Discussion of Monetary policy with persistent supply shocks

by Galo Nuño, Philipp Renner and Simon Scheidegger

Oreste Tristani¹

ECB and CEPR

November 2025, Banco de España Annual Research Conference

¹The opinions expressed are personal and do not necessarily reflect those of the ECB or the Eurosystem.

Summary

Great paper!

Discussion

- Is the paper really about the *persistence* of shocks?
- What are the benefits of deep learning?
- Why does optimal policy under commitment not stabilise the price level: a conjecture.
- What do we learn about the real world?

3/22

Is the paper really about the persistence of shocks?

Is the paper about persistent shocks?

• The cost-push shock η_t follows a two-state Markov chain. In regime $s_t=0,\ \eta_1=1;$ in regime $s_t=1,\ \eta_2=\frac{\varepsilon}{\varepsilon-1}=\frac{7}{6}.$ The law of motion of s_t can be rewritten as an AR(1)

$$s_{t+1} - \bar{s} = \rho_s (s_t - \bar{s}) + \nu_{t+1}, \qquad \mathsf{E}_t \nu_{t+1} = 0$$

where

$$\bar{s} \equiv \frac{p_{12}}{p_{21} + p_{12}} = \frac{1}{3}$$

$$\rho_s \equiv 1 - p_{21} - p_{12} = 0.9375$$

Compare to

$$\rho_A = 0.99, \rho_\tau = 0.90, \rho_g = 0.97$$

Hence, persistent, but not especially persistent.

Tristani (ECB)

... but Markov chain dynamics are different

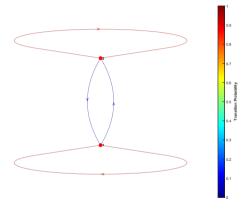


Figure 1: Dynamics of η_t .

Markov chain vs. comparable AR(1) process

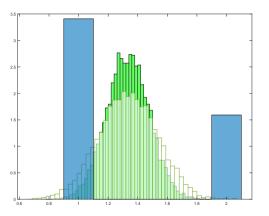


Figure 2: Markov chain in blue; AR(1) process with the same persistence and uncond. mean in green.

7/22

Is the paper about persistent shocks?

- There is a sense in which a persistent Markov chain does spend more time "pushed back" to each state than a persistent AR(1) shock.
 - A Markov chain is also heteroschedastic.
- But asymmetry also important in this application: normal times vs. bad times; no "exceptionally good" times
- "Monetary policy with regime-switching supply shocks"? Or "Monetary policy with multiple supply-shock regimes"?

The benefits of deep learning

Could one solve the model with perturbation?

Problem: the non-stochastic steady state is state-dependent

$$y\left(\eta(s_t)\right): \frac{1}{\eta(s_t)} = y^{\omega} \left(y - \bar{g}\right)^{\gamma}$$

• Define the ergodic mean $\bar{\eta}$ and use a perturbation function for MS parameters (see Foerster, Rubio-Ramirez, Waggoner and Zha, QE 2016)

$$\eta(s,\chi) = \chi \eta(s) + (1-\chi)\bar{\eta}$$

so that for $\chi=0,\eta\left(s,\chi\right)=\bar{\eta}$ and for $\chi=1,\eta\left(s,\chi\right)=\eta\left(s\right)$

10 / 22

Tristani (ECB) Discussion of NRS BdE Annual

First order approximation I

• Log-linear system in deviation from the efficient equilibrium $(\kappa_x \equiv \kappa \frac{\omega(1-g_y)+\gamma}{1-g_y})$:

$$\pi_{t} = \kappa_{x} x_{t}^{e} + \beta \mathbf{E}_{t} \pi_{t+1} + \kappa \xi_{t} + \kappa \hat{\eta}_{t}$$

$$x_{t}^{e} = \mathbf{E}_{t} x_{t+1}^{e} - \frac{1 - g_{y}}{\gamma} \left(i_{t} - \mathbf{E}_{t} \pi_{t+1} - r_{t}^{e} \right)$$

$$i_{t} = \beta \psi \pi_{t}$$

$$r_{t}^{e} = \frac{\gamma}{(1 - g_{y}) \omega + \gamma} \left[(1 + \omega) \left(\rho_{a} - 1 \right) a_{t} - \omega \bar{g}_{y} \left(\rho_{g} - 1 \right) \hat{g}_{t} \right]$$

• Notes: $\hat{\eta}_t$ looks like a standard cost-push shock; r_t^e is independent of $\hat{\eta}_t$; nothing new?

