Consumer Durables, Monetary Policy, and the Green Transition

Alexander Dietrich, Lukas Leitenbacher, Gernot Müller

7th ANNUAL RESEARCH CONFERENCE Macroeconomic and Financial Aspects of Climate Change Banco de España, November 14, 2024

The question

What role does monetary policy play for the green transition of households?

1. Introduction 2. Preliminaries 3. Model 4. Calibration 5. Green transition 6. Conclusion 1/26

The question

What role does monetary policy play for the green transition of households?

Durable consumption

- ▶ Direct CO₂ emissions: large part of HH carbon footprint (transport & buildings)
- Covered by EU Emission Trading Scheme (ETS2) from 2027 onwards
- Pricing emissions shifts expenditure from brown to green durables

1. Introduction 2. Preliminaries 3. Model 4. Calibration 5. Green transition 6. Conclusion 1/26

The question

What role does monetary policy play for the green transition of households?

Durable consumption

- Direct CO₂ emissions: large part of HH carbon footprint (transport & buildings)
- Covered by EU Emission Trading Scheme (ETS2) from 2027 onwards
- Pricing emissions shifts expenditure from brown to green durables

Monetary policy

- Emission pricing pushes up inflation
- To keep inflation on target, monetary policy needs to raise interest rates
- Slows down green transition as durable purchases highly interest-rate sensitive

1. Introduction 2. Preliminaries 3. Model 4. Calibration 5. Green transition 6. Conclusion 1/26

This paper

Institutional background & facts

- ▶ How households contribute to CO₂ emissions via durables consumption
- \triangleright 2027: EU starts to price CO₂ emissions from transport and buildings (*ETS2*)

1. Introduction 2. Preliminaries 3. Model 4. Calibration 5. Green transition 6. Conclusion 2/26

This paper

Institutional background & facts

- ▶ How households contribute to CO₂ emissions via durables consumption
- ▶ 2027: EU starts to price CO₂ emissions from transport and buildings (*ETS2*)

Time-series evidence

▶ Revisit responsiveness of consumer durables to monetary policy in euro area

1. Introduction 2. Preliminaries 3. Model 4. Calibration 5. Green transition 6. Conclusion 2/26

This paper

Institutional background & facts

- ▶ How households contribute to CO₂ emissions via durables consumption
- \triangleright 2027: EU starts to price CO₂ emissions from transport and buildings (*ETS2*)

Time-series evidence

▶ Revisit responsiveness of consumer durables to monetary policy in euro area

New Keynesian model with green and brown durables

- Calibrate to match time-series evidence
- Simulate phasing-in of price for household emissions: green transition
- Quantify tradeoff faced by monetary policy

1. Introduction 2. Preliminaries 3. Model 4. Calibration 5. Green transition 6. Conclusion 2/26

Monetary policy tradeoffs during green transition

Green transition potentially inflationary

- ▶ "Fossilflation": Rising inflation due to carbon pricing (Schnabel 2023)
- Discussion focused on brown v green industries
- ► Tradeoff: Stabilizing CPI inflation v supporting economic activity (Del Negro et al. 2024, and guite a few others)

1. Introduction

5. Green transition

Monetary policy tradeoffs during green transition

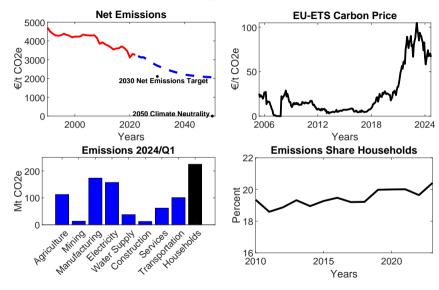
Green transition potentially inflationary

- "Fossilflation": Rising inflation due to carbon pricing (Schnabel 2023)
- Discussion focused on brown v green industries
- ► Tradeoff: Stabilizing CPI inflation v supporting economic activity (Del Negro et al. 2024, and guite a few others)

