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Pandemic Priors

• The pandemic caused macroeconomic variables to display
complex patterns that hardly follow any historical behavior

• Bayesian VARs: very low number of extreme pandemic
observations bias the estimated persistence of the variables
◦ Affect forecasts
◦ Myopic view of the economic effects after a structural shock

• This paper: Easy and straightforward solution to deal with
extreme episodes, that recovers historical relationships and the
proper identification and propagation of structural shocks
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Data

Figure: Industrial production and unemployment rate variation over time
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Implication for Bayesian VARs

• Challenge: deal with such unusual behavior and retain historical
relationships, produce reliable forecasts, and provide correct
interpretations of economic shocks

• Minnesota Prior (Litterman, 1986): computationally feasible
estimations of large information sets overcoming the curse of
dimensionality

• Pandemic Priors: extension to allow for time dummies

◦ Implementation via dummy observations (Bańbura, Giannone, and
Reichlin, 2010)

◦ Optimal selection of the shrinkage level for extreme observations

◦ Nests the boundary cases of Uninformative and Minnesota Priors

Cascaldi-Garcia (Federal Reserve Board) Pandemic Priors 4



Related literature
• Common shift and persistence of the volatility of shocks: Lenza

and Primiceri (2021)

• Discarding extreme observations: Schorfheide and Song (2020)

• Extreme observations as random shifts in the stochastic volatility:
Carriero, Clark, Marcellino, and Mertens (2022) and Álvarez and
Odendahl (2022)

• Non-parametric methods: Huber, Koop, Onorante, Pfarrhofer,
and Schreiner (2023)

• VAR with t-distributed errors: Bobeica and Hartwig (2023)

• VAR augmented with the log-differences of the information set
during the pandemic: Ng (2021)

• Outliers in the context of dynamic factor models: Antolin-Diaz,
Drechsel, and Petrella (2021)
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Implementation
• Minnesota Prior (Litterman, 1986) through dummy observations

(Bańbura et al., 2010) + time dummies on extreme observations

• VAR model with n variables and p lags as in:

Yt = c + 1t=ada + ... + 1t=a+hda+h + A1Yt−1 + ... + ApYt−p + ut,

where
• E[utu′

t] = Ψ
• da, ..., da+h are h vectors with n time dummies for periods a

through a + h (e.g., the pandemic)
• 1t=i is an indicator function that takes value 1t=i = 1 for periods

i = a, ..., a + h, and 0 otherwise
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Implementation
• Prior: variables centered around the random walk with a drift +

abnormal period where the relationship between the variables
may diverge from history (e.g., the pandemic)

Yt = c + 1t=ada + ... + 1t=a+hda+h + Yt−1 + ut,

• equivalent to shrinking A1 to the identity and A2, ..., Ap to zero

• Standard prior moments:
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• Prior for the intercept is diffuse
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Implementation

• Normal inverse Wishart prior

vec(B)|Ψ ∼ N (vec(B0), Ψ ⊗ Ω0) and Ψ ∼ iW (S0, α0)

where
• B: reduced-form coefficients from Yt = XtB + Ut

• B0, Ψ0, S0, and α0 are prior expectations
• E[Ψ] = Σ = diag(σ2

1 , ..., σ2
n)

• In practice: dummy observations
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Implementation

Yd =



diag(δ1σ1, ..., δnσn)/λ
0n(p−1)×n

...
diag(σ1, ..., σn)

...
01×n
0h×n



Xd =



Jp ⊗ diag(σ1, ..., σn)/λ 0np×1 0np×h
... ... ...

0n×np 0n×1 0n×h
... ... ...

01×np ϵ 01×h
0h×np 0h×1 diag(ϕ1, ..., ϕh)


• Priors for the h time dummies imposed through ϕ1, ..., ϕh = ϕ
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Implementation
What is new:

ϕ governs the prior associated with the time dummies

• ϕ → 0: prior for the dummies is fairly uninformative, and soak
the variance of the pandemic period

• ϕ → ∞: full signal is taking from the pandemic period, and that
information is treated as any other observation

Pandemic Priors nest the boundary cases of no-to-full signal from the
pandemic observations through the parameter ϕ

Selection of ϕ: can be arbitrary by the econometrician’s taste of how
much information to take from those extreme values, or optimally
chosen (more to follow)
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Implementation

• Combine LHS and RHS as Y∗
t = [Y

′
t, Y

′
d] and X∗

t = [X
′
t, X

′
d]

• Posterior:

vec(B)|Ψ, Yt ∼ N
(

vec(B̃), Ψ ⊗
(

X∗′
t X∗

t

)−1
)

Ψ|Yt ∼ iW
(
Σ̃, Td + 2 + T − m

)
,

where
• T is the sample size, Td is the length of dummy observations,

m = np + 1 + h

• B̃ =
(

X∗′
t X∗

t

)−1 (
X∗′

t Y∗
t

)
, and Σ̃ =

(
Y∗

t − X∗
t B̃
)′ (

Y∗
t − X∗

t B̃
)

