

Deep Learning in Economics: A Geometric Interpretation

Jesús Fernández-Villaverde¹

November 13, 2025

¹University of Pennsylvania

Primary Question

What is the source of the unreasonable effectiveness of deep learning in economics?

Secondary question

Why do we care?

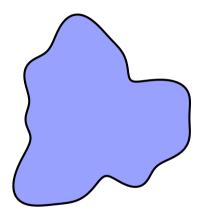
Answer to the primary question

- Deep learning is just a sequence of geometric transformations that progressively warp and flatten
 data manifolds until the underlying function approximation problem becomes simple in the final
 representation space.
- One can show that, through these geometric transformations, deep neural networks find the most regular function that interpolates the data within a dense functional space.
 - For example, while solving DSGE models, the policy function with the lowest Sobolev semi-norm in a Banach space of possible policy functions that interpolates all grid points.
- In other words, deep learning provides us with a constructive procedure to work with a better geometrical representation of the underlying function approximation problem without having to rely on domain knowledge.

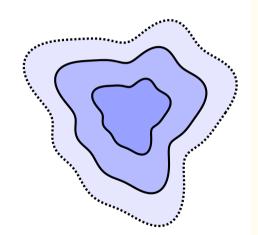
Answer to the secondary question

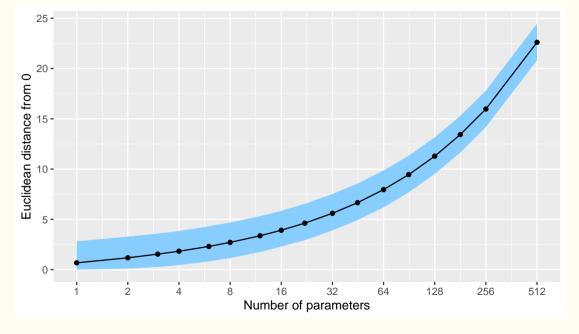
- Three key implications:
 - 1. Rather than restricting the solutions a model can represent, we want to specify a preference for certain solutions over others through a soft inductive bias.
 - 2. The double descent phenomenon teaches us that counting parameters is *not* the right metric of complexity of a model with a class.
 - 3. The architecture of our model class should not depend on the amount of data available.
- It is probably also connected with grokking and mode connectivity, but we still do not understand these two phenomena well enough.
- Challenge: Basic results of high-dimensional geometry can clash with our 3-D natural intuition.
 - Think, for instance, about the location of a typical set in a high-dimensional Gaussian distribution.

Restriction Bias



Soft Inductive Bias





The geometry of function approximation

Ultimately, all we do is approximate unknown functions

- In economics, we want to approximate ("learn") unknown functions: a value function, a policy function, a pricing kernel, a best response, a conditional expectation, a classifier, ...
- Formally, we approximate $f: \mathcal{X} \to \mathbb{R}$:

$$y = f(X)$$

where $y \in \mathbb{R}$ is a scalar and $X = \{x_1, x_2, ..., x_N\} \in \mathcal{X}$ a vector.

- The elements of X are called the features of the data (observations, points on the grid, ...) and belong to a feature space X.
- N can be large (possibly in the thousands!).
- Easy to extend to the case where *y* is a vector (e.g., a probability distribution), but the notation becomes cumbersome.

The key idea: Approximate a function in the "right" representation of the data

• Traditional function approximations:

$$f(X) \approx h(X)$$

use a flat functional form $h(\cdot)$ (i.e., a linear combination of Chebyshev polynomials, a piecewise linear function).

• Deep neural networks (and machine learning more in general) use nested mappings:

$$f(X) \approx g(\phi(X))$$

where $\phi: \mathcal{X} \to \mathcal{Z}$, $g: \mathcal{Z} \to \mathbb{R}$.

- 1. \mathcal{Z} is the "representation space."
- 2. The function $\phi(\cdot)$ finds a representation of the data X in the "right" geometrical space.
- 3. The function $g(\cdot)$ approximates $f(\cdot)$ in the representation of the data.

