Nowcasting Consumer Price Inflation Using High-Frequency Scanner Data: Evidence from Germany

Günter W. Beck (University of Siegen), Kai Carstensen (Kiel University), Jan-Oliver Menz (Deutsche Bundesbank), Richard Schnorrenberger (Kiel University) and Elisabeth Wieland (Deutsche Bundesbank)

Madrid, October 19, 2023

The views expressed in this presentation are those of the authors and do not necessarily reflect those of the Deutsche Bundesbank, European Central Bank or the Eurosystem.

◆□ → ◆□ → ◆ = → ◆ = → ○ へ ⊙

• (Reliable) Real-time information on aggregate and disaggregate inflation can be very beneficial:

・ 同 ト ・ ヨ ト ・ ヨ ト

- (Reliable) Real-time information on aggregate and disaggregate inflation can be very beneficial:
 - Large shocks (e.g., Global Financial Crisis, Covid-19 pandemic, Russia's invasion of Ukraine) generate enormous uncertainty and require swift and decisive policy measures.
 - Real-time information can generally improve decision making (detection of turning points, information is available when decisions are made, ...)
 - Real-time information can improve the communication of central banks.
 - •

イロト 不得 ト イヨト イヨト

- (Reliable) Real-time information on aggregate and disaggregate inflation can be very beneficial:
 - Large shocks (e.g., Global Financial Crisis, Covid-19 pandemic, Russia's invasion of Ukraine) generate enormous uncertainty and require swift and decisive policy measures.
 - Real-time information can generally improve decision making (detection of turning points, information is available when decisions are made, ...)
 - Real-time information can improve the communication of central banks.
 ...
- Official price statistics are generally available at a monthly frequency only and published with a certain time lag (≈ two weeks after a reporting month).

イロト 不得 トイヨト イヨト

• Information flow: Official data versus our scanner data in Germany

イロト イボト イヨト イヨト

• Information flow: Official data versus our scanner data in Germany

ļ	Officia	l Statistic	s	Fla	ash Estimates 28–10	Offici Oc	al Releases et 2022 1–11	1	Flash Estim 11-29	ates	Official Rel Nov 20 12-13	eases 22		Flash Estimate	15
	10-03	10-10	10-17	10-24	10-31	11-07	11-14	11-21	11-28	12-05	12-12	12-19	12-26	01-02	
Oct 2022			Nov 2022				Dez 2022			Jan 2023		time			

э

イロン イ理 とく ヨン イ ヨン

• Information flow: Official data versus our scanner data in Germany

э

イロト イボト イヨト イヨト

• Information flow: Official data versus our scanner data in Germany

• Major objective of our paper: Combine non-standard high-frequency price (and quantity) data with state-of-the-art machine learning methods to provide high-quality real-time nowcast inflation

2

イロト イヨト イヨト イヨト

- Use non-standard high-frequency price (and quantity) data:
 - Household scanner data covering daily purchases of fast-moving consumer goods (GFK:FMCG data) at the barcode level
 - High-frequency information on energy and package-holiday prices

- Use non-standard high-frequency price (and quantity) data:
 - Household scanner data covering daily purchases of fast-moving consumer goods (GFK:FMCG data) at the barcode level
 - High-frequency information on energy and package-holiday prices
- Basic steps of our approach:

- Use non-standard high-frequency price (and quantity) data:
 - Household scanner data covering daily purchases of fast-moving consumer goods (GFK:FMCG data) at the barcode level
 - High-frequency information on energy and package-holiday prices
- Basic steps of our approach:
 - Map our scanner (and other) data to the lowest available category level of the official price statistics (=10-digit level)

- Use non-standard high-frequency price (and quantity) data:
 - Household scanner data covering daily purchases of fast-moving consumer goods (GFK:FMCG data) at the barcode level
 - High-frequency information on energy and package-holiday prices
- Basic steps of our approach:
 - Map our scanner (and other) data to the lowest available category level of the official price statistics (=10-digit level)
 - Compute high-frequency price indices for these items

- Use non-standard high-frequency price (and quantity) data:
 - Household scanner data covering daily purchases of fast-moving consumer goods (GFK:FMCG data) at the barcode level
 - High-frequency information on energy and package-holiday prices
- Basic steps of our approach:
 - Map our scanner (and other) data to the lowest available category level of the official price statistics (=10-digit level)
 - Compute high-frequency price indices for these items
 - Combine the high-frequency with complementary low-frequency (= official) price indices to nowcast inflation:

イロト イボト イヨト イヨト

- Use non-standard high-frequency price (and quantity) data:
 - Household scanner data covering daily purchases of fast-moving consumer goods (GFK:FMCG data) at the barcode level
 - High-frequency information on energy and package-holiday prices
- Basic steps of our approach:
 - Map our scanner (and other) data to the lowest available category level of the official price statistics (=10-digit level)
 - Compute high-frequency price indices for these items
 - Combine the high-frequency with complementary low-frequency (= official) price indices to nowcast inflation:
 - At the item level

(日)

- Use non-standard high-frequency price (and quantity) data:
 - Household scanner data covering daily purchases of fast-moving consumer goods (GFK:FMCG data) at the barcode level
 - High-frequency information on energy and package-holiday prices
- Basic steps of our approach:
 - Map our scanner (and other) data to the lowest available category level of the official price statistics (=10-digit level)
 - Compute high-frequency price indices for these items
 - Combine the high-frequency with complementary low-frequency (= official) price indices to nowcast inflation:
 - At the item level
 - At product-group levels used in policy analysis ((un-)processed food, ...)