• Possible to also impose a no-cointegration prior by constraining
the sum of the coefficients (Bańbura et al., 2010)
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Optimal selection of ϕ

• Defines how much signal to take from the extreme observations in
the system

• Method to select the optimal level of ϕ: maximizing the marginal
density of the model

• Adaptation of the optimal overall prior tightness described in
Carriero, Kapetanios, and Marcellino (2012) and Carriero, Clark,
and Marcellino (2015)
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Optimal selection of ϕ

The optimal ϕ∗ is defined as

ϕ∗ = arg max
ϕ

ln pϕ(Y),

where pϕ(Y) is the marginal density, or marginal likelihood, by
integrating the set Θ of coefficients, of

pϕ(Y) = p(Y|ϕ) =
∫

p(Y|Θ, ϕ)p(Θ|ϕ)dΘ
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Optimal selection of ϕ

Calculated in closed-form (normal inverse Wishart prior):

pϕ(Y) = π− Tn
2 ×

∣∣∣(I + XtΩ0(ϕ)X
′
t

)
(−1)

∣∣∣ n
2 × |S0|

α0
2 ×

(
Γn

α0+T
2

Γn
α0
2

)
× ...

... ×
∣∣∣S0 + (Yt − XtB0)

′ (
I + XtΩ0(ϕ)X

′
t

)
(−1) (Yt − XtB0)

∣∣∣− α0+T
2

,

where:
• α0 = n + 2
• Γn is the n-variate gamma function
• prior variance expectation Ω0(ϕ) is now a function of ϕ

In practice: optimal ϕ∗ is the one that maximizes the marginal density
over a discrete grid of values for ϕ
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Pandemic Priors applicability test

Applicability test: evaluate the marginal density of the two boundary
cases of a Minnesota Prior model (ϕ∗ → ∞) and of an uninformative
Pandemic Priors model (ϕ∗ → 0)

Agnostic way of checking if the observations should be treated
differently or not

Calculate the ratio Rt,w between the marginal density of the boundary
cases for every sub-sample with a defined length w:

Rt,w =
ln pϕ→∞(Y)t,w

ln pϕ→0(Y)t,w

Cascaldi-Garcia (Federal Reserve Board) Pandemic Priors 15



Pandemic Priors applicability test

The Rt,w test:

• If the model favors treating the observations from t to t + w − 1 as
extreme values that should be downplayed by some degree:

◦ ln pϕ→0(Y)t,w > ln pϕ→∞(Y)t,w
◦ Rt,w < 1
◦ Application of the Pandemic Priors is advisable for t to t + w − 1

• If the model favors a conventional Minnesota Prior:

◦ ln pϕ→0(Y)t,w < ln pϕ→∞(Y)t,w
◦ Rt,w > 1
◦ Time dummies for t to t + w − 1 will be ineffective
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Monte Carlo simulation
• “Abnormal” shocks e∗i,t affecting all variables simultaneously at a

pre-defined time, but with different size and persistence

• Stationary system of four variables and two lags

D0


y1,t
y2,t
y3,t
y4,t

 = C + D1


y1,t−1
y2,t−1
y3,t−1
y4,t−1

+ D2


y1,t−2
y2,t−2
y3,t−2
y4,t−2

+


e1,t
e2,t
e3,t
e4,t

+


e∗1,t
e∗2,t
e∗3,t
e∗4,t



e∗i,t =


0, t < t∗

e∗i,t∗ , t = t∗

ρie∗i,t−1, t > t∗
.

• Simulate data for 600 periods, with abnormal shocks at t∗ = 501
Coefficients
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Monte Carlo simulation
Shocks varying from 5 to 20 standard deviations:

ϵ1,t∗

ϵ2,t∗

ϵ3,t∗

ϵ4,t∗

 =


5
10
15
20

 ,


ρ1
ρ2
ρ3
ρ4

 =


0.6
0.7
0.3
0.9

 .

Figure: Simulated series
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Monte Carlo simulation
First step: Rt,w test

• Over the 600 observations, with w = 24 periods
• ϕ = 5 for the Minnesota Prior
• ϕ = 0.001 for the uninformative Pandemic Priors

Figure: Marginal density ratio (Minnesota Prior / uninf. Pandemic Priors)
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Monte Carlo simulation

Second step: Comparison of Pandemic Priors with a baseline and the
data generating process

• Bayesian VARs in levels with the Minnesota Prior (baseline) and
Pandemic Priors (time dummies for the first 24 periods from the
shock t = 501, ..., 524)

• Optimal ϕ∗ = 0.075, distant from the grid boundary cases (0.001
for uninformative Pandemic Priors and 5 for Minnesota Prior)