An example: The non-stationary stochastic neoclassical growth model

• A social planner's problem:

$$\begin{aligned} \max \mathbb{E}_0 \sum_{t=0}^{\infty} \beta^t \log(c_t) \\ c_t + k_{t+1} &= (e^{z_t})^{(1-\alpha)} k_t^{\alpha} + (1-\delta) k_t \\ \lim_{T \to \infty} \mathbb{E} \beta^T k_{T+1} c_T^{-1} &= 0 \end{aligned}$$

• Technology is a random walk with a drift:

$$z_t = \lambda + z_{t-1} + \sigma \nu_t, \quad \nu_t \sim \mathcal{N}(0, \sigma)$$

- State variables: $X_t = (k_t, z_t)$.
- Challenge: this dynamic programming problem is non-stationary.

Finding the state is an art

- Standard solution: "engineer" a transformation of the variables ("feature engineering") using our economic understanding of the problem (our "domain knowledge").
- For example $\widetilde{c}_t = \frac{c_t}{e^{z_{t-1}}}$ and $\widetilde{k}_t = \frac{k_t}{e^{z_{t-1}}}$.
- New equivalent but stationary social planner's problem:

$$\begin{aligned} \max \mathbb{E}_0 \sum_{t=0}^{\infty} \beta^t \log(\widetilde{c}_t) \\ \widetilde{c}_t + \mathrm{e}^{\lambda + \sigma \nu_t} \widetilde{k}_{t+1} &= (\mathrm{e}^{\lambda + \sigma \nu_t})^{(1-\alpha)} \widetilde{k}_t^{\alpha} + (1-\delta) \, \widetilde{k}_t \\ \lim_{T \to \infty} \mathbb{E} \beta^T \widetilde{k}_{T+1} \widetilde{c}_T^{-1} &= 0 \end{aligned}$$

• New state variables: $\widetilde{X}_t = (\widetilde{k}_t, \nu_t, z_{t-1})$.

Why did the transformation help?

- The new problem of the social planner can be solved using a high-order perturbation nearly to machine precision using Dynare in a fraction of a second.
 - This problem only depends on \widetilde{k}_t and ν_t .
- With the solution above, we use the third state variable, z_{t-1} , to simulate the economy by "untransforming" the endogenous variables into levels.
- In our notation before:
 - 1. The function $\phi(\cdot)$: $(k_t, z_t) \to (\widetilde{k}_t, \nu_t, z_{t-1})$.
 - 2. The function $g(\cdot)$: high-order perturbation on (\widetilde{k}_t, ν_t) plus simulation "untransforming" endogenous variables with z_{t-1} .

A few common misconceptions

1. This is *not* about dimensionality reduction. We have gone from two to three state variables! A more general case: Cover theorem (1965).

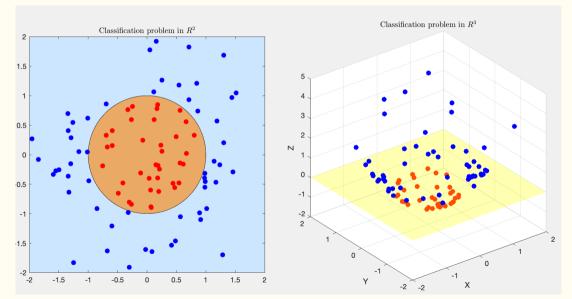
Cover theorem

A sorting problem is more likely to be linearly separable in a high-dimensional space than in a low-dimensional space, provided that the space is not densely populated.

Sometimes, good representations are in lower dimensions; sometimes, they are in higher dimensions.

- 2. This is *not* about big data. Data has played no role.
- 3. This is *not* even about deep neural networks per se! We have "engineered" the transformation by hand.

The kernel trick for sorting: Transform $(x, y) \rightarrow (x, y, x^2 + y^2 - 1)$



Deep neural networks

So, what is the role of deep neural networks in all this?

- Recall: the whole point is to find the right representation of the data.
 - Everything is about the geometry of the problem!
- The challenge is that our domain knowledge is limited.
 - What is the best representation of the states of a macro climate change model? (My work with Kenneth Gillingham and Simon Scheidegger).
- Can we design a function $\phi(\cdot)$ that has enough expressiveness to discover the most informative representation without much input from the researcher?
 - Often (but not always): yes, we can!
 - Sometimes we can find $g(\cdot)$ and $\phi(\cdot)$ simultaneously, sometimes we find $g(\cdot)$ by hand or a different algorithm.

