
- Cerved: Firm balance sheets (2018-2020)

This Paper in a Nutshell

Research Question:

- Does AI adoption in credit scoring change relationship lending behavior?
- Specifically: Does it alter the countercyclical insurance role of bank relationships?

Setting: Italian banks during COVID-19 crisis (2019:Q1-2020:Q4)

Data:

- AnaCredit: Quarterly loan volumes & interest rates (bank-firm level)
- RBLS Survey: Direct measure of AI adoption for credit scoring
- Credit Registry: Relationship duration since 2008
- **Cerved:** Firm balance sheets (2018-2020)

Key Variables:

- **Relationship Duration**: Log(quarters) of bank-firm relationship
- Al Indicator: Bank uses AI/ML for credit evaluation (bank-level)
- Crisis Period: D(2020) dummy

Identification: Khwaja & Mian (2008) approach

- Firm-time FE: and Bank-time FE: control for firm demand and bank supply factors
- Comparison: Same firm's different relationships, or same bank's different relationships

 $Y_{\textit{ijt}} = \beta_1 \text{Duration}_{\textit{ijt}-1} + \beta_2 \text{Duration}_{\textit{ijt}-1} \times \text{Al}_{\textit{it}-1} + \beta_3 \text{Duration}_{\textit{ijt}-1} \times \textit{D}(2020) + \frac{\beta_4}{\beta_4} \text{Duration}_{\textit{ijt}-1} \times \text{Al}_{\textit{it}-1} \times \textit{D}(2020) + \text{FEs}$

Identification: Khwaja & Mian (2008) approach

- Firm-time FE: and Bank-time FE: control for firm demand and bank supply factors
- **Comparison:** Same firm's different relationships, or same bank's different relationships

```
Y_{\textit{ijt}} = \beta_1 \text{Duration}_{\textit{ijt}-1} + \beta_2 \text{Duration}_{\textit{ijt}-1} \times \text{Al}_{\textit{it}-1} + \beta_3 \text{Duration}_{\textit{ijt}-1} \times D(2020) + \frac{\beta_4}{\beta_4} \text{Duration}_{\textit{ijt}-1} \times \text{Al}_{\textit{it}-1} \times D(2020) + \text{FEs}
```

Main Results: Normal Times (2019):

- Traditional banks: Longer relationships → Rent extraction (↓ credit, ↑ rates)
- Al banks: **Mitigate extraction** (↑ credit, ↓ rates for given duration)
- ⇒ AI banks offer better terms than traditional banks

- Identification: Khwaja & Mian (2008) approach
 - Firm-time FE: and Bank-time FE: control for firm demand and bank supply factors
 - **Comparison:** Same firm's different relationships, or same bank's different relationships

```
Y_{\textit{ijt}} = \beta_1 \text{Duration}_{\textit{ijt}-1} + \beta_2 \text{Duration}_{\textit{ijt}-1} \times \text{Al}_{\textit{it}-1} + \beta_3 \text{Duration}_{\textit{ijt}-1} \times D(2020) + \frac{\beta_4}{\beta_4} \text{Duration}_{\textit{ijt}-1} \times \text{Al}_{\textit{it}-1} \times D(2020) + \text{FEs}_{\textit{ijt}-1} \times D(2020) + \frac{\beta_4}{\beta_4} \text{Duration}_{\textit{ijt}-1} \times D(2020) + \frac{\beta_4}{\beta_4} \times D(2020) + \frac{\beta_4}{
```

Main Results: Normal Times (2019):

- Traditional banks: Longer relationships → Rent extraction (↓ credit, ↑ rates)
- Al banks: **Mitigate extraction** (↑ credit, ↓ rates for given duration)
- ⇒ AI banks offer better terms than traditional banks

Crisis Times (2020):

- Traditional banks: Longer relationships → Insurance (↑ credit, ↓ rates)
- AI banks: No additional insurance
- ⇒ No difference between AI and non-AI banks in crisis

