Firm Export Dynamics in Interdependent Markets

Alonso Alfaro-Ureña
Juanma Castro-Vincenzi
Sebastián Fanelli
Eduardo Morales

May 19, 2023

The views expressed herein are solely those of the authors and are not necessarily those of BCCR.

In(ter)dependent Decisions Within and Across Countries

- Large literature on within-country path dependence in firm exports:

$$
\text { causal impact of } y_{i j t-1} \text { on } y_{i j t} \text {. }
$$

- This literature assumes firm export choices are independent across countries.
- Recent empirical evidence on cross-country complementarities in firm exports:

$$
\text { causal impact of } y_{i j t} \text { on } y_{i j^{\prime} t} \text {. }
$$

- Are cross-country complementarities quantitatively important?

Cross-Country Complementarities \& Trade Policy

- Bilateral preferential trade agreements (PTAs) as gateways to wider markets.
"By consolidating our relationship with Singapore, [this agreement] gives us the possibility to increase our trade flows with other Asian countries."

Minister of Economy of Costa Rica (during legislative approval of the 2013 PTA between Costa Rica and Singapore)

- Deep PTAs create complementarities between members and, thus, generate positive third-market effects (counteracting the trade diversion effect).
"Third-country effect could be [affected] by regulatory divergence. If the UK's regulations divert over time from the EU's, trade costs would rise for third countries due to production process adjustment costs and potential duplication of proofs of compliance."

UNCTAD ("Brexit Beyond Tariffs")

DATA

Data Sources

- Sample period: 2005-2015.
- Sample: all non-foreign-owned manufacturing firms located in Costa Rica.
- Data sources:
- Customs: revenue at the country-firm-year level.
- Corporate income tax returns: sector (four-digit ISIC) and domestic sales.
- Other sources of data
- CEPII: trade flows (by sector) and geographical distance between countries.
- Barari and Kim (2020): tariffs (by sector) on imports from Costa Rica.
- Ethnologue: linguistic distance between countries.
- Hoffman, Osnago and Ruta (2017): depth of preferential trade agreements.

REDUCED-FORM EVIDENCE

Correlation in Firm Export Participation Decisions

Outcome Variable:	Dummy (1)	Positive (2)	Exports in a D (3)	on and Year (4)
$Y_{i j t}^{g}$	$\begin{aligned} & 0.2043^{a} \\ & (0.0086) \end{aligned}$			$\begin{gathered} 0.1809^{a} \\ (0.0078) \end{gathered}$
$Y_{i j t}^{\prime}$		$\begin{gathered} 0.1160^{a} \\ (0.0066) \end{gathered}$		$\begin{gathered} 0.0720^{a} \\ (0.0054) \end{gathered}$
$Y_{i j t}^{a}$			$\begin{gathered} 0.0473^{a} \\ (0.0026) \end{gathered}$	$\begin{gathered} 0.0207^{a} \\ (0.0018) \end{gathered}$
Observations	3,859,618			

Note: ${ }^{a}$ denotes 1% significance. Standard errors clustered by firm. All specifications control for firm-year and sector-country-year fixed effects.

- Slightly larger estimates with no firm-year or sector-country-year fixed effects.
- Smaller estimates when using a laxer definition of cross-country closeness.
- Likely OVB due to cross-country correlation in firm-specific export shifters.

EMPIRICAL MODEL

Potential Export Profits

- Potential (static) export profits of firm i in country j at period t :

$$
\pi_{i j t}=\Pi_{i j t}-f_{i j t}-\left(1-y_{i j t-1}\right) s_{j t},
$$

with

$$
\begin{aligned}
\Pi_{i j t} & =\text { potential export gross profits } \\
f_{i j t} & =\text { fixed export costs } \\
s_{j t} & =\text { sunk export costs. }
\end{aligned}
$$

Potential Export Gross Profits and Export Revenues

$$
\pi_{i j t}=\Pi_{i j t}-f_{i j t}-\left(1-y_{i j t-1}\right) s_{j t}
$$

- Microfounded potential export gross profits:

$$
\Pi_{i j t}=\eta^{-1} r_{i j t} \quad \text { and } \quad r_{i j t}=\left[\frac{\eta}{\eta-1} \frac{\tau_{i j t} w_{i t}}{P_{j t}}\right]^{1-\eta} Y_{j t}
$$

- Revenue impact of "iceberg" trade costs:

$$
\left(\tau_{i j t}\right)^{1-\eta}=\exp \left(\xi_{y} y_{i j t-1}+\xi_{s}+\xi_{j t}+\xi_{a} \ln \left(a_{s j t}\right)+\xi_{w} \ln \left(w_{i t}\right)\right), \quad \xi_{y} \geq 0
$$

- Thus, with

$$
r_{i j t}=\exp \left(\alpha_{y} y_{i j t-1}+\alpha_{s}+\alpha_{j t}+\alpha_{a} \ln \left(a_{s j t}\right)+\alpha_{r} \ln \left(r_{i h t}\right)\right)
$$

- Parametric restrictions on the time-series process of $\left\{\alpha_{j t}, a_{s j t}, r_{i h t}\right\}$.

Fixed Export Costs

$$
\pi_{i j t}=\Pi_{i j t}-f_{i j t}-\left(1-y_{i j t-1}\right) s_{j t} .
$$

- Fixed exports costs are the sum of four terms:

$$
f_{i j t}=g_{j t}-e g_{i j t}+\nu_{i j t}+\omega_{i j t} .
$$

Fixed Export Costs - Gravity Term

$$
\begin{aligned}
\pi_{i j t} & =\Pi_{i j t}-f_{i j t}-\left(1-y_{i j t-1}\right) s_{j t} \\
f_{i j t} & =g_{j t}-e g_{i j t}+\nu_{i j t}+\omega_{i j t}
\end{aligned}
$$

- First term depends on distance between h and j :

$$
g_{j t}=\gamma_{0}^{F}+\gamma_{g}^{F} n_{h j}^{g}+\gamma_{l}^{F} n_{h j}^{\prime}+\gamma_{a}^{F} n_{h j t}^{a}
$$

with

$$
\begin{aligned}
n_{h j}^{g} & =\text { geographical distance between } h \text { and } j \\
n_{h j}^{\prime} & =\text { linguistic distance between } h \text { and } j \\
n_{h j t}^{a} & =\text { regulatory distance between } h \text { and } j
\end{aligned}
$$

Fixed Export Costs - Extended Gravity Term

$$
\begin{aligned}
\pi_{i j t} & =\Pi_{i j t}-f_{i j t}-\left(1-y_{i j t-1}\right) s_{j t} \\
f_{i j t} & =g_{j t}-e g_{i j t}+\nu_{i j t}+\omega_{i j t}
\end{aligned}
$$

- Second term accounts for complementarities across destinations:

$$
e g_{i j t}=\sum_{j^{\prime} \neq j} y_{i j^{\prime} t} \underbrace{c_{j j^{\prime}}^{g}+c_{j j^{\prime}}^{\prime}+c_{j j^{\prime} t}^{a}}_{c_{i j^{\prime} t}}),
$$

with, e.g.,

$$
c_{j j^{\prime}}^{g}=\gamma_{g}^{E} \exp \left(-\kappa_{g}^{E} n_{j j^{\prime}}^{g}\right)
$$

and

$$
n_{j j^{\prime}}^{g}=\text { geographical distance between } j \text { and } j^{\prime}
$$

Fixed Export Costs - Normal Shock

$$
\begin{aligned}
\pi_{i j t} & =\Pi_{i j t}-f_{i j t}-\left(1-y_{i j t-1}\right) s_{j t} \\
f_{i j t} & =g_{j t}-e g_{i j t}+\nu_{i j t}+\omega_{i j t}
\end{aligned}
$$

- Third term is unobserved and iid across firms and years, with distribution

$$
\nu_{i j t} \sim \mathbb{N}\left(0, \sigma_{\nu}^{2}\right)
$$

and cross-country correlation coefficient

$$
\operatorname{corr}\left(\nu_{i j t}, \nu_{i j^{\prime} t}\right)=\rho_{j j^{\prime}}^{g}+\rho_{j j^{\prime}}^{\prime}+\rho_{j j^{\prime}}^{\mathrm{a}} t
$$

with, e.g.,

$$
\rho_{i j^{\prime}}^{g}=\gamma_{g}^{N} \exp \left(-\kappa_{g}^{N} n_{j j^{\prime}}^{g}\right)
$$

Fixed Export Costs - Exit Shock

$$
\begin{aligned}
\pi_{i j t} & =\Pi_{i j t}-f_{i j t}-\left(1-y_{i j t-1}\right) s_{j t} \\
f_{i j t} & =g_{j t}-e g_{i j t}+\nu_{i j t}+\omega_{i j t}
\end{aligned}
$$

- Fourth term is unobserved and iid across firms, countries and years, with

$$
P\left(\omega_{i j t}=\omega\right)=\left\{\begin{array}{cc}
p & \text { if } \omega=\underline{\omega} \\
1-p & \text { if } \omega=\bar{\omega}
\end{array}\right.
$$

In our implementation,

$$
\underline{\omega}=0 \quad \text { and } \quad \bar{\omega}=\infty .
$$

Sunk Export Costs

$$
\pi_{i j t}=\Pi_{i j t}-f_{i j t}-\left(1-y_{i j t-1}\right) s_{j t}
$$

- Sunk costs only depend on distance between h and j :

$$
s_{j t}=\gamma_{0}^{S}+\gamma_{g}^{S} n_{h j}^{g}+\gamma_{l}^{S} n_{h j}^{\prime}+\gamma_{a}^{S} n_{h j t}^{a} .
$$

Optimal Export Destinations, Information Set, and Beliefs

- Among all possible bundles of J destinations, firms choose in every period the bundle maximizing the expected discounted infinite sum of profits.
- Firm i has perfect information at t on all current and future payoff-relevant variables expect for

$$
\left\{\left(\omega_{i 1 t^{\prime}}, \ldots, \omega_{i J t^{\prime}}\right)\right\}_{t^{\prime}>t}
$$

- Firms' expectations are rational.
- For reasonable J, common solution algorithms computationally infeasible:
(1) Discrete Choice Set of Cardinality 2^{J}
(2) Integration Over Discrete Random Vector with 2^{J} Points of Support
- State Space With $2^{2 J}$ Points

VISUAL REPRESENTATION OF SOLUTION ALGORITHM

Example - Setting

> Two Countries (A and B) and Three Periods

Example - Step 1 of Algorithm - Upper Bound

Compute Upper-Bound Policy Function

Assuming that in market B...

