Causal Analysis with Unit-Level Event Studies: Application to the Child Penalty

Dmitry Arkhangelsky, Kazuharu Yanagimoto, & Tom Zohar

CEMFI

15-th Research Workshop, BdE – CEMFI November 13, 2024

Starting point

Event-study regressions

$$Y_{i,t} = \text{fixed effects} + \sum_{h \geq 0} \tau_h \mathbf{1}\{t - E_i = h\} + \text{error}$$

are extremely common in economics

- ▶ Most popular tool in applied micro (Currie et al., '20, Goldsmith-Pinkham, '24)
- ightharpoonup Can view $\hat{\tau}_h$ as an impulse response function of horizon h
 - Which sometimes can be interpreted causally
- In many applications τ_h is not the final goal
 - Instead, want to understand how it **reacts to policies**, i.e., conduct causal analysis

Child penalties

- ▶ Use **child penalties** (CPs) introduced in Kleven et al. '19 as a running example
 - \triangleright Outcomes $Y_{i,t}$ are **labor earnings**, event E_i is the **birth of the first child**
 - ▶ We will use Dutch administrative data for this
 - ightharpoonup Can debate about the causal interpretation of τ_h
 - Not the point of this paper
- Want to learn how CPs react to changes in childcare policies
 - Use the reform in the Netherlands in 2005, which expanded access to childcare
 - But first, we need to define what we mean by CP measurement
- Current empirical literature approaches this question in an ad hoc way
 - Typically interacting event times with policy indicators
 - ▶ Raises econometric problems (Goldsmith-Pinkham et al., '24)
 - ▶ But more importantly, neither transparent nor flexible

This paper

- Methodology to study how policy changes affect individual reactions to events
 - Two separate steps: measurement and policy analysis
- Measurement: construct **unit-level** event studies, i.e., $\hat{\tau}_{i,h}$
 - Borrowing methods from linear panel data literature
- Policy analysis: use $\hat{\tau}_{i,h}$ as a LHS outcome in policy regressions
 - Focusing on situations where policy variation is not experimental
 - ► And varies at a group level, e.g., geographic

What do we achieve

- Introduce a coherent framework that improves over current ad hoc approaches
- Our methodology is transparent and modular
 - ▶ Users can change measurement and policy analysis steps separately
 - Unlike the current practice
- ▶ Policy evaluation step can use any innovation from the methodological literature
 - ▶ E.g., new diff-in-diff or synthetic control methods, binscatter, double ML, etc.
- Demonstrate advantages of the new strategy using the CP application

Model

▶ The observed outcomes follow a strictly exogenous linear panel data model:

$$\begin{split} Y_{i,t} &= \alpha_i + \lambda_{g(i),t}(X_i) + \sum_{h \geq -h_0} \tau_{i,e,h} \mathbf{1} \{ E_i = e \} \mathbf{1} \{ t = e + h \} + \varepsilon_{i,t}, \\ \mathbb{E}_{g(i)}[\varepsilon_{i,t}|E_i,X_i,\alpha_i,\tau_i] &= 0 \end{split}$$

where X_i are unit-level covariates, and g(i) is the group unit i belongs to

- Assume $\varepsilon_{i,t}$ are conditionally independent across units within the group
- In our application:
 - $ightharpoonup X_i$ is gender, birth cohort, and education level
 - ightharpoonup g(i) is the municipality individual i resides in

Discussion

- ▶ The object of interest $\tau_{i,e,h}$ varies over three dimensions:
 - \triangleright i heterogeneity, e state dependence, and h dynamics
 - Only have a chance to study $\tau_{i,h} := \tau_{i,E_i,h}$, other effects cannot be recovered
 - Complicated object, more on this later
- ightharpoonup Special role of g(i) will become apparent in policy analysis
 - Policy variation will be at this level
- Model is over-identified and can be tested
 - Using standard pretrends tests as in the event study regressions

Estimation

- **E**stimation is done using OLS, treating $\tau_{i,h}$ as parameters
 - Analogous to the proposal in Borusyak et al. '24 and Arellano & Bonhomme '12
 - ► The model is over-identified, so other methods are possible
 - ▶ E.g., can restrict comparisons to individuals with similar event times
 - ▶ Or consider different ways of adjusting for α_i
- The resulting estimator satisfies:

$$\hat{ au}_{i,h} = au_{i,h} + \text{measurement error} + \text{estimation error},$$