イロト 不得 トイヨト イヨト

- Use non-standard high-frequency price (and quantity) data:
 - Household scanner data covering daily purchases of fast-moving consumer goods (GFK:FMCG data) at the barcode level
 - High-frequency information on energy and package-holiday prices
- Basic steps of our approach:
 - Map our scanner (and other) data to the lowest available category level of the official price statistics (=10-digit level)
 - Compute high-frequency price indices for these items
 - Combine the high-frequency with complementary low-frequency (= official) price indices to nowcast inflation:
 - At the item level
 - At product-group levels used in policy analysis ((un-)processed food, ...)
 - At the aggregate level (headline inflation)

- Use non-standard high-frequency price (and quantity) data:
 - Household scanner data covering daily purchases of fast-moving consumer goods (GFK:FMCG data) at the barcode level
 - High-frequency information on energy and package-holiday prices
- Basic steps of our approach:
 - Map our scanner (and other) data to the lowest available category level of the official price statistics (=10-digit level)
 - Compute high-frequency price indices for these items
 - Combine the high-frequency with complementary low-frequency (= official) price indices to nowcast inflation:
 - At the item level
 - At product-group levels used in policy analysis ((un-)processed food, ...)
 - At the aggregate level (headline inflation)

 \Longrightarrow Apply machine learning (LASSO, ridge, sg-LASSO) techniques for

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

		~~	20.	~0
Beck	et	al.	(202	22)

aggregates

Related literature

- Literature on the use of scanner data for economic research including Kaplan and Schulhofer-Wohl (2017), Jaravel (2019), Butters et al., (2022), Karadi et al., (2023), Beck and Lein (2020), Jaravel and O'Connell (2020), Messner et al., (2023), $\dots \Longrightarrow$ Our contribution: Use of household scanner data to nowcast headline inflation.
- Literature that seeks to construct high-frequency measures of existing low-frequency macroeconomic series including Anenberg and Laufer (2017), Eraslan and Götz, 2021), Buda et al., 2022, Cavallo and Rigobon (2016), Jaravel and O'Connell (2020), Alvarez and Lein (2020) ... \implies Our contribution: Construct both aggregate and disaggreagte weekly inflation measures for unprocessed food, processed food, and non-durable goods.
- Literature on nowcasting key macroeconomic variables including Modugno (2013), Breitung and Roling, (2015), Knotek II and Zaman (2017) Clark et al. (2022) Aliaj et al. (2023), Macias et al. (2023), Powell et al., (2018), Harchaoui and Janssen (2018), Aparicio and Bertolotto (2020) ... \implies Our contribution: Construct both aggregate and disaggreagte weekly inflation measures for Beck et al. (2022)

Related literature

- Literature examining whether it pays off to forecast headline inflation by explicitly using disaggregate price indicues including Hendry and Hubrich (2011), Ibarra (2012) Espasa and Mayo-Burgos (2013), Bermingham and D'Agostino (2013) and more recently Joseph et al. (2022), ... ⇒ Our contribution: We show that combining disaggregate inflation nowcasts into an aggregate nowcast for headline inflation is a highly competitive approach
- Literature on recent advances in machine learning that seek to improve inflation forecasts by exploiting large data sets including Garcia et al. (2017), Medeiros et al. (2021) and Babii et al. (2022), Paranhos (2021), Li et al. (2022), Goulet Coulombe et al. (2022), Hauzenberger et al. (2023), Joseph et al. (2022), Botha et al. (2022), and Barkan et al. (2022) ... ⇒ Our contribution: We show that machine learning tools provide an effective solution to handle a large set of disaggregate price series in a mixed-frequency setting.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

2

• Our scanner-based price indices track their official counterparts very well.

イロト イポト イヨト イヨト

- Our scanner-based price indices track their official counterparts very well.
- The high-frequency, scanner-based price indices improve inflation nowcasts at the **item level** considerably, notably already after the first seven days of a month.

(4) (日本)

- Our scanner-based price indices track their official counterparts very well.
- The high-frequency, scanner-based price indices improve inflation nowcasts at the **item level** considerably, notably already after the first seven days of a month.
- Applying shrinkage estimators to exploit the large set of scanner-based price indices in nowcasting **product groups** such as processed and unprocessed food, we obtain substantial predictive gains compared to a time series benchmark model.