Assuming that in market $\mathrm{A} .$. .

Example - Step 1 of Algorithm - Upper Bound

Update Constant Upper Bounds

Assuming that in market $\mathrm{B} \ldots$
\qquad

Assuming that in market A...
Update

Example - Step 1 of Algorithm - Upper Bound

Update Upper-Bound Policy Function

Assuming that in market A...

Example - Step 1 of Algorithm - Upper Bound

Update Constant Upper Bounds

Assuming that in market B...

Update

Assuming that in market A...

Example - Step 1 of Algorithm - Upper Bound

(Try to) Update Upper-Bound Policy Function:

Example - Step 1 of Algorithm - Upper Bound

Upper-Bound Policy Function After Convergence:

Example - Step 1 of Algorithm - Lower Bound

Compute Lower-Bound Policy Function

Market A

Assuming that in market B...

Assuming that in market A...

Example - Step 1 of Algorithm - Lower Bound

(Try to) Update Constant Lower Bounds:

Assuming that in market B...
——•——。

Assuming that in market $\mathrm{A} . .$.

Example - Step 1 of Algorithm - Lower Bound

Lower-Bound Policy Function After Convergence:

Example - Step 1 of Algorithm - Evaluate Bounds

Evaluate Upper-Bound Policy Function at Path of Interest

$\left(\bar{y}_{A 1}, \bar{y}_{A 2}, \bar{y}_{A 3}\right)=(0,1,1)$

$\left(\bar{y}_{B 1}, \bar{y}_{B 2}, \bar{y}_{B 3}\right)=(0,0,1)$

Example - Step 1 of Algorithm - Evaluate Bounds

Evaluate Lower-Bound Policy Function at Path of Interest

Market A
Market B

$$
\left(\underline{y}_{A 1}, \underline{y}_{A 2}, \underline{y}_{A 3}\right)=(0,0,0)
$$

$$
\left(\underline{y}_{B 1}, \underline{y}_{B 2}, \underline{y}_{B 3}\right)=(0,0,0)
$$

Example - Step 1 of Algorithm - Combine Bounds

- Compare upper and lower bounds at path of interest in market A :

$$
\begin{aligned}
\left(\bar{y}_{A 1}, \bar{y}_{A 2}, \bar{y}_{A 3}\right) & =(0,1,1), \\
\left(\underline{y}_{A 1}, \underline{y}_{A 2}, \underline{y}_{A 3}\right) & =(0,0,0) .
\end{aligned}
$$

- Compare upper and lower bounds at path of interest in market B :

$$
\begin{aligned}
\left(\bar{y}_{B 1}, \bar{y}_{B 2}, \bar{y}_{B 3}\right) & =(0,0,1), \\
\left(\underline{y}_{B 1}, \underline{y}_{B 2}, \underline{y}_{B 3}\right) & =(0,0,0) .
\end{aligned}
$$

- Bounds coincide at $t=1$; we found the solution at $t=1$:

$$
\left(y_{A 1}, y_{B 1}\right)=(0,0) .
$$

- Bounds (in A) do not coincide at $t=2$; in Step 2, refine bounds for $t \geq 2$.

ESTIMATION RESULTS

\% Reduction in Fixed Costs From to Closest Neighbor

$$
\left(\max _{j^{\prime} \neq j}\left\{c_{j j^{\prime}}^{g}+c_{j j^{\prime}}^{l}+c_{j j^{\prime} t}^{a}\right\} / g_{j t}\right) \times 100 \%
$$

Num. Neighbors Reduce Fixed Costs in More Than 5\%

$$
\sum_{j^{\prime} \neq j} \mathbb{1}\left\{\left(c_{j^{\prime}}^{g}+c_{i j^{\prime}}^{\prime}+c_{j^{\prime} t}^{\prime}\right) / g_{j t} \geq 5 \%\right\}
$$

Correlation in Unobserved Fixed Costs: Germany

MODEL PROPERTIES

Steady-State Export Probabilities

- Export probabilities before shocks of interest.

Effect of Increase in Export Potential in France

- Relative change in export probabilities due to announcement at $t=1$ of a 10% permanent increase in potential export revenues in France at $t=3$.

QUANTIFICATION

Impact of Eliminating Cross-country Complementarities

	Sources of Complementarities Maintained:			
Percentage Reduction in:	None	Geographic Proximity	Linguistic Proximity	Common Deep PTA
Number of Export Events:	11.78%	6.57%	2.35%	2.57%
Export Revenues:	5.14%	2.74%	0.86%	1.58%

Percentage Increase in Export Revenues

Impact of Regulatory Differences Due to Brexit

Countries:	Percentage Reduction in:	
	Export Events	Export Revenues (a): 2017-2020
	-1.38%	-0.52%
United Kingdom	-0.19%	-0.07%
European Union		
In particular:	-0.58%	-0.23%
Belgium	-0.19%	-0.09%
Ireland	Panel (b): 2021-2030	
	-4.13%	-3.81%
United Kingdom	-0.46%	-0.45%
European Union		
In particular:	-1.66%	-1.96%
Belgium	-0.80%	-0.87%
Ireland		

Impact of Regulatory Differences Due to Brexit

Countries:	Percentage Reduction in:	
	Export Events	Panel (a): 2017-2020
Export Revenues		
United Kingdom	-1.38%	-0.52%
European Union	-0.19%	-0.07%
In particular:		
Belgium	-0.58%	-0.23%
Ireland	-0.19%	-0.09%
	Panel (b): 2021-2030	
United Kingdom	-4.13%	-3.81%
European Union	-0.46%	-0.45%
In particular:		
Belgium	-1.66%	-1.96%
Ireland	-0.80%	-0.87%

Impact of Regulatory Differences Due to Brexit

Countries:	Percentage Reduction in:	
	Export Events	Panel (a): 2017-2020
Export Revenues		
United Kingdom	-1.38%	-0.52%
European Union	-0.19%	-0.07%
In particular:		
Belgium	-0.58%	-0.23%
Ireland	-0.19%	-0.09%
	Panel (b): 2021-2030	
United Kingdom	-4.13%	-3.81%
European Union	-0.46%	-0.45%
In particular:		
Belgium	-1.66%	-1.96%
Ireland	-0.80%	-0.87%

Impact of Costa Rica Becoming a CPTPP Member

Countries:	Model With Cross-Country Complementarities				Model Without Cross-Country Complementarities			
	With Tariff Changes		Without Tariff Changes		With Tariff Changes		Without Tariff Changes	
	Export Events	Export Revenues						
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)

Panel (a): If Costa Rica Joins the CPTPP

Members	18.30%	28.01%	5.67%	2.33%	15.56%	25.73%	4.80%	1.92%
Others	0.24%	0.30%	0.20%	0.28%	0%	0%	0%	0%
United States	0.17%	0.08%	0.13%	0.06%	0%	0%	0%	0%

Panel (b): If Costa Rica Joins the CPTPP (with the US as member)

Members	22.88%	40.10%	6.49%	3.13%	15.56%	25.73%	4.80%	1.92%
Others	0.24%	0.32%	0.21%	0.30%	0%	0%	0%	0%
United States	10.03%	15.67%	6.02%	2.82%	5.63%	8.43%	4.42%	1.46%

Impact of Costa Rica Becoming a CPTPP Member

Countries:	Model With Cross-Country Complementarities				Model Without Cross-Country Complementarities			
	With Tariff Changes		Without Tariff Changes		With Tariff Changes		Without Tariff Changes	
	Export Events	Export Revenues						
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)

Panel (a): If Costa Rica Joins the CPTPP

Members	18.30%	28.01%	5.67%	2.33%	15.56%	25.73%	4.80%	1.92%
Others	0.24%	0.30%	0.20%	0.28%	0%	0%	0%	0%
United States	0.17%	0.08%	0.13%	0.06%	0%	0%	0%	0%

Panel (b): If Costa Rica Joins the CPTPP (with the US as member)

Members	22.88%	40.10%	6.49%	3.13%	15.56%	25.73%	4.80%	1.92%
Others	0.24%	0.32%	0.21%	0.30%	0%	0%	0%	0%
United States	10.03%	15.67%	6.02%	2.82%	5.63%	8.43%	4.42%	1.46%

Impact of Costa Rica Becoming a CPTPP Member

Countries:	Model With Cross-Country Complementarities				Model Without Cross-Country Complementarities			
	With Tariff Changes		Without Tariff Changes		With Tariff Changes		Without Tariff Changes	
	Export Events	Export Revenues						
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)

Panel (a): If Costa Rica Joins the CPTPP

Members	18.30%	28.01%	5.67%	2.33%	15.56%	25.73%	4.80%	1.92%
Others	0.24%	0.30%	0.20%	0.28%	0%	0%	0%	0%
United States	0.17%	0.08%	0.13%	0.06%	0%	0%	0%	0%

Panel (b): If Costa Rica Joins the CPTPP (with the US as member)

Members	22.88%	40.10%	6.49%	3.13%	15.56%	25.73%	4.80%	1.92%
Others	0.24%	0.32%	0.21%	0.30%	0%	0%	0%	0%
United States	10.03%	15.67%	6.02%	2.82%	5.63%	8.43%	4.42%	1.46%

CONCLUSION

Conclusion

- Partial-equilibrium dynamic model with cross-country complementarities.
- Quantify importance of cross-country complementarities.
- Novel algorithm to solve single-agent dynamic discrete-choice problems with cross-choice complementarities.
- A step in a research agenda with many open questions:
- Additional departures of perfect-foresight assumption?
- Alternative forms of cross-country interdependencies? Due to information? In variable trade costs? Cross-country substitutabilities in the short-run?
- General-equilibrium effects in the presence of cross-country complementarities?