Identification: Khwaja & Mian (2008) approach

- Firm-time FE: and Bank-time FE: control for firm demand and bank supply factors
- Comparison: Same firm's different relationships, or same bank's different relationships

$$Y_{ijt} = \beta_1 \text{Duration}_{ijt-1} + \beta_2 \text{Duration}_{ijt-1} \times \text{Al}_{it-1} + \beta_3 \text{Duration}_{ijt-1} \times D(2020) + \frac{\beta_4}{\beta_4} \text{Duration}_{ijt-1} \times \text{Al}_{it-1} \times D(2020) + \text{FEs}_{it-1} \times D(2020) + \frac{\beta_4}{\beta_4} \text{Duration}_{ijt-1} \times D(2020)$$

Main Results: Normal Times (2019):

- Traditional banks: Longer relationships \rightarrow Rent extraction (\downarrow credit, \uparrow rates)
- Al banks: **Mitigate extraction** (↑ credit, ↓ rates for given duration)
- ⇒ AI banks offer better terms than traditional banks

Crisis Times (2020):

- Traditional banks: Longer relationships → Insurance (↑ credit, ↓ rates)
- Al banks: No additional insurance
- ⇒ No difference between AI and non-AI banks in crisis

Real Effects: Firms more exposed to AI banks with longer main lender relationships see dampened increases in investment and employment during crisis

My Take on the Paper

Key Contribution:

- Al adoption reduce "rent extraction" and insurance motives in relationship lending
- Provides novel facts linking AI to credit supply around crisis period

My Take on the Paper

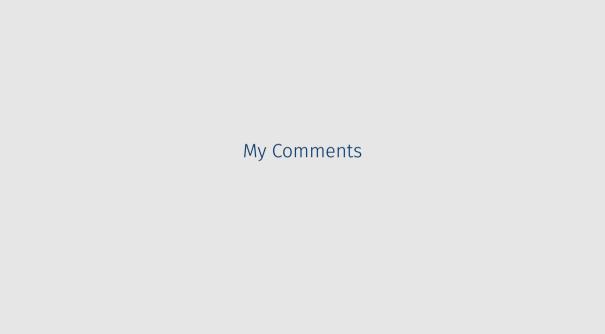
Key Contribution:

- Al adoption reduce "rent extraction" and insurance motives in relationship lending
- Provides novel facts linking AI to credit supply around crisis period

Implication:

- Traditional relationship lending: Provides countercyclical insurance
- AI banks: Credit becomes acyclical (responds to firm fundamentals, not macro)
- As AI spreads → Aggregate credit may become less cyclical

My Take on the Paper


Key Contribution:

- Al adoption reduce "rent extraction" and insurance motives in relationship lending
- Provides novel facts linking AI to credit supply around crisis period

Implication:

- Traditional relationship lending: Provides countercyclical insurance
- AI banks: Credit becomes acyclical (responds to firm fundamentals, not macro)
- As AI spreads → Aggregate credit may become less cyclical

Less amplification of shocks vs. loss of insurance for certain firms

My comments

- 1. Quick Win: Industry × Location × Size × Time FE
- 2. The Mechanism: What Drives the Results?
- 3. Size vs Al Confound
- 4. Guaranteed Loans and Identification
- 5. Minor Comments

Quick Win: Industry × Location × Size × Time FE

Current Limitation: Firm-time FE requires firms with ≥ 2 banks

- Many firms single-bank firms
- These are likely most relationship-dependent
- May underestimate relationship effects

Quick Win: Industry × Location × Size × Time FE

Current Limitation: Firm-time FE requires firms with ≥ 2 banks

- Many firms single-bank firms
- These are likely most relationship-dependent
- May underestimate relationship effects

Solution: Industry \times Location \times Size \times Time FE (Degryse et al., 2019)

- Use full sample (all firms, including single-bank)
- Controls for granular demand shocks

Especially valuable given selection concerns

What We Know (Stylized Facts):

- Al banks more sensitive to firm-specific conditions (Figure A1: EBITDA)
- Al banks less sensitive to macro/aggregate conditions
- Relationship lending insurance effect disappears for AI banks

What We Know (Stylized Facts):

- Al banks more sensitive to firm-specific conditions (Figure A1: EBITDA)
- AI banks less sensitive to macro/aggregate conditions
- Relationship lending insurance effect disappears for AI banks

Unresolved questions:

- Which firm-specific conditions are AI banks responding to?
- Why does this eliminate relationship insurance?
- How does this connect to the term loans vs. credit lines difference?