This paper: two innovations

- Consumer durables: important for green transition & sensitive to monetary policy
- ► Tradeoff: Stabilizing CPI inflation v supporting green transition

Related literature


Green transition

- ▶ Inflationary impact: Känzig (2023), Konradt Weder di Mauro (2023)
- Monetary policy: Airaudo et al (2024), Coenen et al (2024), Ferrari Nispi-Landi (2024). Nakov Thomas (2024). Olovsson Vestin (2023)
- ▶ Optimal climate policy: Carratini et al (2023), Golosov et al (2014), Hassler et al (2021), Heutel (2012) van den Bremer van der Ploeg (2021)

Other

- Durables models and monetary policy: Barsky et al (2007), Di Pace Hertweck (2019), Erceg Levin (2006), Monacelli (2009), McKay Wieland (2021). Sterk Tenreyro (2018)
- ▶ Climate policy uncertainty: Dietrich et al (2024), Carattini et al (2023), Fried et al (2022), Lemoine (2017)

2. Preliminaries—institutional background

1. Introduction

2. Preliminaries

3. Model

4. Calibration

5. Green transition

6. Conclusion

ETS2: Extension of EU-Emission Trading Scheme (EU-ETS) as of 2027

Covers CO₂ emissions in road transport and buildings

- Households are responsible for 60% of road transport emissions
- Durable consumption accounts for $\approx 50\%$ of households' overall carbon footprint

Cap-and-trade market (just like EU-ETS)

- ► Anticipated price: at least 45€ (in 2020 prices) per allowance (1 ton CO₂)
- EU market stability reserve of 600 million allowances to manage prices
- Energy producers buy allowances and pass prices through to households

Expected costs for households ≈ 1.5 percent of consumption

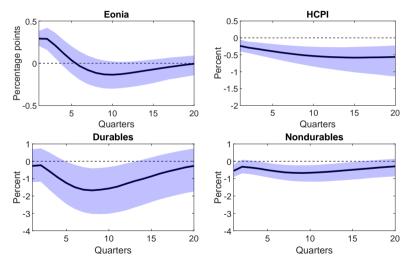
- ▶ Direct emissions in residential buildings and road transport: 2t CO₂ per person
- Median ETS2 price forecast 2030: 140€ per allowance

1. Introduction 2 Preliminaries

Preliminaries—how monetary policy impacts durable purchases

New evidence for euro area

- ► Euro area BVAR 1999:1–2019:12, 6 lags
- ▶ 6 variables: EONIA, HCPI, durables, nondurables, M1 and industrial production


Identification (Badinger Schiman 2023)

- ▶ Narrative residual restrictions based on high-frequency monetary policy surprises
- Contractionary monetary policy shocks: Nov 2008, Oct 2011
- Expansionary: Oct 2008, Nov 2011
- One monetary policy shock via magnitude restriction in Nov 2011

1. Introduction 2. Preliminaries 3. Model 4. Calibration 5. Green transition 6. Conclusion 7/26

How monetary policy impacts durable purchases: new time-series evidence

Median responses reported at quarterly frequency and 68% credible sets

3. New Keynesian model with green and brown durables

Households

- ▶ Purchase non-durable consumption goods and invest in durable stock
- ▶ Brown durables cause (potentially) costly emissions, green durables do not
- No feedback from emissions to economy

Firms

- Production uses labor input only, no capital, no emissions
- Monopolistic competition, infrequent price adjustment

Policy

- ► Monetary policy: interest rate rule
- Fiscal policy: sets emission price, rebates revenues lump sum