A basic example: the feedforward fully-connected deep neural network

• We start by taking affine transformations of the features of the data:

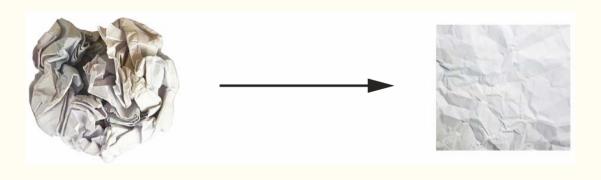
$$z_m^0 = \theta_{0,m}^0 + \sum_{n=1}^N \theta_{n,m}^0 x_n$$

• We take $M^{(1)}$ of these affine transformations, we apply a continuous deformation (such as stretching or bending) with the activation function $\phi(\cdot)$, and take a second affine transformation:

$$g_{\theta^1}(X) = z_m^1 = \theta_{0,m}^1 + \sum_{m=1}^{M^{(1)}} \theta_m^1 \phi^1(z_m^0)$$

• Iterate the previous steps J times:

$$y \approx g_{\theta}(X) = \theta_0^J + \sum_{m=1}^{M^{(J)}} \theta_m^J \phi^J \left(z_m^{J-1} \right)$$
$$= g_{\theta^J} \left(g_{\theta^{J-1}} \left(\dots g_{\theta^1}(X) \right) \right)$$



Returning to our example

• Recall our social planner's problem:

$$\begin{aligned} \max \mathbb{E}_0 \sum_{t=0}^{\infty} \beta^t \log(c_t) \\ c_t + k_{t+1} &= (e^{z_t})^{(1-\alpha)} k_t^{\alpha} + (1-\delta) k_t \\ z_t &= \lambda + z_{t-1} + \sigma \nu_t, \quad \nu_t \sim \mathcal{N}(0, \sigma) \\ \lim_{T \to \infty} \mathbb{E} \beta^T k_{T+1} c_T^{-1} &= 0 \end{aligned}$$

with state variables: $X_t = (k_t, z_t)$.

• There is a recursive problem associated with the previous sequential problem:

$$V(X) = \max_{k'} \{ u(c) + \beta \mathbb{E} V(X') \}$$

$$c = (e^{z})^{(1-\alpha)} k^{\alpha} + (1-\delta) k - k'$$

$$z' = \lambda + z + \sigma \nu', \quad \nu \sim \mathcal{N}(0, \sigma)$$

Our approximation

• We approximate:

$$V(X) \approx g(\phi(X))$$

by minimizing a loss function $\mathcal{L}(\theta^*; X, y)$.

- The optimizer forces $\phi(X)$ to reconfigure X in informationally efficient representations.
- Why? Because a first-order optimizer picks weights to push the representation toward a simpler, low-Kolmogorov complexity manifold.

The geometric unification

- I have presented a basic feedforward deep neural network.
- There are many alternative architectures (e.g., GANs, transformers) designed to capture specific problems.
- Often, researchers are puzzled by the multiplicity of architectures.
- However, there are significant theoretical connections among different architectures.
- "Geometric unification" effort in the spirit of the *Erlangen Program* formulated by Felix Klein: a common framework to think about different architectures.

Why do we care?

Overparameterization

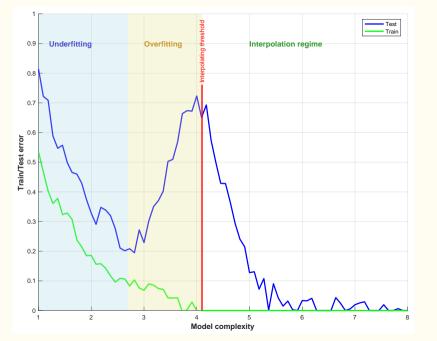
- Deep neural networks are massively overparameterized $(dim(\theta) \gg num. data)$.
- We want to have enough expressiveness for our representations.
- But, how can this not be a problem?