What We Know (Stylized Facts):

- Al banks more sensitive to firm-specific conditions (Figure A1: EBITDA)
- Al banks less sensitive to macro/aggregate conditions
- Relationship lending insurance effect disappears for AI banks

Unresolved questions:

- Which firm-specific conditions are AI banks responding to?
- Why does this eliminate relationship insurance?
- How does this connect to the term loans vs. credit lines difference?

Two Possible Interpretations:

H1: Al eliminates **state-varying lending** → No crisis adjustment capability

H2: Al uses **different information** → Sees fundamentals, not relationships

What We Know (Stylized Facts):

- Al banks more sensitive to firm-specific conditions (Figure A1: EBITDA)
- AI banks less sensitive to macro/aggregate conditions
- Relationship lending insurance effect disappears for AI banks

Unresolved questions:

- Which firm-specific conditions are AI banks responding to?
- Why does this eliminate relationship insurance?
- How does this connect to the term loans vs. credit lines difference?

Two Possible Interpretations:

H1: Al eliminates **state-varying lending** → No crisis adjustment capability

H2: Al uses **different information** → Sees fundamentals, not relationships

These are **not mutually exclusive**, but have different implications

Candidate Mechanisms: How Does AI Change Relationship Lending?

Mechanism 1: State-Invariant Lending

AI Bank:

- Credit = Algorithm only
- No crisis adjustment
- Consistent rules across states

Prediction:

- AI effects should be uniform across firms
- No heterogeneity by sector, size, or shock exposure

Candidate Mechanisms: How Does AI Change Relationship Lending?

Mechanism 1: State-Invariant Lending

AI Bank:

- Credit = Algorithm only
- No crisis adjustment
- Consistent rules across states

Prediction:

- AI effects should be uniform across firms
- No heterogeneity by sector, size, or shock exposure

Mechanism 2: Information Substitution

AI Bank:

- Uses: Real-time hard data
- Crisis → Different data still available
- Distinguish temporary vs. permanent shocks

Prediction:

- AI effects should vary by data availability
- Heterogeneity by:
 - Nature of COVID shock to sector
 - Firm size (data richness)

Testing the Mechanism: Heterogeneity Analysis

Key Insight: Mechanism 2 predicts heterogeneous effects while Mechanism 1 doesn't

Suggested Tests:

1. Heterogeneity by Sector COVID Impact

- Classify sectors by COVID shock severity
 - High impact: Hospitality, travel, retail (physical)
 - Low impact: Tech, finance, digital services

Prediction (if Mechanism 2):

- Smaller $|\beta_4|$ in digital sectors (real-time data available, conditions maintained)
- Larger $|\beta_4|$ in hard-hit sectors (less useful real-time signals)

Testing the Mechanism: Heterogeneity Analysis

Key Insight: Mechanism 2 predicts heterogeneous effects while Mechanism 1 doesn't

Suggested Tests:

1. Heterogeneity by Sector COVID Impact

- Classify sectors by COVID shock severity
 - High impact: Hospitality, travel, retail (physical)
 - Low impact: Tech, finance, digital services

Prediction (if Mechanism 2):

- Smaller $|\beta_4|$ in digital sectors (real-time data available, conditions maintained)
- Larger $|\beta_4|$ in hard-hit sectors (less useful real-time signals)

2. Heterogeneity by Firm Digital Footprint

- Proxies: Firm size, sector digitalization, transaction volume
- Prediction (if Mechanism 2):
 - · AI effects stronger for firms with richer data
 - Weaker insurance loss for digitally active firms

"The probability for a bank to use AI for credit scoring increases with its size"

"The probability for a bank to use AI for credit scoring increases with its size"

Table 1: Adoption of AI for credit scoring and bank characteristics

	(1)	(2)
Variables	AI	AI pre Covid
Capital ratio	0.1053	0.2237
	(2.948)	(3.000)
Liquidity ratio	1.9925	1.9506
	(2.177)	(2.335)
ROA	0.5066	0.0899
	(0.475)	(0.541)
Interbank funding ratio	-1.3867	-1.5532
	(1.430)	(1.478)
Size	0.7748***	0.8042***
	(0.187)	(0.194)