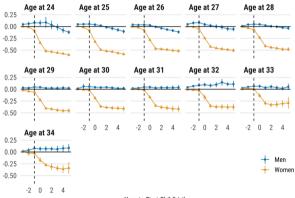
where $\mathbb{E}_{g(i)}[\text{errors}|E_i, X_i, \alpha_i, \boldsymbol{\tau}_i] = 0$

- Only the estimation error vanishes with the sample size
- Estimation errors are correlated within the group (will be important later)

Back to CPs

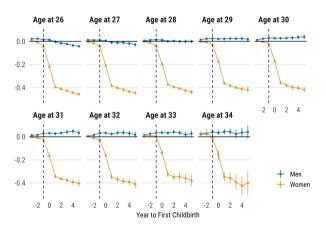
- \triangleright Report average $\hat{\tau}_{i,h}$, conditioning on gender, age at first birth and education
 - Normalizing by average earnings of non-parents, i.e. $\mathbb{E}_{g(i)}[\alpha_i + \lambda_{g(i),t}(X_i)|E_i,X_i]$
- ► Three education categories
 - High school, vocational education, and bachelor's degree
- ▶ Look at averages to understand if the measurement model is reasonable
 - ► Correct model ⇒ no effects prior to the childbirth
 - At least several years before

Average results: High school

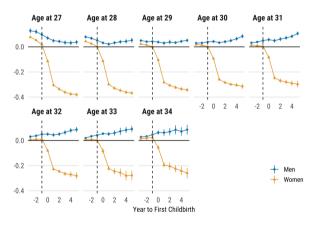


Year to First Childbirth

Average results: Vocational



Average results: Bachelor



Discussion

- ▶ The model is more reasonable for women than men
 - ► Though it works quite well for men as well
- The model is unreasonable for younger individuals with a bachelor's degree
 - ▶ The effects three years before the event are substantial
- Overall works surprisingly well on average
 - Perhaps yearly frequency helps; perhaps there is not that much selection
- In what follows, restrict the sample to subgroups where the model works well

Policy Analysis

Causal framework

- lacktriangle Consider policies that vary at the group level, denote them W_g
- ightharpoonup View $au_{i,h}$ as the realization of the underlying potential outcome

$$\tau_{i,h} = \tau_{i,E_i(W_{g(i)}),h}(W_{g(i)})$$

- Two different effects of the policy
 - ▶ Direct effect, i.e., $\tau_{i,e,h}(w)$ as a function of w
 - Indirect effect through the event times $E_i(w)$
- ► Separating between the two is impossible in general (mediation analysis)
 - ▶ Additional problem: construct $\hat{\tau}_{i,h}$ for units with certain value of E_i
 - Introduces a sample selection problem

Additional details

- Assume away the indirect effect, i.e., $E_i(w)$ does not vary with w
 - Automatically addresses the sample selection problem
 - Empirically is reasonable in our application
- ▶ If view W_{σ} as random \Rightarrow can use any cross-sectional method
 - ▶ E.g., IV, Double ML, or any other modern evaluation method
 - \triangleright Simply using $\hat{\tau}_{i,h}$ as the LHS variable
 - ▶ The error in $\hat{\tau}_{i,h}$ is mean-zero at g level
- ▶ But W_g is not random in our application

Policy intervention in the Netherlands

- ▶ Before 2005:
 - Childcare services were subsidized at different rates by municipalities
 - ▶ Heterogeneous accountabilities of childcare services across municipalities
- ► After 2005:
 - Services are unified and subsidized at the same rate by the central government
 - Accountabilities are improved

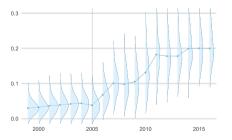


Figure: Distribution of the childcare index

Dynamics

- Expansion is not random
 - ▶ But there is a variation over time, i.e., $W_g = (W_{g,1}, \dots, W_{g,T})$
 - ► Will use this variation
- Assume limited dynamics

$$\tau_{i,h}(W_g) = \tau_{i,h}(W_{g,E_i-1}, W_{g,E_i+h}),$$

where h > 0

- Only a small part of the expansion path matters
- ▶ No effect for h < 0 (test this)
- Seems to be reasonable in the application but can be more flexible