THANK YOU!

EXTRA SLIDES

EXTRA SLIDES:
 I. SUMMARY STATISTICS

Summary Statistics

- The dataset contains 7203 manufacturing firms.
- Approximately 13.4% of all sample firms export at least once during sample period, reaching to a total of 129 destinations.
- On an average year, ...
- ... 8.6% of firms are exporters;
- ... 60% of exporters export to more than one destination;
- ... 32% of exporters export to more than two destinations;
- ... 18% of exporters export to more than five destinations.
- Average and median export sales by firm, market, and year are USD 288,000 and USD 33,000, respectively.
- Sectors with most exporting events are:
- Manufacturing of Other Food Products;
- Manufacturing of Plastic Products; and,
- Processing and Preserving Of Fruit and Vegetables.

Summary Statistics

Table: Aggregate Statistics

Years	Total Exports	Number of Exporters	Number of Destinations
2005	$262,549.6$	400	95
2006	$303,344.6$	415	96
2007	$332,929.1$	422	91
2008	$371,202.9$	419	91
2009	$328,435.2$	438	87
2010	$347,235.1$	432	96
2011	$431,820.7$	456	91
2012	$479,806.0$	459	90
2013	$450,472.3$	437	84
2014	$494,083.5$	436	84
2015	$479,485.1$	395	90

Notes: Total Exports are reported in thousands of 2013 dollars

Summary Statistics

Table: Firm-level Statistics

Years	Domestic Sales (All Firms)		Domestic Sales (Exporters)		Exports		Number of Destinations (Exporters)		
	Average	Median	Average	Median	Average	Median	Average	Median	95th/99th
2005	684.4	119.4	3,312.0	822.9	656.4	63.4	3.38	2	10/17
2006	695.4	118.4	3,553.2	772.6	731.0	63.1	3.28	2	10/18
2007	782.4	131.7	3,864.6	904.3	788.9	63.7	3.35	2	10/16
2008	889.6	147.0	4,693.6	1,160.0	885.9	66.4	3.30	2	9/18
2009	839.1	126.4	4,682.5	1,033.4	749.9	43.4	3.19	2	10/18
2010	937.2	139.2	5,256.7	1,161.1	803.8	56.7	3.28	2	9/18
2011	1,031.9	147.4	5,601.4	1,201.7	947.0	56.3	3.25	2	9/19
2012	1,067.5	154.1	5,663.2	1,091.7	1,045.3	65.9	3.22	2	9/19
2013	1,098.9	158.1	5,922.9	1,178.6	1,030.8	78.2	3.35	2	10/17
2014	1,043.8	147.4	5,793.3	1,208.3	1,133.2	59.7	3.28	2	10/18
2015	1,166.0	155.8	6,809.5	1,566.5	1,213.9	80.5	3.62	2	11/20

Notes: Domestic sales and Exports are reported in thousands of 2013 dollars.

Export Activity by Destination

Number of firm-year observations with positive exports in 2005-2015

Export Activity by Destination

Volume of exports in 2005-2015 (in thousands of 2013 dollars)

Export Activity by Destination - Relative to the US

Number of firm-year obs. with positive exports (relative to the US) in 2005-2015

Export Activity by Destination - Relative to the US

Volume of exports (relative to the US) in 2005-2015.

Within-Market Distribution of Export Sales

Table: Distribution of Export Sales in Several Markets

Country	Average		Percentiles				
		5	25	50	75	95	99
United States	597.6	0.4	5.0	28.1	227.4	$3,477.9$	$9,615.9$
Panama	271.4	1.2	7.4	32.5	138.6	$1,013.6$	$5,022.9$
Germany	350.8	0.3	6.3	54.0	419.5	$1,844.9$	$3,015.5$
Nicaragua	209.8	1.2	8.7	37.6	134.5	879.5	$3,013.9$
Mexico	295.4	0.4	9.0	51.0	284.2	$1,224.8$	$2,637.1$
China	128.8	0.2	3.9	21.8	68.9	713.7	$1,584.0$

Notes: all numbers in this table are reported in thousands of 2013 dollars.

EXTRA SLIDES:
 II. ADDITIONAL DETAILS ON GEOGRAPHICAL DISTANCES

Histogram of Bilateral Geographical Distances

All distances are in thousands of kilometers.

Bilateral Geographical Distances - From Costa Rica

All distances are in thousands of kilometers.

Bilateral Geographical Distances - From the US

All distances are in thousands of kilometers.

Bilateral Geographical Distances - From France

All distances are in thousands of kilometers.

Bilateral Geographical Distances - From China

All distances are in thousands of kilometers.

EXTRA SLIDES:
 III. ADDITIONAL DETAILS ON LINGUISTIC DISTANCES

Measure of Linguistic Distance

- Assume there are only two languages in the world, k_{1} and k_{2}.
- Probability two individuals i and i^{\prime} randomly selected from countries j and j^{\prime}, respectively, speak a common language is:

$$
\begin{gathered}
P\left(\left(\left\{i \text { speaks } k_{1}\right\} \cap\left\{i^{\prime} \text { speaks } k_{1}\right\}\right) \cup\left(\left\{i \text { speaks } k_{2}\right\} \cap\left\{i^{\prime} \text { speaks } k_{2}\right\}\right)\right) \\
=
\end{gathered}
$$

$$
\begin{aligned}
& P\left(\left\{i \text { speaks } k_{1}\right\} \cap\left\{i^{\prime} \text { speaks } k_{1}\right\}\right)+P\left(\left\{i \text { speaks } k_{2}\right\} \cap\left\{i^{\prime} \text { speaks } k_{2}\right\}\right)- \\
& P\left(\left(\left\{i \text { speaks } k_{1}\right\} \cap\left\{i^{\prime} \text { speaks } k_{1}\right\}\right) \cap\left(\left\{i \text { speaks } k_{2}\right\} \cap\left\{i^{\prime} \text { speaks } k_{2}\right\}\right)\right) .
\end{aligned}
$$

- As i and i^{\prime} were chosen randomly in their countries, for $k=\left\{k_{1}, k_{2}\right\}$, it holds

$$
\begin{aligned}
P\left(\{i \text { speaks } k\} \cap\left\{i^{\prime} \text { speaks } k\right\}\right) & =P(\{i \text { speaks } k\}) P\left(\left\{i^{\prime} \text { speaks } k\right\}\right) \\
& =s_{j k} s_{j^{\prime} k} .
\end{aligned}
$$

Measure of Linguistic Distance

- Thus, we can write linguistic distance between j and j^{\prime} as

$$
\begin{gathered}
1-P\left(\left(\left\{i \text { speaks } k_{1}\right\} \cap\left\{i^{\prime} \text { speaks } k_{1}\right\}\right) \cup\left(\left\{i \text { speaks } k_{2}\right\} \cap\left\{i^{\prime} \text { speaks } k_{2}\right\}\right)\right) \\
= \\
1-s_{j k_{1}} s_{j^{\prime} k_{1}}-s_{j k_{2}} s_{j^{\prime} k_{2}}+
\end{gathered}
$$

$$
P\left(\left(\left\{i \text { speaks } k_{1}\right\} \cap\left\{i^{\prime} \text { speaks } k_{1}\right\}\right) \cap\left(\left\{i \text { speaks } k_{2}\right\} \cap\left\{i^{\prime} \text { speaks } k_{2}\right\}\right)\right) .
$$

- As the last term is the probability of the intersection of two events, we can compute a lower bound on it as

$$
\max \left\{0, s_{j k_{1}} s_{j^{\prime} k_{1}}+s_{j k_{2}} s_{j^{\prime} k_{2}}-1\right\}
$$

- Therefore, a lower bound on the probability two individuals randomly selected from j and j^{\prime}, respectively, do not speak a common language is

$$
\max \left\{0,1-s_{j k_{1}} s_{j^{\prime} k_{1}}-s_{j k_{2}} s_{j^{\prime} k_{2}}\right\}
$$

Histogram of Bilateral Linguistic Distances

Bilateral Linguistic Distances - From Costa Rica

Bilateral Linguistic Distances - From the US

Bilateral Linguistic Distances - From France

Bilateral Linguistic Distances - From China

EXTRA SLIDES:
 IV. ADDITIONAL DETAILS ON REGULATORY DISTANCES

Histogram of Bilateral Regulatory Distances

Bilateral Regulatory Distances - From Costa Rica

Bilateral Regulatory Distances - From the US

Bilateral Regulatory Distances - From France

Bilateral Regulatory Distances - From China

EXTRA SLIDES:
 V. DEFINITION OF CLOSENESS

Definitions of Closeness Between Countries - Baseline

$$
\bar{n}_{g}=790 \mathrm{~km}=\text { percentile } 2.5 \text { of distribution of } n_{j j^{\prime}}^{g}
$$

- Spain and Portugal are close, but Switzerland and the UK are not.

$$
\bar{n}_{I}=0.11=\text { percentile } 2.5 \text { of distribution of } n_{j j^{\prime}}^{\prime} \text {. }
$$

- Spain and Argentina are close, but France and the UK are not.

$$
\bar{n}_{a}=0.43=\frac{3}{7}
$$

- All members of EU, NAFTA, CAFTA or MERCOSUR are close. The EU has PTAs with Bosnia, Serbia or Turkey, but is not close to them.

Definitions of Closeness Between Countries - Alternative

$$
\bar{n}_{g}=1153 \mathrm{~km}=\text { percentile } 5 \text { of distribution of } n_{j j^{\prime}}^{g}
$$

- Switzerland and the UK are close, but Switzerland and Ireland are not.

$$
\bar{n}_{I}=0.5=\text { percentile } 5 \text { of distribution of } n_{j j^{\prime}}^{\prime}
$$

- France and the UK are close, but France and Portugal are not.

$$
\bar{n}_{a}=0.72=\frac{5}{7}
$$

- All members of EU, NAFTA, CAFTA or MERCOSUR are close.