Moving from median to p75 of size \rightarrow +35% in Al-bank

"The probability for a bank to use AI for credit scoring increases with its size"

Table 1: Adoption of AI for credit scoring and bank characteristics

	(1)	(2)
Variables	AI	AI pre Covid
Capital ratio	0.1053	0.2237
	(2.948)	(3.000)
Liquidity ratio	1.9925	1.9506
	(2.177)	(2.335)
ROA	0.5066	0.0899
	(0.475)	(0.541)
Interbank funding ratio	-1.3867	-1.5532
	(1.430)	(1.478)
Size	0.7748***	0.8042***
	(0.187)	(0.194)

Moving from median to p75 of size \rightarrow +35% in Al-bank

Why Bank-Size matters independently: (Berger and Black, 2011)

- Large banks
 - Hard info, less relationship-based
 - May have low rent extraction or crisis insurance
- Small banks: Relationship-oriented
 - Soft info, relationship-dependent
 - Countercyclical lending pattern
- → Results could reflect **size**, not Al

"The probability for a bank to use AI for credit scoring increases with its size"

Table 1: Adoption of AI for credit scoring and bank characteristics

	(1)	(2)
Variables	AI	AI pre Covid
m 1: 1 : 1	0.1070	
Capital ratio	0.1053	0.2237
	(2.948)	(3.000)
Liquidity ratio	1.9925	1.9506
	(2.177)	(2.335)
ROA	0.5066	0.0899
	(0.475)	(0.541)
Interbank funding ratio	-1.3867	-1.5532
	(1.430)	(1.478)
Size	0.7748***	0.8042***
	(0.187)	(0.194)

Moving from median to p75 of size \rightarrow +35% in Al-bank

Why Bank-Size matters independently: (Berger and Black, 2011)

- Large banks
 - Hard info, less relationship-based
 - May have low rent extraction or crisis insurance
- Small banks: Relationship-oriented
 - Soft info, relationship-dependent
 - Countercyclical lending pattern
- → Results could reflect **size**, not AI

What the paper does: Bank-time FE control for $Size_{it}$, but not $Size_{it} \times Duration_{ij} \times Crisis$

Size vs. AI - II: Suggested Tests

Suggestions to Disentangle:

- Horse race regression:
 - Add: $log(Duration)_{ij} \times Large_i \times D(2020)$
 - Does AI interaction remain significant?

Size vs. AI − II: Suggested Tests

Suggestions to Disentangle:

- Horse race regression:
 - Add: $log(Duration)_{ij} \times Large_i \times D(2020)$
 - Does AI interaction remain significant?
- Within-size-class analysis:
 - Run separately by size quartiles
 - Al effect should persist if mechanism is technological

Size vs. Al − II: Suggested Tests

Suggestions to Disentangle:

- Horse race regression:
 - Add: $log(Duration)_{ij} \times Large_i \times D(2020)$
 - Does Al interaction remain significant?
- Within-size-class analysis:
 - Run separately by size quartiles
 - Al effect should persist if mechanism is technological
- Matching:
 - Match AI to non-AI banks on observables (especially size)
 - Re-estimate on matched sample

Size vs. AI − II: Suggested Tests

Suggestions to Disentangle:

- Horse race regression:
 - Add: $log(Duration)_{ij} \times Large_i \times D(2020)$
 - Does AI interaction remain significant?
- Within-size-class analysis:
 - Run separately by size quartiles
 - Al effect should persist if mechanism is technological
- Matching:
 - Match AI to non-AI banks on observables (especially size)
 - Re-estimate on matched sample

Caveat: Cannot fully separate without exogenous AI adoption variation

Guaranteed Loans and Identification — I

Problem: COVID period had unprecedented government guaranteed credit

Why This Matters for Identification:

Guaranteed Loans and Identification — I

Problem: COVID period had unprecedented government guaranteed credit

Why This Matters for Identification:

- Guaranteed loans = large fraction of COVID lending
- (Jimenez et al., 2025): Firms with longer relationships are more likely to receive guarantees
 - Effect strongest for riskier firms