1. Introduction

Household preferences

A representative, infinitely-lived household maximizes utility

$$\mathbb{E}_0 \sum_{t=0}^{\infty} \beta^t \left[\frac{(Z_t - hZ_{t-1})^{1-\sigma}}{1-\sigma} - \eta \frac{N_t^{1+\varphi}}{1+\varphi} \right],$$

with nested aggregates:

$$Z_t = C_{N,t}^{\psi_C} S_t^{1-\psi_C}, \text{ and } S_t = \left[\psi_B^{rac{1}{\zeta}} D_{B,t}^{rac{\zeta-1}{\zeta}} + (1-\psi_B)^{rac{1}{\zeta}} D_{G,t}^{rac{\zeta-1}{\zeta}}
ight]^{rac{\zeta}{\zeta-1}}$$

and law of motion for durable stock:

$$D_{k,t} = C_{k,t} + (1 - \delta_k)D_{k,t-1} \quad \forall \ k \in \{G, B\}.$$

1. Introduction 2. Preliminaries

3. Model

4. Calibration

5. Green transition

6. Conclusion

Household expenditure & adjustment costs

Non-durables and durables are CES-composites of varieties indexed $i \in [0,1]$:

$$C_{N,t} + C_{G,t} + C_{B,t} = \left[\int_0^1 Y_t(j)^{\frac{\epsilon-1}{\epsilon}} dj\right]^{\frac{\epsilon}{\epsilon-1}}$$

With price of variety $P_t(j)$, $P_{y,t} = \left[\int_0^1 P_t(j)^{1-\epsilon} dj \right]^{\frac{1}{1-\epsilon}}$; period budget constraint:

$$W_t N_t + B_{t-1} + T_t = P_{y,t} \sum_{k \in \{N,G,B\}} C_{k,t} + P_{CO_2,t} E_t + Q_t B_t$$

$$- \underbrace{\frac{\Phi_1}{2} \left[\frac{C_{G,t} + C_{B,t}}{C_{G,t-1} + C_{B,t-1}} - 1 \right]^2}_{\text{CEE-type flow costs: aggregate}} - \underbrace{\frac{\Phi_2}{2} \left[\frac{C_{G,t}/C_{B,t}}{C_{G,t-1}/C_{B,t-1}} - 1 \right]^2}_{\text{CEE-type flow costs: composition}}$$

1. Introduction 2. Preliminaries 3. Model

4. Calibration

5. Green transition

6. Conclusion 11/26

Consumer prices and emission prices

Assumption

- ightharpoonup Emissions proportional to brown stock of durables: $E_t = D_{B,t}$
- Implies for effective price of durable stock

$$P_{S,t} = \left[\psi_B (P_{y,t} + P_{CO2,t})^{1-\zeta} + (1-\psi_B)(P_{y,t})^{1-\zeta} \right]^{\frac{1}{1-\zeta}}$$

Consumer price index (CPI)

$$P_t = (P_{y,t})^{\psi_C} (P_{S,t})^{(1-\psi_C)}$$

Wedge between CPI and PPI

▶ Depends on $P_{CO2,t}$ and on weight of brown durable stock ψ_B

1. Introduction

2. Preliminaries

3. Model

4. Calibration

5. Green transition

6. Conclusion 12/26

Firms

Production linear in labor:

$$Y_{i,t}(j) = N_{i,t}(j)$$

Monopolistic competition and Calvo friction:

$$\mathbb{E}_t \sum_{g=0}^{\infty} \theta^g \mathsf{\Lambda}_{t,t+g} \left[P_t^* \mathsf{Y}_{t+g|t} - \mathcal{C}_{t+g|t} (\mathsf{Y}_{t+g|t}) \right]$$

Producer price index evolves as:

$$P_{y,t} = [(1-\theta)(P_t^*)^{1-\epsilon} + \theta(P_{y,t-1})^{1-\epsilon}]^{\frac{1}{1-\epsilon}}$$