The classical view: Enrico Fermi, 1953

I remember my friend Johnny von Neumann used to say, with four parameters I can fit an elephant, and with five I can make him wiggle his trunk.

Background

- A classical result in statistics: bias-variance tradeoff.
 - U-shaped test-error curve: Adding regressors to a statistical model reduces bias but increases variance.
 - This tradeoff has long guided model choice in econometrics.
- Machine learning research (Belkin et al., 2019), however, has uncovered a "second descent" in test error when model complexity grows well beyond the sample size:
 - First document case: Vallet et al. (1989).
 - Present in the solution of DSGE models as an inductive bias: Ebrahami Kahou et al. (2025).



Why do we have a double descent?

- Double descent in a nutshell:
 - 1. The first descent is because the approximation is learning the patterns of the data (loosely speaking, $g(\cdot)$).
 - 2. The first ascent is because the approximation is "memorizing" the data.
 - 3. The second descent is because the approximation is learning the representations of the data that generalize well (loosely speaking, $\phi(\cdot)$).
- Can we get more precise?

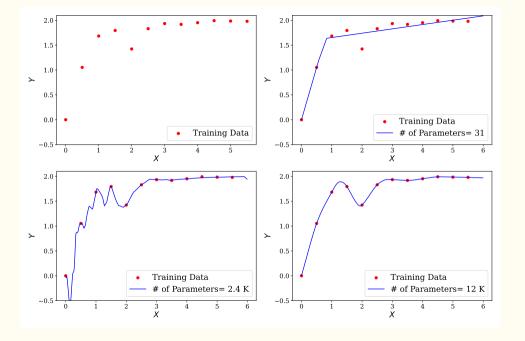
Implicit regularization

• High-dimensional gradient-based optimizers select min-norm solutions:

$$egin{align} g_{ heta}^* &\equiv \min_{g_{ heta} \in \mathcal{H}(heta)} \|g_{ heta}\|_{\psi} \ & ext{s.t. } \mathscr{L}(heta^*; X, y) = 0, \ ext{ for all } X \in \mathbf{X} \end{aligned}$$

where recall that $\mathcal{L}(\theta^*; X, y)$ is a loss function.

- 1. Theoretical proofs for some cases (Belkin, 2021) and plenty of "real-life" cases where this holds (many of my papers).
- 2. This is a form of implicit regularization: the "soft inductive bias" of machine learning.
- 3. Identification of the individual θ 's is irrelevant, since all min-norm solutions are equivalent.
- 4. Nonetheless, this should remind you of the ridge regression.



Going beyond implicit regularization

- But, why do we have implicit regularization?
- The theoretical proofs offer little analytic insight.
- Hypotheses such as the winning lottery tickets fail in many circumstances.
- And it turns out that we do not even need first-order optimizers to have a soft inductive bias: large models have a wide region of low loss.
- Let me walk you through a much simpler linear environment.

A univariate DGP

- Consider a univariate time series Y_t generated by some unspecified stationary data-generating process (DGP).
- $\{Y_t\}_{t=1}^T$ is the training data.
- Also, some extra test data $\{Y_t\}_{t=T+1}^{T+J}$ that I do not use for estimation.

An AR(n) model

• An AR(n) model for this training data is:

$$Y_t = \phi_0 + \sum_{j=1}^n \phi_j Y_{t-j} + \varepsilon_t$$

with $\mathbb{E}[\varepsilon_t] = 0$, and $Var(\varepsilon_t) = \sigma^2$.

- $\beta = (\phi_0, \phi_1, \dots, \phi_n)^{\top} \in \mathbb{R}^N$ with N = n + 1.
- I am not assuming the DGP behind the training data is an AR(n) process; I am simply fitting this model to the observations.

Design matrix and response vector

• The design matrix $X \in \mathbb{R}^{T_{eff} \times N}$ with:

$$X = \begin{bmatrix} 1 & Y_n & Y_{n-1} & \cdots & Y_1 \\ 1 & Y_{n+1} & Y_n & \cdots & Y_2 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & Y_{T-1} & Y_{T-2} & \cdots & Y_{T-n} \end{bmatrix}$$

where $T_{eff} = T - n$.