- Our scanner-based price indices track their official counterparts very well.
- The high-frequency, scanner-based price indices improve inflation nowcasts at the **item level** considerably, notably already after the first seven days of a month.
- Applying shrinkage estimators to exploit the large set of scanner-based price indices in nowcasting **product groups** such as processed and unprocessed food, we obtain substantial predictive gains compared to a time series benchmark model.
- Adding high-frequency information on energy and travel services, we construct nowcasting models of **headline inflation** that are on par with, or even outperform, market-based inflation expectations.

・ロト ・ 一下・ ・ 日 ・

Overview

 Data: Sources and processing Data sources Mapping scanner data to the official CPI classification system

Nowcasting approach and results Nowcasting item-level inflation Nowcasting product group-specific inflation Nowcasting headline inflation

3 Robustness analysis

4 Summary and conclusions

Table of contents

1 Data: Sources and processing

Data sources

Mapping scanner data to the official CPI classification system

Nowcasting approach and results Nowcasting item-level inflation Nowcasting product group-specific inflation Nowcasting headline inflation

3 Robustness analysis

4 Summary and conclusions

Table of contents

1 Data: Sources and processing

Data sources

Mapping scanner data to the official CPI classification system

2 Nowcasting approach and results Nowcasting item-level inflation Nowcasting product group-specific inflation Nowcasting headline inflation

3 Robustness analysis

4 Summary and conclusions

Data sources

- High-frequency data:
 - Fast-moving consumer good (FMCG) scanner data from GfK (GFK:FMCG scanner data)
 - Energy prices
 - Package-holiday prices

э

Data sources

- High-frequency data:
 - Fast-moving consumer good (FMCG) scanner data from GfK (GFK:FMCG scanner data)
 - Energy prices
 - Package-holiday prices
- Low-frequency data:
 - Monthly 10-digit COICOP index series from the German National Statistical Office

< ロ > < 同 > < 回 > < 回 > < 回 > <

Data sources

GFK: FMCG scanner data

• The GFK:FMCG scanner data primarily cover products from the sectors food, beverages, household and personal care.

GFK:FMCG scanner data

- The GFK:FMCG scanner data primarily cover products from the sectors food, beverages, household and personal care.
- The data are collected by participants of the GfK household panel which constitutes a **representative sample** (around 30,000 households) of the German population.

GfK Household Panel								
Household	Product Description	Barcode	Quantities	Sales	Retailer	Purchase Date		
1	Green Hill Butter 250g	400123123123	1	3.39 €	A	28.11.2022		
2	Lovely Butter 250g	400456456456	2	6.58 €	В	01.12.2022		
3	Lovely Butter 250g	400456456456	1	3.39 €	С	01.12.2022		
4	Green Hill Butter 250g	400123123123	1	3.29 €	В	02.12.2022		
5	Green Hill Butter 250g	400123123123	2	6.98 €	A	03.12.2022		
6	Sunny Sunflower oil 11	100445566123	1	2.29 €	В	01.12.2022		
7	Blossom Sunflower oil 11	100112233123	1	3.99 €	С	01.12.2022		

Note: For confidentiality reasons, "Product description" and "Barcode" are fictitious entries.

- Purchase records are available at the product level, defined by their barcode (GTIN).
- A **barcode dictionary** contains more detailed product information: manufacturer, brand, volume (package size), product category, ...
- Our sample period is 08 January 2003 to 31 December 2022.

Table of contents

1 Data: Sources and processing

Data sources

Mapping scanner data to the official CPI classification system

2 Nowcasting approach and results Nowcasting item-level inflation Nowcasting product group-specific inflation Nowcasting headline inflation

3 Robustness analysis

4 Summary and conclusions

Overview of COICOP classification system

• COICOP 2-digit level categories:

SEA-VPI / SEA-CPI*	Bezeichnung / item		
	Verbraucherpreisindex insgesamt	Consumer price index, total	
01	Nahrungsmittel und alkoholfreie Getränke	Food and non-alcoholic beverages	96,85
02	Alkoholische Getränke und Tabakwaren	Alcoholic beverages and tobacco	37,77
03	Bekleidung und Schuhe	Clothing and footwear	45,34
04	Wohnung, Wasser, Strom, Gas und andere Brennstoffe	Housing, water, electricity, gas and other fuels	324,70
05	Möbel, Leuchten, Geräte u.a. Haushaltszubehör	Furniture, lighting equipment, appliances and other household equipment	50,04
06	Gesundheit	Health	46,13
07	Verkehr	Transport	129,05
08	Post und Telekommunikation	Communication	26,72
09	Freizeit, Unterhaltung und Kultur	Recreation, entertainment and culture	113,36
10	Bildungswesen	Education	9,02
11	Gaststätten- und Beherbergungsdienstleistungen	Restaurant and accommodation services	46,77
12	Andere Waren und Dienstleistungen	Miscellaneous goods and services	74,25