1. Introduction

2. Preliminaries

3. Model

4. Calibration

5. Green transition

6. Conclusion

Fiscal and monetary policy

Policy adjusts allowances to meet target for CO₂ price, given exogenously

$$P_{CO2,t} = P_{CO2,t-1} + \epsilon_{CO2,t},$$

Revenues rebated to household in lump-sum way

Monetary policy operates interest-rate feedback rule

$$\frac{i_t}{\bar{i}} = \left[\frac{i_{t-1}}{\bar{i}}\right]^{\rho} \left[\left(\frac{\Pi_t}{\bar{\Pi}}\right)^{\phi_{\pi}} \left(\frac{y_t}{\bar{y}}\right)^{\phi_y} \right]^{1-\rho} \epsilon_{i,t}$$

1. Introduction

2. Preliminaries

3. Model

4. Calibration

5. Green transition

6. Conclusion 14/26

4. Calibration

	Parameter	Value	Target/Literature
Preferences and production			
Discount factor	β	0.9951	$r_t \approx 2\%$
Inverse Frisch elasticity	φ	1	Customary
Durables elast. of substitution	ζ	5	Strong substitutes
Relative labor disutility	η	2.2610	$\mathcal{N}^{SS}=1$
Variety substitution elasticity	ϵ	11	Markup 10%
Brown dur. depreciation rate	δ_{B}	0.054	20% ann. depreciation
Green dur. depreciation rate \rightarrow regulatory risk	δ_G	0.0127	5% ann. depreciation
Sector sizes			
Nondurable CES share Brown durable CES share	$\psi_{\mathcal{C}} \ \psi_{\mathcal{B}}$	0.8883 0.9982	90% nondurable exp. share 85% brown durables exp. share

1. Introduction

2. Preliminaries

3. Model

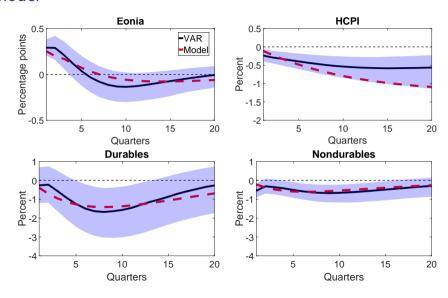
4. Calibration

5. Green transition

6. Conclusion

Bayesian IRF Matching

	Prior				Posterior				
	Distribution	Mean	Std.dev.	Bounds	Mode	Mean	5%	95%	
$\overline{ heta}$	Beta	0.5	0.15	[0.01; 0.99]	0.9225	0.9216	0.9144	0.9301	
Φ_1	Normal	4	1	[0.01; 10]	0.2224	0.2395	0.1681	0.3153	
ϕ_π	Normal	1.5	0.15	[1.01; 5]	1.2111	1.2060	1.0121	1.3518	
ρ	Beta	0.5	0.15	[0; 0.99]	0.5243	0.5266	0.4356	0.5981	
h	Beta	0.5	0.15	[0; 1]	0.9277	0.9222	0.9013	0.9443	
σ	Normal	1	0.2	[0.25; 4]	0.3554	0.3967	0.2594	0.5075	


Note

- ▶ Output-response coefficient ϕ_y close to zero
- Adjustment costs of changing stock composition Φ₂ not identified

1. Introduction 2. Preliminaries

4. Calibration

VAR v model

1. Introduction

2. Preliminaries

3. Model

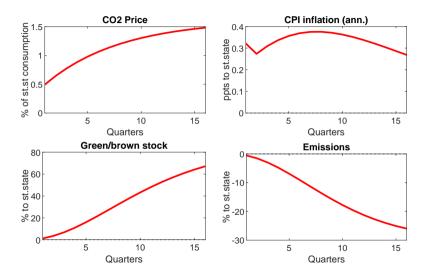
4. Calibration

5. Green transition

6. Conclusion

5. Green transition

Shift expenditures from brown to green durable purchases


▶ Initial steady state: 85% brown v 15% green

Speed of transition depends on:

- 1. Price path of emissions: $45 \in CO_2$ price at the start in 2027, increases gradually to 140€ in 2030 (median forecast); baseline: unanticipated
- 2. Adjustment costs: set $\phi_2 = 0.00022$ to achieve emission reduction targeted under ETS2 by 26%