- For simplicity, I am ignoring the rank condition rank(X) = N.
- The response vector:

$$y = \begin{bmatrix} Y_{n+1} \\ \vdots \\ Y_T \end{bmatrix}$$

• If I estimate β using OLS, I will have three cases.

Case I: The underparameterized regime

• When $T_{eff} > N$, the OLS estimator is:

$$\hat{eta}_{\mathsf{under}} = (X^{\top}X)^{-1}X^{\top}y$$

• For a test regressor x_{test} , the prediction of the fitted model is:

$$\hat{y}_{\text{test,under}} = x_{\text{test}}^{\top} (X^{\top} X)^{-1} X^{\top} y$$

• The test error follows a U-shape: as N increases, the bias decreases, and the variance grows roughly in proportion to N/T_{eff} .

Case II: The interpolation threshold

- When $T_{eff} = N$, I still have $\hat{\beta}_{under} = (X^{\top}X)^{-1}X^{\top}y$, but the AR(n) fits the training data perfectly.
- Hence, the prediction is still:

$$\hat{y}_{\text{test,interp}} = x_{\text{test}}^{\top} (X^{\top} X)^{-1} X^{\top} y$$

• Spike in the test error.

Case III: The overparameterized regime

- When $T_{eff} < N$, X is rank-deficient, and $X^{T}X$ is singular.
- That is, there exist infinitely many interpolating solutions that fit the data perfectly.
- If I use the Moore–Penrose pseudoinverse:

$$\hat{\beta}_{\mathsf{over}} = X^+ y = X^\top (XX^\top)^{-1} y$$

with prediction:

$$\hat{y}_{\text{test,over}} = x_{\text{test}}^{\top} X^{\top} (XX^{\top})^{-1} y$$

- This approach yields the minimum-norm interpolator $\arg\min\|\beta\|_2$, a form of implicit regularization.
- In our model, implicit regularization is achieved through the pseudoinverse, but the same regularization can also be obtained using gradient-based optimizers (e.g., stochastic gradient descent).

Singular value decomposition (SVD)

- Test errors can be analyzed in terms of the singular values of X.
- Recall that the SVD of X is:

$$X = U\Sigma V^{\top}$$

where
$$\sigma_1 \ge \cdots \ge \sigma_R > 0$$
 and $R = \operatorname{rank}(X)$.

ullet Nonzero singular values $\{\sigma_r\}$ capture directions of variation in the data.

Decomposition around an "ideal" model

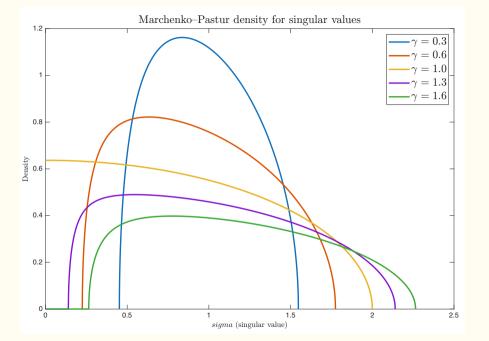
- Write $y = X\beta^* + E$, where:
 - β^* : best linear predictor (minimizes test risk).
 - *E*: residuals (noise and/or misspecification).
- Test error (both in the under- and overparameterized regimes):

$$\sum_{r=1}^R \frac{1}{\sigma_r} (x_{\mathsf{test}}^\top v_r) (u_r^\top E)$$

- Test error diverges when:
 - 1. Small singular values $(1/\sigma_r \text{ large})$.
 - 2. Test features align with vulnerable directions.
 - 3. Residuals amplify these directions.

The appearance and disappearance of small singular values

- Let us use random matrix theory.
 - You can get the same results using differential geometry or algebraic topology.
- The Marchenko-Pastur law characterizes the density of singular values.
 - Think about this as a CLT for singular values of random matrices.
- Define $\gamma = \frac{N}{T_{eff}}$.



Why do we move away from zero in high dimensions?