Grid: [0.001, 0.01, 0.025, 0.050, 0.075, 0.10, 0.15, 0.20, 0.25, 0.30, 0.35, 0.40, 0.45, 0.50, 0.75, 1, 2, 5]
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Monte Carlo simulation

Figure: Posterior draws for the autoregressive coefficients

1. Large and persistent shocks → d.g.p. lies outside of the baseline
2. Considerably more uncertainty with the baseline
3. Optimal ϕ∗ matters for coverage Uninformative prior
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Empirical example

• Monthly Bayesian VAR in levels, from January 1975 through
December 2022, 12 lags

Table: Information set

Name Description
1 EBP Excess bond premium as computed by Gilchrist and Zakrajšek (2012).
2 S&P 500 S&P 500 stock index in log levels.
3 Shadow Rate Fed funds rate shadow rate as computed by Wu and Xia (2016).
4 Consumption (PCE) Real consumption in log levels.
5 Price index PCE Price Index in log levels.
6 Employment PCE Total nonfarm payroll in log levels
7 Ind. production Real industrial output in log levels.
8 Unemployment rate Number of unemployed as a percentage of the labor force.
Note: All for the January 1975 to March 2022 period, retrieved on February 2023.
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Empirical example
First step: Rt,w test

• January 1975 to December 2022, with w = 6 months
• Pandemic should be downplayed, but no other period
• Rt,w seems to drop near recessions

Figure: Marginal density ratio (Minnesota Prior / uninf. Pandemic Priors)
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Empirical example

• Fixed overall prior tightness λ = 0.2

• Six individual dummies for March 2020 through August 2020 →
onset of the pandemic, extreme observations in unemployment
rate and industrial production

• Optimal ϕ∗ = 0.05, distant from the grid boundary cases (0.001 for
uninformative Pandemic Priors and 5 for Minnesota Prior)
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Pandemic Priors matter for estimation, ...
• Substantial heterogeneity: size, timing, and persistence

Figure: Posterior draws for the intercept and pandemic dummies
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Pandemic Priors matter for estimation, ...
• Minnesota Prior (baseline) and Pandemic Priors

Figure: Posterior draws for the autoregressive coefficients
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..., for forecasts, ...

Figure: Unconditional forecasts as of December 2022
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..., and for the identification of structural shocks
• Excess Bond Premium shock (Gilchrist and Zakrajšek, 2012 and

Caldara, Fuentes-Albero, Gilchrist, and Zakrajšek, 2016)

Figure: Impulse responses to a 1 s.d. EBP shock
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Comparison to alternative methods
Schorfheide and Song (2020):

• Advocate for excluding the extreme observations from March to
June 2020

• Pandemic Priors nest the procedure with uninformative priors
(ϕ → 0) as a boundary case

Lenza and Primiceri (2021):

• Shock volatilities scaled up by the same constant, and same
persistence (commonality assumption)

• Pandemic Priors allow for heterogeneous shifts (timing and size)
and rate of decay → similar results, but simpler and more flexible
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Comparison to alternative methods
Figure: Comparison of impulse responses to a 1 s.d. EBP shock

• Distortion comes from the early months of the pandemic
• IRFs are similar, but not the same
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A reality check
• What happened since December 2021?

Figure: Unconditional forecast as of December 2021 vs Data
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Conclusion

• Extreme observations blur our interpretation of macroeconomic
historical relationships and economic effects of shocks

• Easy and straightforward way of dealing with such episodes,
accepting that there is uncertainty about their potential outcome

• Pandemic Priors...
◦ ...recover historical relationships and the proper identification of

structural shocks

◦ ...accommodates any state-of-the-art structural identification

◦ allow policymakers to make well-informed decisions about
responses to economic shocks going forward

MATLAB, Julia, and Python codes at www.danilocascaldigarcia.com
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Monte Carlo simulation
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Monte Carlo simulation - Coefficients

C =


0.10
0.15
0.05
0.20

 , D0 =


1 0.20 −0.15 −0.1
0 1 −0.15 0.20
0 0 1 −0.30
0 0 0 1

 ,

D1 =


0.65 −0.10 0.10 0.05
0.20 0.60 0.10 −0.10

−0.10 −0.20 0.65 0.15
−0.05 −0.15 0.20 0.80

 , D2 =


0.15 0 0.05 0
0.10 0.10 0.05 0

0 −0.01 0.10 0.05
0 −0.05 0.10 0.10

 ,

Back
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Monte Carlo simulation

Figure: Posterior draws for the autoregressive coefficients with
uninformative ϕ prior

Back
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Sensitivity to different levels of ϕ
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Sensitivity to different levels of ϕ

Figure: Impulse responses to a 1 s.d. EBP shock under different ϕ levels

Pandemic Priors nest any setup for the prior belief about how much
information one wants to be stemmed from the pandemic period
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