1. Introduction

Green transition: 2027-2030

The role of monetary policy for the green transition

Assume strict inflation targeting (instead of Taylor rule) and two limiting cases

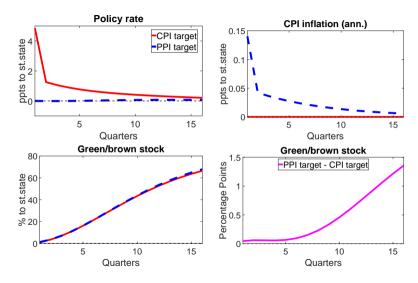
- ▶ Target CPI inflation: $\Pi_t = 1$
- Looking-through policy/PPI target: $\Pi_{v,t} = 1$

Intermediate cases: parameterize degree of looking through

$$1 = \alpha \Pi_{y,t}^T + (1 - \alpha) \Pi_t^T$$

1. Introduction

2. Preliminaries


3. Model

4. Calibration

5. Green transition

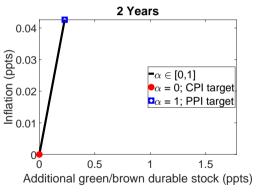
6. Conclusion 20/26

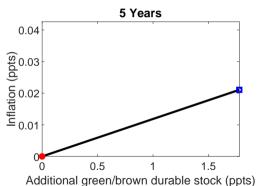
Green transition: CPI targeting v PPI targeting

1. Introduction

2. Preliminaries

3. Model


4. Calibration


5. Green transition

6. Conclusion

The tradeoff: price stability v supporting green transition

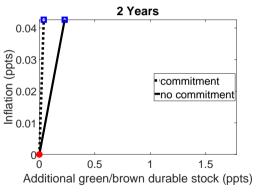
Varying degrees of looking through: $\alpha \in [0,1]$

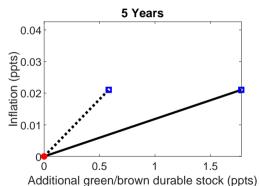
1. Introduction

2. Preliminaries

3. Model

4. Calibration


5. Green transition


6. Conclusion

22/26

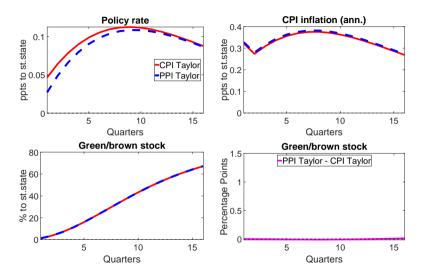
The tradeoff when price path fully anticipated "full commitment"

Varying degrees of looking through: $\alpha \in [0,1]$

1. Introduction 2. Preliminaries

es

3. Model


4. Calibration

5. Green transition

6. Conclusion

23/26

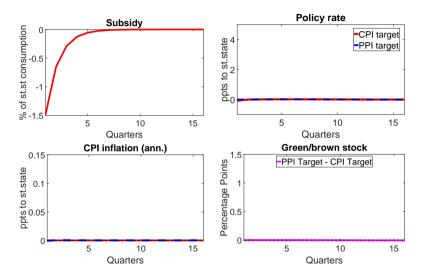
Green transition under Taylor rule: CPI v PPI target

6. Conclusion

Green transition of households

- Emission price goes up, shifting HH investment towards green durables
- ▶ Inflationary impact in EA \approx 30 basis points during 2027–2030

Monetary policy tradeoff: price stability v supporting green transition


➤ Strict inflation targeting: looking through 5 basis points inflation yields additional 30 basis points in green/brown stock

Under Taylor rule monetary policy effectively supports green transition

- ▶ Why? Taylor rule provides lots of accommodation (compared to strict target)
- ▶ Inflationary impact almost the same for CPI or PPI target

1. Introduction 2. Preliminaries 3. Model 4. Calibration 5. Green transition 6. Conclusion 25/26

Green transition under **Subsidy**: CPI v PPI target

