Institutional Asset Pricing with Segmentation and Household Heterogeneity

by Gopalakrishna, Gu, Payne

DISCUSSANT: RICCARDO A. CIOFFI

Summary

Q: How does regulation affect households across the wealth distribution?

- Builds a macro-finance model with heterogeneous-agents
- Three main contributions:
 - 1. Framework nesting Brunnermeier-Sannikov, Vayanos-Vila, and Gertler-Kiyotaki
 - Bridges intermediary asset pricing and macro literature
 - 2. Deep-learning solution handling HA, portfolio-choice, and aggregate risk
 - 3. Analyzes the effect of different financial regulations (and demographic)

Summary

- Growth-stability-inequality trade-off. Stricter regulations imply:
 - Restricted financial intermediation, which increases return spreads
 - Results in reduced volatility but lower investment and increased inequality
- Funds act as natural "backstop" during recessions. Key mechanism:
 - During recessions, long-term liabilities fall in value (unlike short-term deposits)
 - Provides funds the space to purchase assets and stabilize capital markets

Relation to Literature

Macro-finance:

- Financial intermediaries and endogenous risk: Brunnermeier, Sannikov (2014); He, Krishnamurthy (2013); Koijen, Yogo (2023)
- ▶ This paper: BS + HA + risky capital

Deep learning methods

- Fernández-Villaverde et al. (2023); Azinovic et al. (2022); Gu et al. (2023)
- This paper: long-term assets with stochastic KFE

Heterogeneity in financial intermediaries

- Coimbra, Rey (2024); Begenau, Landvoigt (2022)
- ▶ **This paper:** long-term vs. short-term liabilities

Wealth inequality and Asset Pricing

- Gomez (2025); Fernández-Villaverde, Levintal (2024); Cioffi (2021); Fagereng et al. (2025)
- This paper: endogenizes price volatility

Main Comments

Better leverage framework strengths

- Financial crises instead of TFP shocks
- More effects of and on distributions (welfare effects and changes in inequality)

Quantitative realism

- Model is already quantitative, but could be even more. Especially on:
 - Wealth inequality
 - Regulation

Leverage Framework Strengths

Financial Crises and Inequality

- Focus on financial crises rather than TFP shocks
 - Analyze cyclical properties under the different scenarios
 - How does HA change understanding of standard macro-finance contexts?
 - Analyze winners and losers from regulation
 - What is the effect of changes in inequality?
- Extends Brunnermeier and Sannikov (2014) but
 - BS core mechanism: endogenous risk amplification
 - Volatility paradox? History dependence?
 - Not clear how relevant in current framework
- Closer to Fernandez-Villaverde et al. (2023) but distinct contribution
 - Framework is quite different
 - Focus on role of risk

Quantitative Realism

Inequality and Regulation

- Model is obviously quantitative, but needs tweaking to improve realism
- Two main concerns: wealth distribution and regulatory constraints

Inequality far too low:

	Data	Model
Gini	0.8	0.1
Top 1%/median	99	1.8

Regulatory constraints not disciplined by data

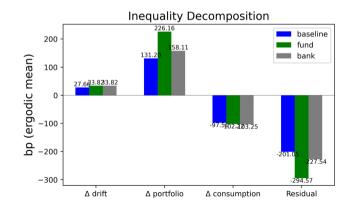
Quantitative Realism

Inequality far too low

- Natural because lacking almost all key mechanisms
 - In the data wealth inequality builds upon earnings inequality (Gini 0.6)
- However, difficult to believe distributional effects
 - Distribution response to changes in regulation depends on "scaling effect"
 - If only captures 5-10% of observed inequality, hard to trust model predictions
- Not a problem per se; there are still relevant things to analyze but either:
 - 1. Acknowledge focus on "financial wealth" conditional on omitted factors
 - 2. **Extend** the framework to match data

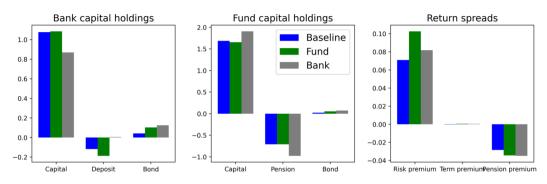
Quantitative Realism

Regulatory Constraints


Banks and Funds face flow portfolio penalties:

$$\frac{\psi_{j}}{2} \left[\max\{0, \theta_{j,t} - \bar{\theta}_{j,t}\}^{2} + \min\{0, \theta_{j,t}\}^{2} \right] a_{j,t} \Xi_{j,t}$$

- Not clearly disciplined by data:
 - Mapping from actual regulation to model parameters is unclear
 - Basel-style risk-weighted capital requirement? Leverage ratio? Portfolio-concentration limit?
 - Basel III counter-cyclical capital buffers not examined
 - Current framework with aggregate shocks well-suited for state-dependent regulation
- Can (in theory) be violated, which raises two questions:
 - Q1: Do intermediaries violate constraints in equilibrium (e.g. in response to shocks)?
 - Q2: What happens to proceeds from penalties? (not in government BC)


Specific "issues"

$$\underbrace{\frac{\mu_{j,t} - \mu_{i,t}}{\Delta \text{ Drift}}}_{\text{ }} = \underbrace{\left(\theta_{j,t}^{k} - \theta_{i,t}^{k}\right)\left(r_{t}^{k} - r_{t}^{d} - \ldots\right)}_{\text{ }} + \underbrace{\left(\theta_{j,t}^{n} - \theta_{i,t}^{n}\right)\left(r_{t}^{n} - r_{t}^{d} - \ldots\right)}_{\text{ }} - \underbrace{\left(\omega_{j} - \omega_{i}\right)}_{\text{ }} + \underbrace{\lambda_{h}\psi_{h}\left(\frac{1}{\eta_{j,t}} - \frac{1}{\eta_{i,t}}\right)}_{\text{ Residual}}$$

- Most of the difference in the residual term:
 - Model does not have much to say about that
- ▶ LHS \neq RHS: what is missing?

Specific "issues"

- ▶ Capital holdings change little from "baseline" to "fund"-restricted
- Yet capital return spread increases drastically
 - Elasticity of return to capital supply potentially very high
 - Key mechanism: might be relevant to match

Specific "issues"

Death Shocks

- Supposed to match average households life of 35 years
 - $\lambda_h = 0.1$ implies average life of 10 years
 - Crucial because insurance demand drives entire fund sector

Shock Absorption or Risk Transfer?

- Claim is that "funds act as shock absorbers"
- Funds rebalancing imposes losses on poorer households: risk transfer
 - Use framework to identify winners and losers

Other Points

- Heterogeneity in portfolios entirely driven by participation constraints
 - Calibration targets median share but functional form not empirically justified
 - Key to determine shape and dynamics of wealth distribution
 - Sensitivity of results to specific functional form is unclear
- Classic sensitivity analysis of calibration would prove quantitative "realism" of counterfactuals
- Stabilizing role of funds due to value of long-term contracts falling in recessions
 - Reduction in value of fund liabilities
 - Portfolio rebalancing by fund
 - Decomposition between the two would clarify if mechanism operates through "accounting" effects or endogenous decisions

Other Points

- Would be useful to have metric of solution accuracy that is economically interpretable (e.g. like Euler-equation errors)
- A systematic build-up of the model could be useful to explain its inner workings:
 - Model combines numerous frictions (participation costs, retirement shocks, regulation, long-term assets)
 - While comprehensive, this complexity obscures which features drive the main results
 - Could be useful to build-up from simpler nested cases (e.g. banks only first, then add funds, then add HA)