< A I

Overview of COICOP classification system

• COICOP 2-, 3-, 4-, 5- and 10-digit level categories:

01	Nahrungsmittel und alkoholfreie Getränke	Food and non-alcoholic beverages	96,85
011	Nahrungsmittel	Food	84,87
0111	Brot und Getreideerzeugnisse	Bread and cereals	15,03
01111	Reis, einschl. Reiszubereitungen	Rice, incl. rice preparations	0,30
0111101100	Reis	Rice	
0111109100	Reiszubereitung	Rice preparations	
01112	Mehl u.a. Getreideerzeugnisse	Flour and other cereals	0,36
0111201100	Weizenmehl	Flour	
0111203100	Grieß, Roggenmehl oder Ähnliches	Semolina, rye flour or the like	
01113	Brot und Brötchen	Bread and bread rolls	6,27
0111311100	Weißbrot	White bread	
0111312100	Roggenbrot oder Mischbrot	Rye bread or brown bread	
0111313200	Körnerbrot oder Vollkornbrot	Granary bread or wholemeal bread	
0111320200	Brötchen zum Fertigbacken	Ready-to-bake rolls	
0111320300	Frisches Brötchen	Fresh bread rolls	

- 4 回 ト 4 ヨ ト 4 ヨ ト

Mapping scanner data into the German COICOP system

< □ > < 同 > < 回 > < 回 > < 回 >
Mapping scanner data into the German COICOP system

- To match the products of the scanner data to the corresponding COICOP- 10 items, we make use
 - of the product categories and the detailed product descriptions included in the GfK household panel and
 - the item descriptions contained in the HICP manual.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Mapping scanner data into the German COICOP system

- To match the products of the scanner data to the corresponding COICOP- 10 items, we make use
 - of the product categories and the detailed product descriptions included in the GfK household panel and
 - the item descriptions contained in the HICP manual.
- Mapping is done using a combination of machine learning and manual work

- 4 回 ト 4 ヨ ト 4 ヨ ト

Mapping between scanner data and the German HICP

• Mapped series:

	H	HCP	Scanner data		
Component	COICOPs	Weight	COICOPs	Weight	
Unprocessed food	38	2.4	30	2.0	
Fruit	8	0.7	6	0.5	
Vegetables	11	0.7	9	0.6	
Meat & eggs	15	0.9	15	0.9	
Fish	4	0.1	0	1.1	
Processed food	142	11.1	116	8.1	
Fruit	7	0.2	5	0.1	
Vegetables	12	0.4	11	0.4	
Meat	13	1.1	11	0.9	
Fish	7	0.2	4	0.1	
Bread & cereals	25	1.5	23	1.4	
Dairy products & fat	18	1.5	14	1.4	
Beverages	29	2.9	23	2.7	
Other food products	28	1.2	25	1.0	
Tobacco	3	2.1	0		
NEIG	302	23.0	39	1.8	
Non-durables	75	5.9	36	1.8	
Semi-durables	139	8.7	3	0.1	
Durables	88	8.4	0	1.1	
Total HICP	482	36.5	185	11.9	

Table 2: Mapping between high-frequency price data and the German HICP

Beck et al. (2022)

Nowcasting inflation using scanner data

Scanner-based and official price indices

• Scanner-based 10-digit price indices are computed using a (rolling) weighted time-product dummy price index (mean splice).

- 4 回 ト 4 ヨ ト 4 ヨ ト

Scanner-based and official price indices

- Scanner-based 10-digit price indices are computed using a (rolling) weighted time-product dummy price index (mean splice).
- Selected individual series:

Beck et al. (2022)

Nowcasting inflation using scanner data

Table of contents

Data: Sources and processing

Data sources

Mapping scanner data to the official CPI classification system

2 Nowcasting approach and results

Nowcasting item-level inflation Nowcasting product group-specific inflation Nowcasting headline inflation

3 Robustness analysis

4 Summary and conclusions

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Table of contents

Data: Sources and processing Data sources Mapping scanner data to the official CPI classification system

2 Nowcasting approach and results Nowcasting item-level inflation Nowcasting product group-specific inflation Nowcasting headline inflation

3 Robustness analysis

4 Summary and conclusions

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Nowcasting item-level inflation

• For each COICOP-10 item c for which we have weekly GFK:FMCG data available, we estimate a (U-)MIDAS model of the monthly HICP inflation rate, $\pi_{c,t}^{M}$ using

$$\phi(L) \pi^{M}_{c,t+h} = \alpha_{0,h} + \beta_{c,h} B(L^{1/m}; \theta) x^{(m)}_{c,t} + \sum_{i=s}^{13} \gamma_{c,s} d_{c,s,t+h} + \varepsilon_{c,t+h},$$
(1)

- $t = 1, \ldots, T$ denotes the monthly time index
- $m = 1, \ldots, 4$ denotes the weeks of a month.
- The predictors include the weekly GFK:FMCG inflation rate, $x_{c,t}^{(m)}$, sampled four times more frequently than the target variable, and a set of monthly dummy variables, $d_{c,1,t}, \ldots, d_{c,13,t}$.