11 / 22

First order approximation II

• Expanding $\hat{\eta}_t$ and ignoring other shocks:

$$\pi_t = \kappa_x x_t^e + \beta E_t \pi_{t+1} + \kappa \left(\ln \eta_t - \ln \bar{\eta} \right)$$
$$x_t^e = E_t x_{t+1}^e - \frac{1 - g_y}{\gamma} \left(i_t - E_t \pi_{t+1} \right)$$
$$i_t = \beta \psi \pi_t$$

- $\eta_t = 1$ implies a small negative cost-push shock, positive efficient gap; $\eta_t = \mathcal{M}$ implies a larger positive shock, negative efficient gap.
- Stochastic steady states:

$$(1 - \beta) \pi_1 - \kappa_x x_1^e = \kappa \left(0 - \ln \bar{\eta} \right)$$
$$(1 - \beta) \pi_2 - \kappa_x x_2^e = \kappa \left(\ln \mathcal{M} - \ln \bar{\eta} \right)$$

First order approximation III

• Log-linear system in deviation from the flex price equilibrium:

$$\pi_t = \kappa_x x_t + \beta \mathbf{E}_t \pi_{t+1}$$

$$x_t = \mathbf{E}_t x_{t+1} - \frac{1 - g_y}{\gamma} \left(i_t - \mathbf{E}_t \pi_{t+1} - \mathbf{r}_t^n \right)$$

$$i_t = \beta \psi \pi_t$$

$$r_t^n = \frac{\gamma}{(1 - g_y)\omega + \gamma} \left[(1 + \omega) \left(\rho_a - 1 \right) a_t - \omega \bar{g}_y \left(\rho_g - 1 \right) \hat{g}_t - \left(\rho_\tau - 1 \right) \xi_t + \hat{\eta}_t - \mathbf{E}_t \hat{\eta}_{t+1} \right]$$

Stochastic steady state values under the Taylor rule

	DEQN	1st order
Inflation		
normal times	-0.9%	-0.7%
bad times	1.6%	1.4%
Output		
normal times		0
bad times		-5.9%
Efficient output gap [?]		
normal times	-0.1%	1.2%
bad times	-5.4%	-2.4%
Real interest rates		
normal times	0.1%	0.3%
bad times	2.6%	2.5%
Natural rates		
normal times		0.2%
bad times		2.6%
Nominal interest rates		
normal times	-0.8%	-0.4%
bad times	4.2%	3.8%

The benefits of DEQN

- A slightly less transparent, but more precise solution. Even in a simple model.
 - Show impact of heteroschedasticity?
 - Work with log-variables to maximise comparability with the literature?
- Benefits grow with model complexity/nonlinearity but also risk of black box feeling?
- Obvious example: version of the model with ZLB.

15 / 22

Why does optimal policy from a timeless perspective not stabilise the price level?

A conjecture on optimal policy from a timeless perspective I

• Shocks happen in the SSS. Expectations can differ from actuals:

$$\pi_s - \kappa_x x_s = \beta E_s \pi + \kappa \left(\log \eta_s - \log \bar{\eta} \right)$$
$$x_s = E_s x - \frac{1 - g_y}{\gamma} \left(i_s - E_s \pi \right)$$

• In state η_1 it becomes feasible to have $x_1 = \pi_1 = 0$

$$0 = \beta E_1 \pi + \kappa \left(0 - \log \bar{\eta} \right)$$

• In state η_2 it must be $x_2 < 0$

$$x_2 = -\frac{\beta}{\kappa_x} E_2 \pi - \frac{\kappa}{\kappa_x} (\log \mathcal{M} - \log \bar{\eta})$$

17 / 22

A conjecture on optimal policy from a timeless perspective II

• Enter the optimal target rule:

$$p_t - p_{t-1} = -\frac{1}{\varepsilon} \left(x_t - x_{t-1} \right)$$

• Start from state $\eta_{t_0-1,s=1}$ with $x_{t_0-1,s=1}=\pi_{t_0-1,s=1}=0$. Normalise the t_0 price level $p_{t_0-1,s=1}=0$. Then shift to $\eta_{t_0,s=2}$ with $x_{t_0,s=2}<0$. Target rule implies:

$$p_{t_0,s=2} = -\frac{1}{\varepsilon} x_{t_0,s=2} > 0$$

$$p_{t_0+1,s=2} - p_{t_0,s=2} = 0$$

$$p_{t_0+2,s=2} - p_{t_0+1,s=2} = 0$$

. . .

A conjecture on optimal policy from a timeless perspective III

- The optimal target rule of the linearised model can provide some useful intuition.
- The optimal target rule only requires an eventual return to the original price level if all gaps return to zero. Not the case in this model after a regime switch. Price drift possible (and desirable).
- If gaps are non-zero, expectations may differ from realised variables in the SSS see also Daudignon and Tristani (JMCB, 2025).
- (Alternative conjecture: positive price level drift after inflationary shocks is offset by negative drift after return to normal times. Ruled out in the appendix)

19 / 22

What do we learn about the real world?

Pushing the interpretation of η as a tariff shock

- Consistent with Werning, Lorenzoni and Guerrieri (2025)
- Are tariffs a persistent or permanent state?
- Uncertainty: there may be a very bad state η_3 .
- Ramsey more appropriate to characterise optimal reaction to time t_0 "liberation day" announcement? (Or who is right between Trump and the Fed?)

Conclusion

Great paper!