EXTRA SLIDES:
 VI. EXPORT POTENTIAL MEASURES

Measure of a Destination's Export Potential

- Use PPML to estimate parameters of gravity equation:

$$
X_{o d t}^{s}=\exp \left(\Psi_{o t}^{s}+\Xi_{d t}^{s}+\lambda_{g}^{s} n_{o d}^{g}+\lambda_{l}^{s} n_{o d}^{\prime}+\lambda_{a}^{s} n_{o d t}^{a}\right)+u_{o d t}^{s}
$$

- Costa Rica's export potential in sector s, destination j, and year t as

$$
E_{j t}^{s}=\exp \left(\hat{\bar{Z}}_{j t}^{s}+\hat{\lambda}_{g}^{s} n_{h j}^{g}+\hat{\lambda}_{l}^{s} n_{h j}^{\prime}+\hat{\lambda}_{a}^{s} n_{h j t}^{a}\right)
$$

- Costa Rica's export potential in s, markets geographically close to j, and t as

$$
A E_{j t, g}^{s}=\sum_{j^{\prime} \neq j} \mathbb{1}\left\{n_{j j^{\prime}}^{g} \leq \bar{n}_{g}\right\} E_{j^{\prime} t}^{s} .
$$

- Analogous measures for markets linguistically close to each destination j, or cosignatories of a deep PTA with j.

PPML Estimates of Parameters on Distance Measures

Distribution of $\left\{\hat{\lambda}_{g}^{s}\right\}_{s},\left\{\hat{\lambda}_{l}^{s}\right\}_{s}$, and $\left\{\hat{\lambda}_{a}^{s}\right\}_{s}$.

PPML Estimates of Export Potentials - Top 10 Countries

Distribution of $\left\{E_{j t}^{s}\right\}_{s, t}$ for Top 10 Destinations by Mean Export Potentials.

PPML Estimates of Export Potentials

Distribution of Mean Values of $E_{j t}^{s}$ by Destination.

Aggregate Export Potentials - Geographic Neighbors

Distribution of Mean Values of $A E_{j t, g}^{s}$ by Destination.

Aggregate Export Potentials - Linguistic Neighbors

Distribution of Mean Values of $A E_{j t, l}^{s}$ by Destination.

Aggregate Export Potentials - Deep PTA Neighbors

Distribution of Mean Values of $A E_{j t, a}^{s}$ by Destination.

EXTRA SLIDES:
VII. CORRELATION IN FIRM EXPORT PARTICIPATION DECISIONS

- ADDITIONAL ESTIMATES -

Correlation in Firm Export Participation Decisions

- Within-firm correlation in export participation across markets sharing sources of cross-country complementarities:

$$
y_{i j t}=\sum_{x=\{g, l, a\}} \beta_{x} Y_{i j t}^{x}+\beta_{i t}+\beta_{j t}^{s}+u_{i j t},
$$

with, e.g.,

$$
Y_{i j t}^{g}=\mathbb{1}\left\{\sum_{j^{\prime} \neq j} \mathbb{1}\left\{n_{j j^{\prime}}^{g} \leq \bar{n}_{g}\right\} y_{i j^{\prime} t}>0\right\}
$$

- The parameter β_{x} for $x=\{g, l, a\}$ may capture cross-country correlation in firm-specific export profit shifters \Rightarrow importance of controlling for correlation in unobservables in structural model.

Correlation in Firm Export Participation Decisions

Outcome Variable:	Dummy (1)		(2)Positive	Exports in a Destination and Year
	(3)	(4)		
$Y_{i j t}^{g}$	0.2622^{a}			0.2082^{a}
$Y_{i j t}^{\prime}$	(0.0092)			(0.0079)
		0.1617^{a}		0.0752^{a}
$Y_{i j t}^{a}$		(0.0076)		(0.0054)
			0.0857^{a}	0.0386^{a}
Observations			(0.0037)	(0.0021)

Controlling neither for firm-year nor for sector-country-year fixed effects.

Correlation in Firm Export Participation Decisions

Outcome Variable:	Dummy for Positive (1) (2)	Exports in a D (3)	n and Year (4)
$Y_{i j t}^{g}$	$\begin{gathered} 0.2226^{a} \\ (0.0089) \end{gathered}$		$\begin{gathered} 0.1957^{a} \\ (0.0081) \end{gathered}$
$Y_{i j t}^{\prime}$	$\begin{aligned} & 0.1220^{a} \\ & (0.0067) \end{aligned}$		$\begin{aligned} & 0.0718^{a} \\ & (0.0055) \end{aligned}$
$Y_{i j t}^{a}$		$\begin{aligned} & 0.0517^{a} \\ & (0.0026) \end{aligned}$	$\begin{gathered} 0.0259^{a} \\ (0.0018) \end{gathered}$
Observations	3,902,316		

Controlling only for firm-year fixed effects.

Correlation in Firm Export Participation Decisions

Outcome Variable:	Dummy for (1)		(2)	(3)

Note: ${ }^{a}$ denotes 1% significance. Standard errors clustered by firm.

Controlling only for sector-country-year fixed effects.

Correlation in Firm Export Participation Decisions

Outcome Variable:	Dummy for Positive Exports in a Destination and Year (1) (2) (3) (4)			
$Y_{i j t}^{g}$	$\begin{aligned} & 0.1384^{a} \\ & (0.0065) \end{aligned}$			$\begin{aligned} & 0.1116^{a} \\ & (0.0057) \end{aligned}$
$Y_{i j t}^{\prime}$		$\begin{aligned} & 0.1013^{a} \\ & (0.0048) \end{aligned}$		$\begin{aligned} & 0.0721^{a} \\ & (0.0039) \end{aligned}$
$Y_{i j t}^{a}$			$\begin{aligned} & 0.0431^{a} \\ & (0.0025) \end{aligned}$	$\begin{gathered} 0.0169^{a} \\ (0.0017) \end{gathered}$
Observations			59,618	

Note: ${ }^{a}$ denotes 1% significance. Standard errors clustered by firm. All specifications control for firm-year and sector-country-year fixed effects.

Using a laxer definition of closeness between countries

EXTRA SLIDES:
 IX. MODEL DETAILS

Time-Varying Exogenous Determinants of Export Revenues

- Country-year shifter:

$$
\alpha_{j t}=\left(X_{j t}^{\alpha}\right)^{\prime} \beta_{\alpha}+\rho_{\alpha} \alpha_{j t-1}+e_{j t}^{\alpha}, \quad e_{j t}^{\alpha} \sim \mathbb{N}\left(0, \sigma_{\alpha}^{2}\right), \quad\left|\rho_{\alpha}\right|<1,
$$

with $X_{j t}=\left(n_{h j}^{g}, n_{h j}^{\prime}, n_{h j t}^{a}, \ln \left(g d p_{j t}\right)\right)$, and $X_{j t}$ constant in non-sample years.

- Firm-year shifter:

$$
\ln \left(r_{i h t}\right)=\left(X_{i}^{r}\right)^{\prime} \beta_{r}+\rho_{r} \ln \left(r_{i h t-1}\right)+e_{i h t}^{r}, \quad e_{i h t}^{r} \sim \mathbb{N}\left(0, \sigma_{r}^{2}\right), \quad\left|\rho_{r}\right|<1,
$$

with X_{i}^{r} including dummies for firm i's sector and province of location.

- Tariffs: constant in non-sample years.

EXTRA SLIDES:
 X. SOLUTION ALGORITHM

Update Constant Upper Bound Given Upper-Bound Policy

- To compute $\bar{b}_{i t}^{[1]}$, implement the following iteration algorithm

$$
\begin{gathered}
\bar{b}_{i t_{i}}=\bar{o}_{i t_{i}}^{[0]}\left(0_{J}, \underline{\omega}_{J}\right) \\
\bar{b}_{i t_{i}+1}=\bar{o}_{i t_{i}+1}^{[0]}\left(\bar{b}_{i t_{i}}, \underline{\omega}_{J}\right) \\
\vdots \\
\bar{b}_{i t-1}=\bar{o}_{i t-1}^{[0]}\left(\bar{b}_{i t-2}, \underline{\omega}_{J}\right) \\
\bar{b}_{i t}=o_{i t-1}^{[0]}\left(\bar{b}_{i t-1}, \underline{\omega}_{J}\right)
\end{gathered}
$$

where

$$
0_{J}=\text { export bundle at } \underline{t}_{i}-1
$$

Compute Bound on Optimal Exports At Path of Interest

- To compute $\check{\bar{y}}_{i t^{\prime}}$, implement the following iteration algorithm

$$
\begin{gathered}
\check{y}_{i t_{i}}=\bar{o}_{i t_{i}}^{*}\left(0, \check{\omega}_{i t_{i}}\right) \\
\check{\bar{y}}_{i t_{i}+1}=\bar{o}_{i t_{i}+1}^{*}\left(\check{\bar{y}}_{i t_{i}}, \check{\omega}_{i t_{i}+1}\right) \\
\vdots \\
\check{y}_{i t-2}=\bar{o}_{i t-2}^{*}\left(\check{\bar{y}}_{i t-3}, \check{\omega}_{i t-2}\right) \\
\check{y}_{i t-1}=\bar{o}_{i t-1}^{*}\left(\check{\bar{y}}_{i t-2}, \check{\omega}_{i t-1}\right)
\end{gathered}
$$

where

$$
0_{J}=\text { export bundle at } \underline{t}_{i}-1
$$

General Description - Step 2 of the Algorithm

- Denote as τ the smallest t with $\check{y}_{i t}>\underline{\underline{y}}_{i t}$.
- Compute new constant upper bounds for all $t \geq \tau$ as

$$
\begin{aligned}
& \bar{b}_{i \tau \mid \tau}^{[0]}=\bar{o}_{i \tau}^{*}\left(\check{y}_{i \tau-1}, \check{\omega}_{i \tau}\right), \\
& \bar{b}_{i t^{\prime} \mid \tau}^{[0]}=\bar{o}_{i t^{\prime}}^{*}\left(\bar{b}_{i t^{\prime}-1 \mid \tau}^{[0]}, \underline{\omega} J\right), \quad \text { for } t^{\prime}=\tau+1, \ldots, t,
\end{aligned}
$$

using them to obtain new policies $\bar{o}_{i t \mid \tau}^{[0]}\left(y_{i t-1}, \omega_{i t}\right)$ for all $t \geq \tau$ and $\left(y_{i t-1}, \omega_{i t}\right)$.