イロト イヨト イヨト 一座

RMSE for FMCG product-level inflation: U-MIDAS vs. SD-AR benchmark

Un	proces	sed frui	it and [.]	vegetab	les P	rocesse	ed fruit	and ve	egetables
Sweet peppers	0.515^{**}	0.562^{**}	0.555^{**}	0.567^{**}	Frozen chips or the like	0.522	0.673	0.652	0.64
Butterhead Lettuce	0.555^{**}	0.628^{**}	0.582^{**}	0.63**	Apple sauce				0.784 -
Onion or garlic	0.578^{**}		0.678^{**}	0.662^{**}	Tinned mushrooms				0.849 -
Carrots	0.547^{**}				Potatoes				0.916 -
Grapes	0.75^{**}		0.693^{**}		Potato crisps				0.913 -
Lambs lettuce					Asparagus				0.926
Cauliflower or cabbage					Tinned pineapple				0.944
	day 7	day 14	day 21	day 28		day 7	day 14	day 21	day 28
Unprocessed meat, fish and eggs						Processed meat and fish			
Ur	proces	sed me	at, fish	and eg	\mathbf{gs}	Proce	essed m	eat an	d fish
Ur Eggs	nproces 0.666	sed me 0.792	at, fish 0.662	and eg 0.659	ggs Ham or bacon	Proce 0.622	essed m 0.673	eat an 0.675	d fish 0.675
Ur Eggs Fresh poultry	1 proces 0.666 0.791	sed me 0.792 0.808	at, fish 0.662 0.803	and eg 0.659 0.808	ggs Ham or bacon Salami or sausage	Proce 0.622 0.676	essed m 0.673 0.727*	eat an 0.675 0.72*	d fish 0.675 0.72*
Ur Eggs Fresh poultry Minced pork	1proces 0.666 0.791 0.853	sed me 0.792 0.808 0.855	at, fish 0.662 0.803 0.849	and eg 0.659 0.808 0.85	ggs Ham or bacon Salami or sausage Liver sausage	Proce 0.622 0.676 0.705	essed m 0.673 0.727* 0.771	eat and 0.675 0.72* 0.763*	d fish 0.675 0.72* 0.769*
Ur Eggs Fresh poultry Minced pork Minced beef	0.666 0.791 0.853 0.781	sed me 0.792 0.808 0.855 0.885	at, fish 0.662 0.803 0.849 0.886	and eg 0.659 0.808 0.85 0.85	ggs Ham or bacon Salami or sausage Liver sausage Fish fingers	Proce 0.622 0.676 0.705 0.751	essed m 0.673 0.727* 0.771 0.777	eat and 0.675 0.72* 0.763* 0.755*	d fish 0.675 0.72* 0.769* 0.785
Ur Eggs Fresh poultry Minced pork Minced beef Beef for boiling	0.666 0.791 0.853 0.781 0.83	sed me 0.792 0.808 0.855 0.885 0.885	at, fish 0.662 0.803 0.849 0.886 0.876	and eg 0.659	ggs Ham or bacon Salami or sausage Liver sausage Fish fingers Lyoner pork sausage	Proce 0.622 0.676 0.705 0.751 0.733	0.673 0.727* 0.771 0.777 0.791	eat and 0.675 0.72* 0.763* 0.755* 0.771	d fish 0.675 0.72* 0.769* 0.785 0.781
Ur Eggs Fresh poultry Minced pork Minced beef Beef for boiling Pork chop or cutlet	0.666 0.791 0.853 0.781 0.83 0.881	sed me 0.792 0.808 0.855 0.885 0.871 0.902	at, fish 0.662 0.803 0.849 0.886 0.876 0.902	and eg 0.659 0.808 0.808 0.857 0.867 0.876 0.888	ggs Ham or bacon Salami or sausage Liver sausage Fish fingers Lyoner pork sausage Fried sausage	Proce 0.622 0.676 0.705 0.751 0.733 0.777	essed m 0.673 0.727* 0.771 0.777 0.791 0.837	eat and 0.675 0.72* 0.763* 0.755* 0.771 0.816	d fish 0.675 0.72* 0.769* 0.785 0.781 0.81
Ur Eggs Fresh poultry Minced pork Minced beef Beef for boiling Pork chop or cutlet Smoked pork chop	0.666 0.791 0.853 0.781 0.83 0.881 0.881	sed me 0.792 0.808 0.855 0.855 0.885 0.871 0.902 0.92	at, fish 0.662 0.803 0.849 0.886 0.876 0.902 0.894	and eg 0.659 - 0.808 - 0.857 - 0.867 - 0.876 - 0.88 - 0.905 -	ggs Ham or bacon Salami or sausage Liver sausage Fish fingers Lyoner pork sausage Fried sausage Prepared minced meat	Proce 0.622 0.676 0.705 0.751 0.733 0.777 0.807	0.673 0.727* 0.771 0.777 0.791 0.837 0.863	eat and 0.675 0.72* 0.763* 0.755* 0.771 0.816 0.848	d fish 0.675 0.72" 0.769" 0.785 0.781 0.81 0.837