- A fundamental feature of high-dimensional geometry is that the angles of random vectors are almost right and norms are almost constant.
 - Intuition: Throw many very high-dimensional arrows with random entries in a very high-dimensional room: they will be nearly perpendicular to each other and have roughly the same size.
- In other words, random vectors are almost orthogonal and spread variance evenly: every projection axis sees roughly the same amount of stretching.
- But the stretching is just the singular value.
- High dimensionality is not a curse; it is a blessing!

A univariate application

• The DGP for the simulation:

$$y_t = \varphi y_{t-1} + \varepsilon_t + \theta \varepsilon_{t-1}, \qquad \varepsilon_t \sim \mathcal{N}(0, \sigma^2)$$

- $|\varphi| < 1$, $|\theta| < 1$ (stationarity and invertibility).
- ARMA(1,1) has AR(∞) representation with slow decay \Rightarrow truncation bias at small n.
- To obtain long AR(∞) tail: $\varphi \approx -\theta$.
- Simulation parameters:
 - $\varphi =$ 0.95, $\theta = -0.90$, $\sigma = 1$.
 - T = 300 chosen to match typical quarterly macro data.

Train/test protocol

- Train/test split: $T_{\text{train}} = \lfloor 0.8T \rfloor$.
- No global standardization (to avoid leakage).
- For each *n*:
 - 1. Build $(X_{\text{train}}, \mathbf{y}_{\text{train}})$.
 - 2. Compute $\hat{\boldsymbol{\phi}} = X^+ \mathbf{y}$.
 - 3. Predict 1-step ahead using true lagged values.
 - 4. Test error:

$$MAE = \frac{1}{N} \sum_{t \in test} |\hat{y}_t - y_t|$$

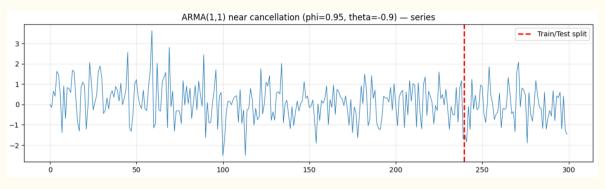


Figure 1: ARMA(1,1) data.

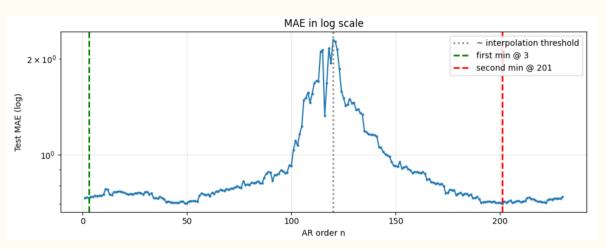


Figure 2: Test MAE of AR(n) vs. AR order n for ARMA(1,1).

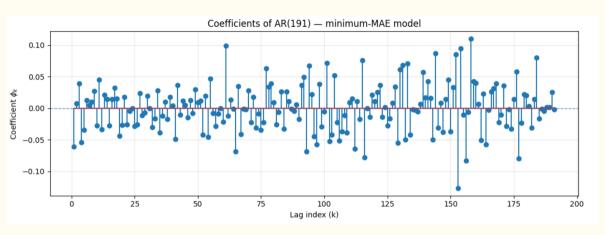


Figure 3: Coefficient Estimates of Best AR (n = 191).

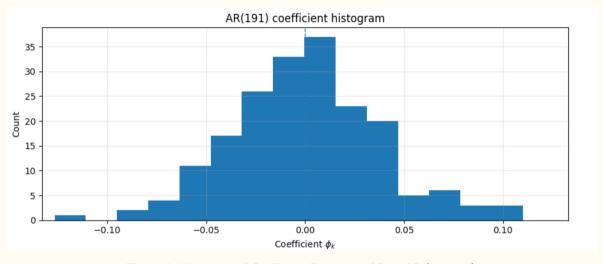


Figure 4: Histogram of Coefficient Estimates of Best AR (n = 191).

Taking stock

- Deep learning works because it searches for a better geometric representation of the function approximation problem at hand.
- Understanding deep learning geometrically helps economists see that model expressiveness, rather than parameter count, drives generalization and the double descent phenomenon.