- Update constant upper bounds for all $t \geq \tau$ as

$$
\begin{aligned}
& \bar{b}_{i \tau}^{[1]}=\bar{o}_{i \tau \mid \tau}^{[0]}\left(\check{y}_{i \tau-1}, \check{\omega}_{i \tau}\right), \\
& \bar{b}_{i t^{\prime}}^{[1]}=\bar{o}_{i t^{\prime} \mid \tau}^{[0]}\left(\bar{b}_{i t^{\prime}-1}^{[1]}, \underline{\omega}_{J}\right), \quad \text { for } t^{\prime}=\tau+1, \ldots, t,
\end{aligned}
$$

using them to obtain new policies $\bar{o}_{i t \mid \tau}^{[1]}\left(y_{i t-1}, \omega_{i t}\right)$ for all $t \geq \tau$ and $\left(y_{i t-1}, \omega_{i t}\right)$.

- Iterate until convergence; denote resulting upper-bound policies

$$
\bar{o}_{i t \mid \tau}^{*}\left(y_{i t-1}, \omega_{i t}\right) \quad \text { for all } t \geq \tau \text { and all }\left(y_{i t-1}, \omega_{i t}\right)
$$

General Description - Step 2 of the Algorithm

- Lower-bound process is analogous.
- Evaluate converged bound policies along path of interest at τ :

$$
\check{y}_{i \tau \mid \tau}=\bar{o}_{i \tau \mid \tau}^{*}\left(\check{y}_{i \tau-1}, \check{\omega}_{i \tau}\right) \quad \text { and } \quad \check{\underline{y}}_{i \tau \mid \tau}=o_{i \tau \mid \tau}^{*}\left(\check{y}_{i \tau-1}, \check{\omega}_{i \tau}\right) .
$$

- If

$$
\check{\bar{y}}_{i \tau \mid \tau}=\check{y}_{i \tau \mid \tau},
$$

we found the solution to the firm's optimal choice along path of interest at τ.

- Otherwise, proceed to step 3 and solve multiple countries jointly at τ.

Example - Step 2 of Algorithm - Upper Bound

Compute Constant Upper Bounds Conditional on Path at $t=2$

Assuming that in market B...

Update

Assuming that in market A...

Example - Step 2 of Algorithm - Upper Bound

Update Upper-Bound Policy Function Conditional on Path at $t=2$

Market A

Market B

Assuming that in market B...
Assuming that in market A...

Example - Step 2 of Algorithm - Upper Bound

Update Constant Upper Bounds Conditional on Path at $t=2$

Assuming that in market B...
Assuming that in market A...

Example - Step 2 of Algorithm - Upper Bound

(Try to) Update Upper-Bound Policy Function Conditional on Path at $t=2$

Market A

Assuming that in market B...
——•——。

Market B

Assuming that in market $\mathrm{A} .$. .

Example - Step 2 of Algorithm - Upper Bound

Upper-Bound Policy Function Conditional on Path at $t=2$ After Convergence:

Example - Step 2 of Algorithm - Evaluate Bounds

Evaluate Upper-Bound Policy Function at Path of Interest for $t \geq 2$

Example - Step 2 of Algorithm - Combine Bounds

- Compare upper and lower bounds at path of interest for $t \geq 2$ in market A :

$$
\begin{aligned}
\left(\check{y}_{A 2 \mid 2}, \check{y}_{A 3 \mid 2}\right) & =(0,1), \\
\left(\underline{y}_{A 2 \mid 2}, \underline{y}_{A 3 \mid 2}\right) & =(0,0) .
\end{aligned}
$$

- Compare upper and lower bounds at path of interest for $t \geq 2$ in market A :

$$
\begin{aligned}
\left(\check{y}_{B 2 \mid 2}, \check{y}_{B 3 \mid 2}\right) & =(0,1), \\
\left(\underline{y}_{B 2 \mid 2}, \underline{y}_{B 3 \mid 2}\right) & =(0,0) .
\end{aligned}
$$

- Bounds coincide at $t=2$; we found the solution at $t=2$:

$$
\left(\check{y}_{A 2}^{*}, \check{y}_{B 2}^{*}\right)=(0,0) .
$$

- Bounds do not coincide at $t=3$; go back to Step 2 to refine bounds at $t=3$.

Example - Step 2 of Algorithm - Upper Bound

(Try to) Update Constant Upper Bounds Conditional on Path at $t=3$:

Market A

Assuming that in market B...
——.——.

Assuming that in market $\mathrm{A} . .$.

Example - Step 2 of Algorithm - Combine Bounds

- Compare upper and lower bounds at path of interest at $t=3$ in A and B :

$$
\check{\bar{y}}_{A 3 \mid 3}>\check{\underline{y}}_{A 3 \mid 3}, \quad \text { and } \quad \check{y}_{B 3 \mid 3}>\check{\underline{y}}_{B 3 \mid 3} .
$$

- In each of the two markets, the firm exports to it at path of interest at $t=3$ conditional on exporting to the other market; and it does not export to it at the path of interest at $t=3$ conditional on not exporting to the other market.
- Thus, upper and lower bound policies diverge at the path of interest at $t=3$.
- In Step 3, solve optimal choices in A and B jointly given history at $t=3$.

EXTRA SLIDES:

X. ESTIMATION DETAILS

Estimation Procedure: Step 1

- GMM estimator of export revenue parameters:

$$
\left(\left(\alpha_{y}, \alpha_{a}, \alpha_{r}\right),\left\{\alpha_{j t}\right\}_{j t},\left\{\alpha_{s}\right\}_{s}\right) .
$$

- Estimating equation:

$$
r_{i j t}^{o b s}=\exp \left(\alpha_{y} y_{i j t-1}+\alpha_{s}+\alpha_{j t}+\alpha_{a} \ln \left(a_{s j t}\right)+\alpha_{r} \ln \left(r_{i h t}\right)\right)+\epsilon_{i j t},
$$

where $\epsilon_{i j t}$ captures measurement error (i.e., $\left.r_{i j t}^{o b s}=\left(r_{i j t}+\epsilon_{i j t}\right)\left(1-y_{i j t}\right)\right)$ and

$$
\mathbb{E}\left[\epsilon_{i j t} \mid d_{s}, d_{j t}, y_{i j t-1}, a_{s j t}, r_{i h t}, y_{i j t}=1\right]=0,
$$

where d_{s} and $d_{j t}$ are vectors of sector and country-year dummies, respectively.

- PPML estimates computed using data on firm-country-years with $y_{i j t}=1$.

Estimation Procedure: Step 1

- Estimator of demand elasticity:

$$
\eta
$$

- Estimating equation:

$$
\underbrace{\left(r_{i h t}+\sum_{j=1}^{J} y_{i j t} r_{i j t}\right)}_{r_{i t}}=\tilde{\eta} v c_{i t}+e_{i t}^{r}
$$

where $e_{i t}^{r}$ captures measurement error (i.e., $r_{i t}^{\text {obs }}=r_{i t}+\epsilon_{i t}^{r}$) and

$$
\mathbb{E}\left[e_{i t}^{r} \mid v c_{i t}\right]=0 .
$$

- Given OLS estimate $\hat{\tilde{\eta}}$ and robust standard error, compute the point estimate

$$
\hat{\eta}=\hat{\tilde{\eta}} /(\hat{\tilde{\eta}}-1),
$$

and compute its standard error using the Delta method.

Step 1: Estimates

- Estimates of export revenue parameters:

Parameters	
α_{y}	$\left(0.285^{a}\right.$
	α_{a}
	-3.832^{a}
α_{r}	(0.066)
	0.285^{a}
Observations	(0.041)
	13,293

Note: Robust standard errors in parenthesis. Specification includes country-year and sector fixed effects.

- Demand elasticity estimate: $\hat{\eta}=5.713$ with std. err. 0.489 , computed using data on 44,785 firm-year observations.

Step 1: Estimates of $\alpha_{j t}$

Step 1: Estimates of $\alpha_{j t}$ for Top 15 Countries

Step 1: Estimates of $\alpha_{j t}$ for Bottom 15 Countries

Estimation Procedure: Step 2

- Given $\left\{\hat{\alpha}_{j t}\right\}_{j}$ for all sample years, compute OLS estimator of

$$
\left(\beta_{\alpha, g}, \beta_{\alpha, l}, \beta_{\alpha, a}, \beta_{\alpha, g d p}, \rho_{\alpha}, \sigma_{\alpha}\right)
$$

where $\left(\beta_{\alpha, g}, \beta_{\alpha, l}, \beta_{\alpha, a}, \beta_{\alpha, g d p}\right)$ are the coefficients on $\left(n_{h j}^{g}, n_{h j}^{\prime}, n_{h j t}^{a}, \ln \left(g d p_{j t}\right)\right)$.

- Estimating equation:

$$
\hat{\alpha}_{j t}=\left(X_{j t}^{\alpha}\right)^{\prime} \beta_{\alpha}+\rho_{\alpha} \hat{\alpha}_{j t-1}+e_{j t}^{\alpha},
$$

with

$$
\begin{aligned}
\left(X_{j t}^{\alpha}\right) & =\left(n_{h j}^{g}, n_{h j}^{\prime}, n_{h j t}^{a}, \ln \left(g d p_{j t}\right)\right) \\
\beta_{\alpha} & =\left(\beta_{\alpha, g}, \beta_{\alpha, l}, \beta_{\alpha, a}, \beta_{\alpha, g d p}\right),
\end{aligned}
$$

and

$$
\mathbb{E}\left[e_{j t}^{\alpha} \mid X_{j t}^{\alpha}, \hat{\alpha}_{j t-1}\right]=0, \quad \mathbb{V}\left[e_{j t}^{\alpha}\right]=\sigma_{\alpha}^{2}
$$

Estimation Procedure: Step 2

- OLS estimator of:

$$
\left(\beta_{r}, \rho_{r}, \sigma_{r}\right)
$$

where β_{r} is a vector of sector and province fixed effects.