A B A B A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A
 A
 A
 A

RMSE for FMCG product-level inflation: U-MIDAS vs. SD-AR benchmark

Beverages and others					Bread and cereals					
Baking powder	0.544	0.675	0.685	0.679	Flour	0.582	0.557	0.565	0.557	
Orange juice					Pasta				0.796	
Sugar	0.699				Rice				0.809*	
Apple juice					Ready to bake rolls				0.826^{*}	
Blancmange powder					Crisp bread				0.869*	
Food for infants					Cornflakes and muesli				0.853	
Ketchup					Frozen cake, tart or pie				0.875	
	day 7	day 14	day 21	day 28		day 7	day 14	day 21	day 28	
		Non-d	urables			Dair	y prod	ucts an	d fat	
Aluminium foil	0.72	Non-d 0.768*	urables 0.752*	0.749*	Whole milk	Dair 0.39	y prod 0.437	ucts an 0.416	d fat 0.42	
Aluminium foil Toilet tissue	0.72 0.8	Non-di 0.768* 0.8	urables 0.752* 0.796	0.749* 0.803	Whole milk Condensed milk	Dair 0.39 0.359	y prod 0.437 0.442	ucts an 0.416 0.437	d fat 0.42 0.436	
Aluminium foil Toilet tissue Hair shampoo	0.72 0.8 0.725**	Non-do 0.768* 0.8 0.827**	urables 0.752* 0.796 0.857**	0.749* 0.803 0.83**	Whole milk Condensed milk Low fat milk	Dair 0.39 0.359 0.412	y prod 0.437 0.442 0.427	ucts an 0.416 0.437 0.425	d fat 0.42 0.436 0.428	
Aluminium foil Toilet tissue Hair shampoo Deo spray or deo roll on	0.72 0.8 0.725** 0.768*	Non-di 0.768* 0.8 0.827** 0.873	urables 0.752* 0.796 0.857** 0.859*	0.749* 0.803 0.83** 0.851*	Whole milk Condensed milk Low fat milk Cream	Dair; 0.39 0.359 0.412 0.424*	y prod 0.437 0.442 0.427 0.461	ucts an 0.416 0.437 0.425 0.455	d fat 0.42 0.436 0.428 0.457	
Aluminium foil Toilet tissue Hair shampoo Deo spray or deo roll on Hair spray or gel	0.72 0.8 0.725** 0.768* 0.839	Non-dr 0.768* 0.8 0.827** 0.873 0.85*	urables 0.752* 0.796 0.857** 0.859* 0.846*	0.749* 0.803 0.83** 0.851* 0.858	Whole milk Condensed milk Low fat milk Cream Butter	Dair; 0.39 0.359 0.412 0.424* 0.433**	y produ 0.437 0.442 0.427 0.461 0.498**	ucts an 0.416 0.437 0.425 0.455 0.457**	d fat 0.42 0.436 0.428 0.428 0.457 0.458**	
Aluminium foil Toilet tissue Hair shampoo Deo spray or deo roll on Hair spray or gel Paper handkerchiefs	0.72 0.8 0.725** 0.768* 0.839 0.924	Non-di 0.768* 0.8 0.827** 0.873 0.85* 0.832	0.752* 0.796 0.857** 0.859* 0.846* 0.83	0.749* 0.803 0.83** 0.851* 0.858 0.834	Whole milk Condensed milk Low fat milk Cream Butter Curd	Dair, 0.39 0.359 0.412 0.424* 0.433** 0.539	y produ 0.437 0.442 0.427 0.461 0.498** 0.638	ucts an 0.416 0.437 0.425 0.455 0.457** 0.622	d fat 0.42 0.436 0.428 0.427 0.457 0.458*** 0.612	
Aluminium foil Toilet tissue Hair shampoo Deo spray or deo roll on Hair spray or gel Paper handkerchiefs Toothpaste	0.72 0.8 0.725** 0.768* 0.839 0.924 0.866	Non-di 0.768* 0.8 0.827** 0.873 0.85* 0.832 0.887*	0.752* 0.796 0.857** 0.859* 0.846* 0.83 0.889*	0.749* 0.803 0.83** 0.851* 0.858 0.834 0.885**	Whole milk Condensed milk Low fat milk Cream Butter Curd Sliced cheese	Dair, 0.39 0.359 0.412 0.424* 0.433** 0.539 0.593	y prod 0.437 0.442 0.427 0.461 0.498** 0.638 0.68	ucts an 0.416 0.437 0.425 0.455 0.457** 0.622 0.678	d fat 0.42 0.436 0.428 0.457 0.458*** 0.612 0.68	

