Locked Down, Saved Up - work in progress -

Miguel Ampudia¹ Johannes Fleck² Javier Ramos Perez³

¹European Central Bank

²Federal Reserve Board

³CEMFI

October 20, 2023

 \blacktriangleright Unprecedented increase in households' savings at the onset of the pandemic 2020Q2

- ▶ Little evidence on who held these savings: mostly rich households, or even distribution?
- ▶ Poor -*micro* evidence from National Accounts (DFA)
- ► This paper:
 - Develops a model that updates the cross-section of households of the HFCS
 - Focuses on the **distribution** of the saving's glut
 - Sheds light on policy questions: role of transfers, lockdown, and excess savings.

A statistical model of household finances

- ▶ Our goal is to craft a model that deals with
 - Volatile macroeconomic dynamics during the pandemic
 - Rich labor market transitions, e.g. sectoral heterogeneity
 - Two consumption functions: one before Covid, other during Covid
 - Dynamic fiscal policy implemented by governments, e.g. Covid-specific support measures
- ► Handy tool for policy analysis
 - Pass-through of rate hikes to households
 - Financial vulnerability of households

- Statistical model and data
 - Labor market
 - Consumption decision
 - Fiscal policy
 - Aggregate environment
- ► Use the model to
 - Provide a brief description of households' position during the pandemic
 - Assess pass-through of transfers to savings, and excess savings

Overview

1. The model

The labor market The consumption function The fiscal rule

2. Macroeconomic environment

- 3. Baseline results Disposable income Total consumption
- 4. Counterfactuals No transfers

The model

- Built around 4 blocks
 - Labor market: transitions and income: individual level
 - Consumption decisions: household level
 - Fiscal rule: household level
 - Aggregate Dynamics: simulation matches aggregate dynamics
- Data
 - Household Finance and Consumption Survey 2017 (HFCS)
 - Household Budget Survey 2015 (HBS)
 - ECB'S Statistical Data Warehouse (SDW)

▶ Ultimate goal is to update the cross-section of households from the HFCS 2017

The labor market

- Incidence of unemployment (U) heterogeneous across sectors and skills
 - Rank individuals *i* according to probability to remain employed (E)

with X_i : individual *i*'s characteristics

– Assign individual changes in $\mathsf{E} \leftrightarrow \mathsf{U}$ status so that

 $\Delta_{t,t+1}$ aggregate U rate in HFCS $= \Delta_{t,t+1}$ U rate in macro series

- · Changes of individual employment status drive changes of income
 - $\mathsf{E} \to \mathsf{U}:$ country, year specific replacement rates
 - $\,$ U $\,\rightarrow\,$ E: Heckman selection model to predict labor income
 - $\,$ E $\,\rightarrow\,$ E: growth rate of aggregate wage rate

(1)

(2)

Estimate consumption expenditures on Household Budget Survey

- Two consumption rules, one before Covid, another during Covid

$$\begin{cases} \mathcal{C}_i^{hbs} = x_i^{hbs'}\beta^{hbs} + u_i^{hbs} \text{if } \notin [2020Q2, 2021] \\ \mathcal{C}_i^{hbs} - \bar{\mathcal{C}}_i = x_i^{hbs'}\beta^{hbs}_{covid} + e_i^{hbs} \text{if } \in [2020Q2, 2021] \end{cases}$$
(3)

where $x_i^{hbs'}$ are covariates, C_i^{hbs} is the sum of consumption expenditures of household i and \overline{C} a list of prohibited items during the pandemic: trips, food outside, vacations...