Addressing confounding

- \triangleright W_{σ} is not random
 - ► Childcare provision expansion can be systematically related to underlying CPs
- ▶ Use variation across event times + two-way model:

$$\tau_{i,h} = \alpha_{E_i}(X_i) + \beta_{g(i)}(X_i) + \tau_{-1}(X_i)W_{g,E_i-1} + \tau_{cont}(X_i)W_{g,E_i+h} + \nu_{i,h}, \mathbb{E}[\nu_{i,h}|X_i, E_i, W_{g(i)}] = 0,$$

which relies on cross-sectional comparisons

- To utilize the time-series dimension, can compare across horizons
- ▶ The error $\nu_{i,h}$ is **not** mean-zero at the cluster level conditional on E_i, X_i
 - ▶ But it is unrelated to the policy path $W_{g(i)}$

Implementation

- Use constructed $\hat{\tau}_{i,h}$ (or rather its normalized version)
 - ► For a particular subsample of ages
- ► Final regression:

$$\hat{\tau}_{i,h} = \alpha_{E_i}(X_i) + \beta_{g(i)}(X_i) + \delta_{-1}(X_i)W_{g,E_i-1} + \delta_{cont}(X_i)W_{g,E_i+h} + \text{error}$$

where the error has three components:

- 1. Estimation error from the measurement equation (correlated at the group level)
- 2. Measurement error from idiosyncratic errors $\varepsilon_{i,t}$ (independent across units)
- 3. Policy evaluation error (correlated at the group level)
- ▶ To do inference use clustering at g(i) level
 - Addressing all the errors we have above

Preliminary results

- ► First step: test dynamics + the two way model
 - ▶ Use $\hat{\tau}_{i,h}$ for negative h
- ightharpoonup Find null effects \Rightarrow in line with our assumptions

	-3	-2	-1		-3	-2	-1
: 2				cci 3	0.072	-0.047	0.062
cci_3	-0.025	-0.022	-0.008	_	(0.094)	(0.134)	(0.153)
	(0.079)	(0.079)	(0.090)	cci_2	0.024	0.000	-0.053
cci_2	0.114	0.106	0.085	661_2	(0.101)	(0.113)	(0.139)
	(0.072)	(0.085)	(0.100)	ani 1		,	,
cci_1	0.018	0.036	0.068	cci_1	-0.006	0.049	-0.001
	(0.061)	(0.076)	(0.089)		(0.103)	(0.112)	(0.137)

Figure: Women, Vocational training

Figure: Women, Bachelor degree

Policy results, I

- ► Start with the effect of $W_{g(i),E_i-1}$
 - ▶ I.e., the policy level the year **before** the childbirth

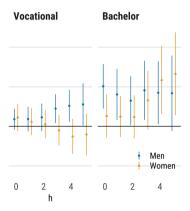


Figure: $\hat{\delta}_{-1}(X_i)$, municipal-level s.e.

Policy results, II

- ► Continue with the effect of $W_{g(i),E_i+h}$
 - ▶ I.e., the contemporaneous effect of the policy

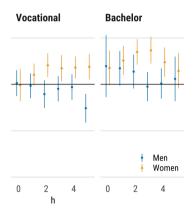


Figure: $\hat{\delta}_{cont}(X_i)$, municipal-level s.e.

Discussion

- Results are preliminary; still thinking about the mechanisms
- Few initial thoughts:
 - Results for the vocational group are intriguing
 - Opposite movement for men and women
 - Large contemporaneous effects for h = 3, 4
 - When we expect the childcare to matter most
- ▶ Will explore more to think about the effects of second children, type of occupation
 - ► All feasible within our framework

What have we done?

- New framework with two crucial steps:
 - Measurement and policy analysis
 - Can be applied very broadly
- ► Two steps rely on conceptually different assumptions
 - ► These assumptions are testable
- ► Final estimation procedure is linear ⇒ can be done in one step.
 - ▶ But this step is very specific and depends on the intermediate methods
 - ▶ It is much more transparent to report and validate each step separately
- ▶ Inference is not a problem \Rightarrow simply use group-level clustered s.e.

Going forward

- View the separation of measurement and policy analysis as a general principle
 - Applicable to many empirical problems in economics
 - Generating insights that are harder to get using conventional tools
- Our particular approach can be generalized
 - More complicated measurement models (perhaps nonlinear)
 - Other policy evaluation assumptions, e.g., synthetic control type methods
- Individual-level measurement can be used more broadly
 - ▶ To think about variance decompositions or empirical Bayes computations
 - Need additional assumptions on the measurement step