э

イロト イポト イヨト イヨト

Predictive gain of the FMCG data as a function of the in-sample fit

with official counterparts

Beck et al. (2022)

Nowcasting inflation using scanner data

Table of contents

Data: Sources and processing

Data sources

Mapping scanner data to the official CPI classification system

Nowcasting approach and results Nowcasting item-level inflation Nowcasting product group-specific inflation Nowcasting headline inflation

3 Robustness analysis

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

- Given the restricted coverage of the GFK:FMCG data, we focus on
 - the **high-level product groups** unprocessed food, processed food and non-energy industrial goods

- 4 回 ト 4 ヨ ト 4 ヨ ト

- Given the restricted coverage of the GFK:FMCG data, we focus on
 - the high-level product groups unprocessed food, processed food and non-energy industrial goods
 - the more disaggregated low-level product groups unprocessed fruit and vegetables; unprocessed meat, fish and eggs; processed fruit and vegetables; processed meat, fish and eggs; bread and cereals; dairy products and fat; beverages and other food products; and non-durables.

- 4 回 ト 4 ヨ ト 4 ヨ ト

- Given the restricted coverage of the GFK:FMCG data, we focus on
 - the high-level product groups unprocessed food, processed food and non-energy industrial goods
 - the more disaggregated low-level product groups unprocessed fruit and vegetables; unprocessed meat, fish and eggs; processed fruit and vegetables; processed meat, fish and eggs; bread and cereals; dairy products and fat; beverages and other food products; and non-durables.
- A natural starting point for nowcasting at the product-group level would be to treat all COICOP-10 series belonging to that group as relevant predictors.

• Given the restricted coverage of the GFK:FMCG data, we focus on

- the **high-level product groups** unprocessed food, processed food and non-energy industrial goods
- the more disaggregated low-level product groups unprocessed fruit and vegetables; unprocessed meat, fish and eggs; processed fruit and vegetables; processed meat, fish and eggs; bread and cereals; dairy products and fat; beverages and other food products; and non-durables.
- A natural starting point for nowcasting at the product-group level would be to treat all COICOP-10 series belonging to that group as relevant predictors.

 \Longrightarrow U-MIDAS setting is not suited to handle such a large set of predictors.

A D N A B N A B N A B N

• Given the restricted coverage of the GFK:FMCG data, we focus on

- the **high-level product groups** unprocessed food, processed food and non-energy industrial goods
- the more disaggregated low-level product groups unprocessed fruit and vegetables; unprocessed meat, fish and eggs; processed fruit and vegetables; processed meat, fish and eggs; bread and cereals; dairy products and fat; beverages and other food products; and non-durables.
- A natural starting point for nowcasting at the product-group level would be to treat all COICOP-10 series belonging to that group as relevant predictors.

 $\implies U-MIDAS \text{ setting is not suited to handle such a large set of predictors.}$ $\implies We apply shrinkage estimators using two different approaches.$

イロト イポト イヨト イヨト

- Our first approach avoids mixed frequencies by aggregating the weekly GFK:FMCG indicators, $x_{c,t}^{(m)}$, m = 1, ..., 4, to the monthly frequency which yields $x_{c,t}^{(M)}$.
- We apply standard shrinkage methods to estimate nowcasting models of the group-specific target inflation rates and plug in our high-frequency disaggregate inflation measures to generate the nowcast of a month.
- Our second approach applies the sparse-group LASSO (sg-LASSO) estimator proposed by Babii et al. (2022) and regresses the group-specific target inflation rate, $\pi_{g,t}^{M}$, directly on the large set of weekly GFK:FMCG inflation rates

 $\implies \text{Approach performs shrinkage in a mixed-frequency rather than a low-frequency setting by recognizing serial dependence across different high-frequency lags.}$

RMSE for FMCG product-group inflation: Various shrinkage methods relative to the SD-AR benchmark

• High-level product groups

• = • •

RMSE for FMCG product-group inflation: Various shrinkage methods relative to the SD-AR benchmark

Product groups

Table of contents

Data: Sources and processing

Data sources

Mapping scanner data to the official CPI classification system

2 Nowcasting approach and results

Nowcasting item-level inflation Nowcasting product group-specific inflation Nowcasting headline inflation

3 Robustness analysis

4 Summary and conclusions

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

イロト イポト イヨト イヨト

 To nowcast headline inflation, we split it into the following six components: unprocessed food, processed food, non-energy industrial goods, energy, package holidays, and services (w.o. package holidays).