- Estimating equation:

$$
\ln \left(r_{i h t}\right)=\left(X_{i}^{r}\right)^{\prime} \beta_{r}+\rho_{r} \ln \left(r_{i h t-1}\right)+e_{i h t}^{r},
$$

with X_{i}^{r} a vector of sector and province dummies, and

$$
\mathbb{E}\left[e_{j t}^{r} \mid X_{i}^{r}, r_{i h t-1}\right]=0, \quad \mathbb{V}\left[e_{j t}^{r}\right]=\sigma_{r}^{2}
$$

Estimates of Parameters of Stochastic Process for $\alpha_{j t}$

Parameters	
$\beta_{\alpha, g}$	-0.117^{b}
	(0.037)
$\beta_{\alpha, I}$	-0.047
	(0.071)
$\beta_{\alpha, a}$	-0.109
	(0.079)
$\beta_{\alpha, g d p}$	0.079^{a}
	(0.019)
ρ_{α}	0.686^{a}
	(0.059)
σ_{α}	0.630
Observations	467
Note: ${ }^{a}$ denotes significance at $1^{1 \%}{ }^{b}$ denotes significance at 5%. Standard errors ${ }^{\text {clustered }}$ by destination in parenthesis.	

Estimates of Parameters of Stochastic Process for $\ln \left(r_{i h t}\right)$

Parameters	
ρ_{r}	0.857^{a}
	(0.012)
σ_{r}	0.865
Observations	43,300
Note: ${ }^{a}$ denotes significance at $1 \%,{ }^{b}$ denotes significance at 5\%. Standard errors clustered by firm in parenthesis. Specification includes sector and province fixed effects.	

Estimation Procedure: Step 3

- Given Steps 1 and 2 estimates, optimal two-step SMM estimates of fixed and sunk costs parameters, with diagonal weighting matrix in first step. Present standard error estimates according to formula in Gourieroux et al. (1993).
- We use 89 moments to jointly estimate 25 parameters.
- Define the following vector of unknown parameters:

$$
\theta \equiv\left(\gamma_{0}^{F}, \gamma_{0}^{S}, \sigma_{\nu}, p,\left\{\left(\gamma_{x}^{F}, \gamma_{x}^{E}, \psi_{x}^{E}, \kappa_{x}^{E}, \gamma_{x}^{N}, \kappa_{x}^{N}, \gamma_{x}^{S}\right)\right\}_{x=\{g, l, a\}}\right) .
$$

- Define a vector capturing all observed payoff-relevant variables and estimated parameters:

$$
\begin{aligned}
& z_{i} \equiv\left(\hat{\alpha}_{y}, \hat{\alpha}_{a}, \hat{\alpha}_{r}, \hat{\beta}_{\alpha}, \hat{\rho}_{\alpha}, \hat{\sigma}_{\alpha}, \hat{\beta}_{r}, \hat{\rho}_{r}, \hat{\sigma}_{r},\left\{\hat{\alpha}_{j t}\right\}_{j=1, t=t_{l}}^{J, t_{F}}, \hat{\alpha}_{s},\left\{r_{i h t}\right\}_{t=t_{l},}^{t_{F}},\left\{a_{s t}\right\}_{t=t_{l}}^{t_{F}},\right. \\
& \left.\left\{\left(n_{j j^{\prime}}^{g}, n_{j j^{\prime}}^{\prime}\right)\right\}_{j=1, j^{\prime}=1}^{J, J},\left\{n_{j j^{\prime} t}^{a}\right\}_{j=1, j^{\prime}=1, t=t_{l}}^{J, J, t_{F}},\left\{\left(n_{h j}^{g}, n_{h j}^{\prime}\right)\right\}_{j=1}^{J},\left\{n_{h j t}^{a}\right\}_{j=1, t=t_{l}}^{J, t_{F}}\right),
\end{aligned}
$$

where s denotes firm i's sector.

Estimation Procedure: Step 3

- Define a vector capturing all unobserved payoff-relevant variables:

$$
\begin{aligned}
\chi_{i} \equiv & \left(\left\{\alpha_{j t}\right\}_{j=1, t=t_{i}}^{J, t=t_{i}-1},\left\{\alpha_{j t}\right\}_{j=1, t=t_{F}+1}^{J, t=T},\left\{r_{i h t}\right\}_{t=t_{i}}^{t=t_{t}-1},\left\{r_{i h t}\right\}_{t=t_{F}+1}^{t=T},\right. \\
& \left\{\nu_{i j t}\right\}_{j=1, t=t_{i}},\left\{\omega_{i j t}\right\}_{j=1, t=t_{i}}^{J, T}, .
\end{aligned}
$$

- Given z_{i}, a draw χ_{i}^{s} from the distribution of χ_{i} conditional on z_{i}, and a value of θ, solution algorithm yields vector $y_{i}^{s}(\theta)$ of model-implied export decisions for every country and period t in $t_{l} \leq t \leq t_{F}$.
- Given $x=\left\{E_{j t}^{s}\right\}_{s=1, j=1, t=t_{l}}^{S, J, t_{F}}$, write each moment k as

$$
\frac{1}{M} \sum_{i=1}^{M}\left\{\frac{1}{J\left(t_{F}-t_{i}\right)} \sum_{j=1}^{J} \sum_{t=t_{i}}^{t_{F}}\left\{m_{k}\left(y_{i}^{o b s}, z_{i}, x\right)-\frac{1}{S} \sum_{i=1}^{S} m_{k}\left(y_{i}^{s}(\theta), z_{i}, x\right)\right\}\right\}=0
$$

where $t_{i}=\max \left\{t_{l}, \underline{t}_{i}\right\}$ is the first year firm i is observed, and M and S are number of sample firms and simulation draws, respectively.

Estimation Procedure: Step 3

- Moments targeting the parameters

$$
\left(\gamma_{0}^{F}, \gamma_{0}^{S},\left\{\left(\gamma_{x}^{F}, \gamma_{x}^{S}\right)\right\}_{x=\{g, l, a\}}\right)
$$

rely on moment functions of the kind

$$
\begin{aligned}
& m_{k}(\cdot)=y_{i j t} \mathbb{1}\left\{n_{h j}^{x_{1}}<n_{x_{1}}^{*}\right\} \mathbb{1}\left\{n_{h j}^{x_{2}}<n_{x_{2}}^{*}\right\} n_{h j}^{x_{1}} n_{h j}^{x_{2}} \\
& m_{k}(\cdot)=y_{i j t} \mathbb{1}\left\{n_{h j}^{x_{1}} \geq n_{x_{1}}^{*}\right\} \mathbb{1}\left\{n_{h j}^{x_{2}}<n_{x_{2}}^{*}\right\} n_{h j}^{x_{1}} n_{h j}^{x_{2}} \\
& m_{k}(\cdot)=y_{i j t} \mathbb{1}\left\{n_{h j}^{x_{1}}<n_{x_{1}}^{*}\right\} \mathbb{1}\left\{n_{h j}^{x_{2}} \geq n_{x_{2}}^{*}\right\} n_{h j}^{x_{1}} n_{h j}^{x_{2}} \\
& m_{k}(\cdot)=y_{i j t} \mathbb{1}\left\{n_{h j}^{x_{1}} \geq n_{x_{1}}^{*}\right\} \mathbb{1}\left\{n_{h j}^{x_{2}} \geq n_{x_{2}}^{*}\right\} n_{h j}^{x_{1}} n_{h j}^{x_{2}}
\end{aligned}
$$

for $\left(x_{1}, x_{2}\right)=\{(g, l),(g, a),(I, a)\}$ and

$$
n_{g}^{*}=6000, \quad n_{l}^{*}=0.5, \quad n_{a}^{*}=1
$$

Estimation Procedure: Step 3

- Moments targeting the parameters

$$
\left(\gamma_{0}^{F}, \gamma_{0}^{S},\left\{\left(\gamma_{x}^{F}, \gamma_{x}^{S}\right)\right\}_{x=\{g, l, a\}}\right)
$$

and on moment functions of the kind

$$
\begin{aligned}
& m_{k}(\cdot)=y_{i j t} y_{i j t-1} \mathbb{1}\left\{n_{h j}^{x_{1}}<n_{x_{1}}^{*}\right\} \mathbb{1}\left\{n_{h j}^{x_{2}}<n_{x_{2}}^{*}\right\} n_{h j}^{x_{1}} n_{h j}^{x_{2}} \\
& m_{k}(\cdot)=y_{i j t} y_{i j t-1} \mathbb{1}\left\{n_{h j}^{x_{1}} \geq n_{x_{1}}^{*}\right\} \mathbb{1}\left\{n_{h j}^{x_{2}}<n_{x_{2}}^{*}\right\} n_{h j}^{x_{1}} n_{h j}^{x_{2}} \\
& m_{k}(\cdot)=y_{i j t} y_{i j t-1} \mathbb{1}\left\{n_{h j}^{x_{1}}<n_{x_{1}}^{*}\right\} \mathbb{1}\left\{n_{h j}^{x_{2}} \geq n_{x_{2}}^{*}\right\} n_{h j}^{x_{1}} n_{h j}^{x_{2}} \\
& m_{k}(\cdot)=y_{i j t} y_{i j t-1} \mathbb{1}\left\{n_{h j}^{x_{1}} \geq n_{x_{1}}^{*}\right\} \mathbb{1}\left\{n_{h j}^{x_{2}} \geq n_{x_{2}}^{*}\right\} n_{h j}^{x_{1}} n_{h j}^{x_{2}}
\end{aligned}
$$

for $\left(x_{1}, x_{2}\right)=\{(g, I),(g, a),(I, a)\}$ and

$$
n_{g}^{*}=6000, \quad n_{l}^{*}=0.5, \quad n_{a}^{*}=1
$$

Estimates

Parameters	Estimates
γ_{0}^{F}	62.92^{a}
	$(1.11)(1.34)(2.77)$
γ_{g}^{F}	$(0.38)\left(1.11^{a}\right.$
	$\left.4.14^{a}\right)(3.43)$
γ_{l}^{F}	$(0.99)(1.71)(4.71)$
	29.28^{a}
γ_{a}^{F}	$(0.78)(0.62)(1.09)$
	114.76^{a}
γ_{0}^{S}	$(3.18)(3.09)(6.03)$
	19.95^{a}
γ_{g}^{S}	$(0.92)(1.10)(2.80)$
	0.23
γ_{l}^{S}	$(3.56)(4.43)(8.36)$
	21.83^{a}
γ_{a}^{S}	$(1.04)(0.83)(1.46)$

[^0]
Estimation Procedure: Step 3

- Define the following aggregate export potential measures for each destination j, period t and sector s :

$$
A E_{j t, x}^{s, d}=\sum_{j^{\prime} \neq j} \mathbb{1}\left\{\underline{n}_{x, d} \leq n_{j j^{\prime}}^{\times}<\bar{n}_{x, d}\right\} E_{j^{\prime} t}^{s},
$$

for $x=\{g, I, a\}$ and for $d=\{1,2,3\}$.