Guaranteed Loans and Identification — I

Problem: COVID period had unprecedented government guaranteed credit

Why This Matters for Identification:

- Guaranteed loans = large fraction of COVID lending
- (Jimenez et al., 2025): Firms with longer relationships are more likely to receive guarantees
 - Effect strongest for riskier firms

Implication for Results:

- $\beta_3 > 0$ may conflate relationship insurance + guarantee effects
- $\beta_4 < 0$ unclear: AI effect or differential guarantee allocation?
 - If non-AI banks target guarantees to relationship firms...
 - ...but AI banks distribute uniformly
 - $\rightarrow \beta_4$ captures allocation differences, not AI

Guaranteed Loans and Identification — II: What the paper does

- AI dummy (bank-level) uncorrelated with guarantee share
- ightarrow AI banks don't use guarantees more/less than non-AI banks \checkmark

Guaranteed Loans and Identification — II: What the paper does

- AI dummy (bank-level) uncorrelated with guarantee share
- → AI banks don't use guarantees more/less than non-AI banks ✓

But This Doesn't Resolve the Issue:

- Bank-level correlation ≠ Bank-Firm level correlation
- Doesn't test: Do AI banks allocate guarantees differently across borrowers?
- Key issue: Guarantee rate for relationship vs. non-relationship firms, by bank type

Suggestions:

- Show guarantee use by relationship duration for AI vs. non-AI banks
 - Is it uniform across bank types?
- Loan-level analysis:
 - Control for guarantee status explicitly in regression
 - Or: Subsample analysis (guaranteed vs. non-guaranteed loans)
- Test: Do results persist in non-guaranteed loan subsample?

Most Important (Feasible with current data):

Most Important (Feasible with current data):

Ex-post loan performance: Do AI loans to relationship firms default less/more?

H1: Better screening → Lower NPLs for AI banks

H2: No insurance → Higher failures during crisis

Most Important (Feasible with current data):

• Ex-post loan performance: Do AI loans to relationship firms default less/more?

H1: Better screening → Lower NPLs for AI banks **H2:** No insurance → Higher failures during crisis

Bank-level credit dynamics: Overall portfolio implications

Most Important (Feasible with current data):

• Ex-post loan performance: Do AI loans to relationship firms default less/more?

H1: Better screening → Lower NPLs for AI banks **H2:** No insurance → Higher failures during crisis

- Bank-level credit dynamics: Overall portfolio implications
- Extensive margin: Relationship formation and dissolution

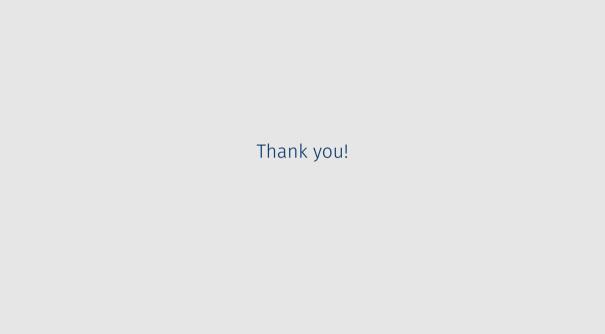
Most Important (Feasible with current data):

• Ex-post loan performance: Do AI loans to relationship firms default less/more?

H1: Better screening → Lower NPLs for AI banks **H2:** No insurance → Higher failures during crisis

- Bank-level credit dynamics: Overall portfolio implications
- Extensive margin: Relationship formation and dissolution
- Firm switching behaviour: Do firms avoid AI banks in crisis extend Table A1?

Most Important (Feasible with current data):


• Ex-post loan performance: Do AI loans to relationship firms default less/more?

H1: Better screening → Lower NPLs for AI banks **H2:** No insurance → Higher failures during crisis

- Bank-level credit dynamics: Overall portfolio implications
- Extensive margin: Relationship formation and dissolution
- Firm switching behaviour: Do firms avoid AI banks in crisis extend Table A1?

Important for External Validity:

- Alternative crisis shocks (e.g. tariffs, energy crisis)
- Do effects change as banks gain experience with AI \rightarrow longer panel (2021-2023)