- To nowcast headline inflation, we split it into the following six components: unprocessed food, processed food, non-energy industrial goods, energy, package holidays, and services (w.o. package holidays).
- We nowcast each part separately using two different approaches and construct a headline nowcast by using the official HICP weighting scheme.

- To nowcast headline inflation, we split it into the following six components: unprocessed food, processed food, non-energy industrial goods, energy, package holidays, and services (w.o. package holidays).
- We nowcast each part separately using two different approaches and construct a headline nowcast by using the official HICP weighting scheme.
- First nowcasting approach: *Bottom-up U-MIDAS approach*

- To nowcast headline inflation, we split it into the following six components: unprocessed food, processed food, non-energy industrial goods, energy, package holidays, and services (w.o. package holidays).
- We nowcast each part separately using two different approaches and construct a headline nowcast by using the official HICP weighting scheme.
- First nowcasting approach: Bottom-up U-MIDAS approach
- Second nowcasting approach: Direct machine learning approach

- To nowcast headline inflation, we split it into the following six components: unprocessed food, processed food, non-energy industrial goods, energy, package holidays, and services (w.o. package holidays).
- We nowcast each part separately using two different approaches and construct a headline nowcast by using the official HICP weighting scheme.
- First nowcasting approach: Bottom-up U-MIDAS approach
- Second nowcasting approach: Direct machine learning approach
- Benchmarks.
 - For the six components of headline inflation, we use aggregated nowcasts of the SD-AR model applied to each item at the COICOP-10 level as the benchmark.
 - $\bullet\,$ For headline inflation, we also use market expectations provided by

Bloomberg and Consensus Economics as the benchmark.

RMSE of headline inflation and its components: Bottom-up U-MIDAS and direct machine learning approaches relative to the benchmark approach

・ 何 ト ・ ヨ ト ・ ヨ ト

Cumulative sum of the squared forecast error differentials: models versus

Bloomberg market expectations

< □ > < 同 > < 回 > < 回 > < 回 >

Table of contents

Data: Sources and processing
 Data sources
 Mapping scanner data to the official CPI classification system

2 Nowcasting approach and results Nowcasting item-level inflation Nowcasting product group-specific inflation Nowcasting headline inflation

3 Robustness analysis

4 Summary and conclusions

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Table of contents

Data: Sources and processing
 Data sources
 Mapping scanner data to the official CPI classification system

2 Nowcasting approach and results Nowcasting item-level inflation Nowcasting product group-specific inflation Nowcasting headline inflation

3 Robustness analysis

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

3

<ロト <回ト < 回ト < 回ト -

• We demonstrate how combining millions of household scanner data with state-of-the-art machine learning techniques yields highly competitive real-time inflation nowcasts for Germany at the disaggregate and aggregate level.

・ 何 ト ・ ヨ ト ・ ヨ ト

- We demonstrate how combining millions of household scanner data with state-of-the-art machine learning techniques yields highly competitive real-time inflation nowcasts for Germany at the disaggregate and aggregate level.
- Our strategy to combine fixed economic structure inherent in the COICOP classification system with flexible machine learning tools turned out to provide two major merits:

- We demonstrate how combining millions of household scanner data with state-of-the-art machine learning techniques yields highly competitive real-time inflation nowcasts for Germany at the disaggregate and aggregate level.
- Our strategy to combine fixed economic structure inherent in the COICOP classification system with flexible machine learning tools turned out to provide two major merits:
 - It exploits the virtue of granular data to provide an understanding of the disaggregate dynamics underlying overall inflation.

- We demonstrate how combining millions of household scanner data with state-of-the-art machine learning techniques yields highly competitive real-time inflation nowcasts for Germany at the disaggregate and aggregate level.
- Our strategy to combine fixed economic structure inherent in the COICOP classification system with flexible machine learning tools turned out to provide two major merits:
 - It exploits the virtue of granular data to provide an understanding of the disaggregate dynamics underlying overall inflation.
 - At the same, time, it delivers valuable high-frequency real-time information about price developments of aggregates closely monitored by policy makers and market participants.

イロト イポト イヨト イヨト
Summary and conclusions

- We demonstrate how combining millions of household scanner data with state-of-the-art machine learning techniques yields highly competitive real-time inflation nowcasts for Germany at the disaggregate and aggregate level.
- Our strategy to combine fixed economic structure inherent in the COICOP classification system with flexible machine learning tools turned out to provide two major merits:
 - It exploits the virtue of granular data to provide an understanding of the disaggregate dynamics underlying overall inflation.
 - At the same, time, it delivers valuable high-frequency real-time information about price developments of aggregates closely monitored by policy makers and market participants.
- Given our findings, we think it is highly worthwhile to identify and exploit high-frequency information concerning those parts of the consumption basket underlying German (and other countries') inflation that are not covered by scanner data on fast-moving consumer goods.