- We use the following values of the thresholds $\left(\underline{n}_{g, d}, \bar{n}_{g, d}\right)$:

$$
\left(\underline{n}_{g, d}, \bar{n}_{g, d}\right)= \begin{cases}(0,426) & \text { if } d=1 \\ (426,791) & \text { if } d=2 \\ (791,1153) & \text { if } d=3\end{cases}
$$

Estimation Procedure: Step 3

- Define the following aggregate export potential measures for each destination j, period t and sector s :

$$
A E_{j t, x}^{s, d}=\sum_{j^{\prime} \neq j} \mathbb{1}\left\{\underline{n}_{x, d} \leq n_{j j^{\prime}}^{\times}<\bar{n}_{x, d}\right\} E_{j^{\prime} t}^{s},
$$

for $x=\{g, I, a\}$ and for $d=\{1,2,3\}$.

- We use the following values of the thresholds $\left(\underline{n}_{l, d}, \bar{n}_{l, d}\right)$:

$$
\left(\underline{n}_{l, d}, \bar{n}_{l, d}\right)= \begin{cases}(0,0.01) & \text { if } d=1 \\ (0.01,0.11) & \text { if } d=2 \\ (0.11,0.50) & \text { if } d=3\end{cases}
$$

Estimation Procedure: Step 3

- Define the following aggregate export potential measures for each destination j, period t and sector s :

$$
A E_{j t, x}^{s, d}=\sum_{j^{\prime} \neq j} \mathbb{1}\left\{\underline{n}_{x, d} \leq n_{j j^{\prime}}^{\times}<\bar{n}_{x, d}\right\} E_{j^{\prime} t}^{s},
$$

for $x=\{g, I, a\}$ and for $d=\{1,2,3\}$.

- We use the following values of the thresholds $\left(\underline{n}_{a, d}, \bar{n}_{a, d}\right)$:

$$
\left(\underline{n}_{a, d}, \bar{n}_{a, d}\right)= \begin{cases}\left(0, \frac{1}{7}\right) & \text { if } d=1 \\ \left(\frac{1}{7}, \frac{3}{7}\right) & \text { if } d=2, \\ \left(\frac{3}{7}, \frac{6}{7}\right) & \text { if } d=3\end{cases}
$$

Estimation Procedure: Step 3

- Moments targeting the parameters

$$
\left\{\left(\gamma_{x}^{E}, \psi_{x}^{E}, \kappa_{x}^{E}\right)\right\}_{x=\{g, l, a\}}
$$

rely on moment functions of the kind

$$
\begin{aligned}
& m_{k}(\cdot)=y_{i j t} \mathbb{1}\left\{n_{h j}^{x}<n_{x}^{*}\right\} \mathbb{1}\left\{A E_{j t, x}^{s, d}=0\right\} \\
& m_{k}(\cdot)=y_{i j t} \mathbb{1}\left\{n_{h j}^{x}<n_{x}^{*}\right\} \mathbb{1}\left\{0<A E_{j t, x}^{s, d} \leq p_{66}\left(A E_{j t, x}^{s, d}\right)\right\} \\
& m_{k}(\cdot)=y_{i j t} \mathbb{1}\left\{n_{h j}^{x}<n_{x}^{*}\right\} \mathbb{1}\left\{p_{66}\left(A E_{j t, x}^{s, d}\right)<A E_{j t, x}^{s, d}\right\} \\
& m_{k}(\cdot)=y_{i j t} \mathbb{1}\left\{n_{h j}^{x} \geq n_{x}^{*}\right\} \mathbb{1}\left\{A E_{j t, x}^{s, d}=0\right\} \\
& m_{k}(\cdot)=y_{i j t} \mathbb{1}\left\{n_{h j}^{x} \geq n_{x}^{*}\right\} \mathbb{1}\left\{0<A E_{j t, x}^{s, d} \leq p_{66}\left(A E_{j t, x}^{s, d}\right)\right\} \\
& m_{k}(\cdot)=y_{i j t} \mathbb{1}\left\{n_{h j}^{x} \geq n_{x}^{*}\right\} \mathbb{1}\left\{p_{66}\left(A E_{j t, x}^{s, d}\right)<A E_{j t, x}^{s, d}\right\}
\end{aligned}
$$

for $x=\{g, I, a\}$ and for $d=\{1,2,3\}$, where $p_{66}(X)$ denotes percentile 66 of the distribution of X.

Estimates

Parameters	Estimates
γ_{g}^{E}	9.83^{a}
φ_{g}^{E}	$(2.33)(2.85)(6.42)$
	1.96^{a}
κ_{g}^{E}	$(0.50)(0.66)(1.55)$
	6.02^{a}
γ_{l}^{E}	$(0.28)(0.49)(0.66)$
	0.98^{a}
φ_{I}^{E}	$(0.08)(0.07)(0.11)$
	2.74
κ_{l}^{E}	$(2.88)(3.79)(7.16)$
	5.40
γ_{a}^{E}	$(6.05)(7.84)(19.56)$
	3.32^{a}
φ_{a}^{E}	$(0.04)(0.04)(0.06)$
κ_{a}^{E}	1.21
	$(0.52)(0.73)(1.51)$
6.85^{a}	
	$(1.02)(1.48)(3.18)$

Note: ${ }^{a}$ denotes significance at 1%. In parenthesis, robust standard errors, standard errors clustered by firmyear, and standard errors clustered by firm, respectively.

Estimation Procedure: Step 3

- Moments targeting the parameters

$$
\left(\sigma_{\nu}, p,\left\{\left(\gamma_{x}^{N}, \kappa_{x}^{N}\right)\right\}_{x=\{g, l, a\}}\right)
$$

rely on moment functions of the kind

$$
\begin{aligned}
& m_{k}(\cdot)=y_{i j t} \sum_{i^{\prime} \neq i} y_{i^{\prime} j t} \mathbb{1}\left\{r_{i h t} \approx r_{i^{\prime} h t}\right\}, \\
& m_{k}(\cdot)=y_{i j t} \sum_{j^{\prime} \neq j} y_{i j^{\prime} t} \mathbb{1}\left\{y_{i j t-1}=y_{i j^{\prime} t-1}\right\} \mathbb{1}\left\{E_{j t}^{s} \approx E_{j^{\prime} t}^{s}\right\} \mathbb{1}\left\{\underline{n}_{x, d} \leq n_{j j^{\prime}}^{\times}<\bar{n}_{x, d}\right\},
\end{aligned}
$$

for $x=\{g, l, a\}$ and for $d=\{1,2,3\}$, and on the moment functions

$$
\begin{aligned}
& m_{k}(\cdot)=y_{i j t}\left(1-y_{i j t-1}\right) y_{i j t-2}+y_{i j t}\left(1-y_{i j t-1}\right)\left(1-y_{i j t-2}\right) y_{i j t-3}, \\
& m_{k}(\cdot)=\left(1-y_{i j t}\right) y_{i j t-1}\left(1-y_{i j t-2}\right)+\left(1-y_{i j t}\right) y_{i j t-1} y_{i j t-2}\left(1-y_{i j t-3}\right) .
\end{aligned}
$$

Estimates

Parameters	Estimates
γ_{g}^{N}	0.64^{a}
	$(0.00)(0.00)(0.01)$
κ_{g}^{N}	0.05^{a}
	$(0.00)(0.00)(0.01)$
γ_{l}^{N}	0.15^{a}
	$(0.00)(0.00)(0.01)$
κ_{l}^{N}	4.54^{a}
	$(0.29)(0.31)(0.50)$
γ_{a}^{N}	0.06^{a}
κ_{a}^{N}	$(0.01)(0.01)(0.01)$
	2.61^{a}
σ_{ν}	$(0.00)(0.00)(0.00)$
	80.04^{a}
p	$(0.51)(0.79)(2.05)$
	0.72^{a}
	$(0.00)(0.00)(0.00)$

Note: ${ }^{a}$ denotes significance at 1%. In parenthesis, robust standard errors, standard errors clustered by firmyear, and standard errors clustered by firm, respectively.

EXTRA SLIDES:

XI. GOODNESS-OF-FIT MEASURES OF MODEL WITH COMPLEMENTARITIES

Export Probabilities by Type of Destination

Type of Country j	Data	Model
All	0.44%	0.47%
$\mathbb{1}\left\{E_{j t}^{s} \geq E^{*}\right\}$	0.89%	0.93%
$\mathbb{1}\left\{E_{j t}^{s}<E^{*}\right\}$	0.08%	0.10%
$\mathbb{1}\left\{n_{h j}^{g}<n_{g}^{*}\right\}$	0.86%	0.89%
$\mathbb{1}\left\{n_{h j}^{g} \geq n_{g}^{*}\right\}$	0.10%	0.14%
$\mathbb{1}\left\{n_{h j}^{\prime}<n_{l}^{*}\right\}$	1.29%	1.37%
$\mathbb{1}\left\{n_{h j}^{\prime} \geq n_{l}^{*}\right\}$	0.16%	0.18%
$\mathbb{1}\left\{n_{h j t}^{a}<n_{a}^{*}\right\}$	0.90%	0.98%
$\mathbb{1}\left\{n_{h j t}^{a} \geq n_{a}^{*}\right\}$	0.13%	0.13%

Note: Cutoffs are $E^{*}=\operatorname{median}\left(E_{j t}^{s}\right), n_{g}^{*}=$ $6000, n_{l}^{*}=0.5$, and $n_{a}^{*}=1$. Model probabilities are computed as the average probability over 100 simulations of χ_{i}^{s} for each i.

Correlation in Firm Export Participation Decisions

- Predicted correlations with baseline estimates.

Outcome Variable:	Dummy for (1)	Positive (2)	$s \text { in a Dest }$ (3)	n and Year (4)
$Y_{i j t}^{g}$	$\begin{aligned} & 0.1420^{a} \\ & (0.0025) \end{aligned}$			$\begin{aligned} & 0.1212^{a} \\ & (0.0027) \end{aligned}$
$Y_{i j t}^{\prime}$		$\begin{gathered} 0.0710^{a} \\ (0.0014) \end{gathered}$		$\begin{aligned} & 0.0402^{a} \\ & (0.0016) \end{aligned}$
$Y_{i j t}^{a}$			$\begin{aligned} & 0.0250^{a} \\ & (0.0008) \end{aligned}$	$\begin{gathered} 0.0044^{a} \\ (0.0007) \end{gathered}$
Observations	3,902,316			

- Qualitatively similar but quantitatively smaller estimates than in the data.

EXTRA SLIDES:

XII. ROBUSTNESS OF ESTIMATES TO ALTERNATIVE SIMULATION DRAWS

Robustness to Alternative Simulation Draws

- We re-compute our SMM parameter estimates using 50 alternative sets of 5 simulation draws of χ_{i}^{s}.
- Report non-parametric estimates of the density functions for the 50 estimates of each parameter obtained in our SMM estimation procedure.
- In each figure, we indicate the baseline estimate through a vertical red line.

Robustness to Alt. Simulation Draws - Fixed Cost Param.

(a) γ_{0}^{F}

(c) γ_{I}^{F}

(b) γ_{g}^{F}

(d) γ_{a}^{F}

Robustness to Alt. Simulation Draws - Sunk Cost Param.

(a) γ_{0}^{S}

(c) γ_{1}^{s}

(b) γ_{g}^{S}

(d) γ_{a}^{S}

Robustness to Alt. Draws - Static Complementarities.

(a) γ_{g}^{E}

(b) κ_{g}^{E}

(c) φ_{g}^{E}

Robustness to Alt. Draws - Static Complementarities.

(a) γ_{I}^{E}
kernel $=$ epanechnikov, bandwidth $=0.1220$

(c) φ_{I}^{E}

Robustness to Alt. Draws - Static Complementarities.

(a) γ_{a}^{E}

(b) κ_{a}^{E}

(c) φ_{a}^{E}

Robustness to Alt. Simulation Draws - Variance Param.

(a) γ_{g}^{N}

(c) γ_{1}^{N}

(b) κ_{g}^{N}

(d) κ_{l}^{N}

Robustness to Alt. Simulation Draws - Variance Param.

(a) γ_{a}^{N}

(c) σ_{ν}

(b) κ_{a}^{N}

(d) p

Robustness to Alt. Simulation Draws - Compare Estimates

Parameters	Baseline Estimates	Alternative Estimates	Parameters	Baseline Estimates	Alternative Estimates
γ_{0}^{F}	62.92	63.53	κ_{l}^{E}	5.40	5.53
γ_{g}^{F}	13.11	17.68	γ_{a}^{E}	3.32	3.29
γ_{l}^{F}	4.14	2.79	φ_{a}^{E}	1.21	1.26
γ_{a}^{F}	29.28	28.99	κ_{a}^{E}	6.85	6.68
γ_{0}^{S}	114.76	115.09	γ_{g}^{N}	0.64	0.66
γ_{g}^{S}	19.95	19.88	κ_{g}^{N}	0.05	0.10
γ_{l}^{S}	0.23	0.26	γ_{l}^{N}	0.15	0.15
γ_{a}^{S}	21.83	21.07	κ_{l}^{N}	4.54	4.60
γ_{g}^{E}	9.83	10.79	γ_{a}^{N}	0.06	0.06
φ_{g}^{E}	1.96	1.98	κ_{a}^{N}	2.61	2.57
κ_{g}^{E}	6.02	6.03	σ_{ν}	80.04	79.98
γ_{I}^{E}	0.98	1.06	p	0.72	0.72
φ_{I}^{E}	2.74	2.76			

[^1]
EXTRA SLIDES:

XIII. PERFORMANCE OF ALGORITHM

Performance of Algorithm at Estimated Parameters

- The number of optimal export decisions $y_{i j t}$ we must compute is
num. firms \times num. countries \times num. periods \times num. simulations $=$

$$
4,709 \times 74 \times 13 \times 5=22,650,290
$$

- Algorithm's performance when parameters are set to our baseline estimates:

	Percentage of Firms Solved	Percentage of Choices Solved	Time (in seconds)
Step 1	78.51%	99.72%	131
Step 2	82.74%	99.75%	163
Step 3	95.80%	99.89%	741

- Times at PU's Della cluster using 44 processors of 20 GB of memory each.

Performance of Algorithm at Estimated Parameters

- Large percentage of choices solved in Step 1 may be due to there being many firm-market-years with $\check{y}_{i j t}=0$ regardless of what i does in other markets.
- Share of firm-market-years for which our algorithm determines that $\check{y}_{i j t}=1$ solved at each intermediate step of the algorithm:

	Percentage of Choices With $\check{y}_{i j t}=1$ Solved
Step 1	96.23%
Step 2	96.23%
Step 3	100%

- \Rightarrow a large share of firm-market-years with $\check{y}_{\mathrm{yjt}}=1$ are also solved in Step 1.

Performance of Algorithm at Estimated Parameters

- The destinations with more unsolved values of $\left\{\check{y}_{i j t}\right\}_{i j t}$ are the following:

	Share of Unsolved Choices	
	Step 1	Step 3
Mexico	3.23%	6.81%
Belgium	5.77%	6.61%
Netherlands	5.79%	5.97%
Germany	3.98%	5.53%
Sweden	2.61%	4.85%
France	2.44%	4.60%
\vdots		
Saint Vincent and the Grenadines	6.38%	1.44%
Saint Lucia	5.79%	1.57%
Jordan	5.15%	1.22%
Israel	5.28%	0.83%
Grenada	4.51%	1.22%

Performance of Algorithm at Alternative Parameter Values

- Performance when each parameter is 20% larger than our baseline estimate.

Parameter	Percentage of Firms Solved	Time (in seconds)	Parameter	Percentage of Firms Solved	Time (in seconds)
γ_{0}^{F}	97.18%	606	κ_{l}^{E}	96.03%	703
γ_{g}^{F}	97.25%	479	γ_{a}^{E}	91.28%	1256
γ_{l}^{F}	95.89%	710	φ_{a}^{E}	94.70%	935
γ_{a}^{F}	96.21%	628	κ_{a}^{E}	96.35%	647
γ_{0}^{S}	96.77%	582	γ_{g}^{N}	95.67%	795
γ_{g}^{S}	96.59%	569	κ_{g}^{N}	95.86%	742
γ_{l}^{S}	95.80%	719	γ_{l}^{N}	95.67%	687
γ_{a}^{S}	95.96%	692	κ_{l}^{N}	95.83%	689
γ_{g}^{E}	93.27%	1119	γ_{a}^{N}	95.77%	702
φ_{g}^{E}	93.59%	1070	κ_{a}^{N}	95.81%	686
κ_{g}^{E}	97.33%	479	σ_{ν}	93.88%	841
γ_{l}^{E}	95.52%	790	p	82.29%	2841
φ_{I}^{E}	95.65%	749			

[^2]
Performance of Algorithm at Alternative Parameter Values

- Performance when each parameter is 20% smaller than our baseline estimate.

Parameter	Percentage of Firms Solved	Time (in seconds)	Parameter	Percentage of Firms Solved	Time (in seconds)
γ_{0}^{F}	93.12%	1038	κ_{l}^{E}	95.46%	796
γ_{g}^{F}	92.40%	1198	γ_{a}^{E}	96.98%	504
γ_{l}^{F}	95.67%	749	φ_{a}^{E}	96.31%	590
γ_{a}^{F}	95.29%	798	κ_{a}^{E}	94.79%	856
γ_{0}^{S}	94.41%	889	γ_{g}^{N}	95.83%	695
γ_{g}^{S}	94.45%	939	κ_{g}^{N}	95.64%	708
γ_{l}^{S}	95.79%	724	γ_{l}^{N}	95.81%	680
γ_{a}^{S}	95.67%	771	κ_{l}^{N}	95.73%	701
γ_{g}^{E}	97.06%	524	γ_{a}^{N}	95.81%	692
φ_{g}^{E}	96.96%	534	κ_{a}^{N}	95.83%	691
κ_{g}^{E}	84.40%	1594	σ_{ν}	96.81%	592
γ_{l}^{E}	96.10%	675	p	98.93%	250
φ_{I}^{E}	95.99%	704			

[^3]EXTRA SLIDES:
XVI. ADDITIONAL RESULTS ON STRUCTURAL ESTIMATES

- CORRELATION COEFFICIENTS -

Correlation in Fixed Costs Unobs. Term: United States

Correlation in Fixed Costs Unobs. Term: Germany

Correlation in Fixed Costs Unobs. Term: China

Correlation in Fixed Costs Unobs. Term: Spain

[^0]: Note: ${ }^{a}$ denotes significance at 1%. In parenthesis, robust standard errors, standard errors clustered by firmyear, and standard errors clustered by firm, respectively.

[^1]: Note: For each parameter, the number in the "Alternative Estimates" column is the mode of the corresponding nonparametric distribution of the estimates obtained when reestimating our model using 50 alternative sets of 5 simulation draws of χ_{i}^{s}.

[^2]: Note: Percentage of Firms Solved and Time measured after Step 3 of the algorithm has concluded.

[^3]: Note: Percentage of Firms Solved and Time measured after Step 3 of the algorithm has concluded.