- Estimate parameters by absolute shrinkage and validate by k-fold cross validation

$$\frac{1}{2N}(\mathbf{y} - \mathbf{x}\beta^{hbs})'(\mathbf{y} - \mathbf{X}\beta^{hbs}) + \alpha \sum_{j=1}^{P} |\beta_{\rho}^{hbs}|$$
(4)

With our estimates at hand,

- Project estimated β^{hbs} 's onto x^{hfcs} , similar to Lamarche (2017)

$$\hat{C}_{i}^{hfcs} = x_{i}^{hfcs'} \cdot \hat{\beta}^{hbs} + \varphi_{i} \tag{5}$$

Where φ is an individual shock

- Estimate a set of λ_j 's such that two conditions are satisfied:
 - 1. Aggregate saving rate in the HFCS = aggregate saving rate from macrodata (dynamic target)
 - 2. Distribution for estimated consumption in HFCS = distribution of consumption in HBS

The consumption decision: Step 3

- Final measure of total consumption is

$$\hat{\mathcal{C}}_{i,i\in j}^{hfcs} = \lambda_j (x_i^{hfcs'} \cdot \hat{\beta}^{hbs} + \varphi_i)$$
(6)

Where $i \in j$ stresses that we adjust the consumption of household i by λ_j only if that household belongs to the j percentile of the initial distribution of consumption (\hat{C}^{hfcs}).

- Two remarks:
 - Rich MPCs
 - We do not torture the model to hit on desired targets. For example, λ_j ranges from increasing/decreasing consumption between 1 to 7 % relative to the initial level.

Empirical Consumption Function

Figure: Binscatter household disposable income and total consumption.

The fiscal rule

- A Fiscal Rule $\mathcal{F}_{c,j,t}$ is a mapping gross income ightarrow disposable income
- Contingent on country (c), year (t) and household type (j)
 - Household type 1: single, no children
 - Household type 2: single parent
 - Household type 3: couple with children
- Includes pandemic-specific transfers
- Recovered from $\textbf{Euromod} \rightarrow \text{EU}$ counterpart of Taxsim in the US

Integrated tool that computes tax and benefits for all European countries

Fiscal rule

Figure: Source: Euromod

Macrodata, an informative example (1)

(b) Aggregate wage rate

Figure: Source: ECB's Statistical Data Warehouse

Macrodata, an informative example (2)

(a) Sectoral employment dynamics in Germany

(b) Sectoral Employment dynamics in Spain

Figure: Source: ECB's Statistical Data Warehouse

Model's **back-cast**

Baseline: Disposable income, ES

17 / 28

Baseline: Total consumption, ES

(c) Evolution of hh consumption expenditures

(d) Binscatter disposable income - total consumption

Baseline: Saving Rate, ES

(e) Household saving rate

Counterfactuals

- What does the model have to say about
 - 1. No government transfers
 - 2. Excess savings?
 - \rightarrow Critical assumption: no general equilibrium effects

Counterfactuals: No transfers

1. Let A_t describe the set of macroeconomic conditions at quarter t,

- We set fiscal rule \mathcal{F}_t equal to $\mathcal{F}_{2019}
 ightarrow$ no gov. reaction
- Household disposable income evolves according to A_t and fiscal rule \mathcal{F}_t

$$\hat{y}_t^{(1)} = \hat{y}_t(A_t, \mathcal{F}_{2019}) \tag{7}$$

– Thus, consumption evolves according to $\lambda_t(A_t)$, β_t^{hbs} and $\hat{y}_t^{(1)}$

$$\hat{\mathcal{C}}_t^{(1)} = \hat{\mathcal{C}}_t(\hat{y}_t(A_t, \mathcal{F}_{2019}), \lambda_t(A_t), \beta_t^{hbs})$$

(8)

Counterfactuals: No Transfers

Counterfactuals: No Transfers

- "Rich" \rightarrow No effect at all \rightarrow progressive implementation
- "Poor" \rightarrow have their saving rate fueled by transfers! but still rather poor

Counterfactuals: *Excess Savings*?

Percent 35 Actual Log Linear Trend 2015-2019 30 25 20 15 10 2015 2016 2017 2018 2019 2020 2021 2022

Personal Saving Rate

Figure: Excess Savings according to FED policy note

Counterfactuals: *Excess Savings*?

- Given the **drop in income** and **consumption** the above definition of excess savings seems to miss something. What about the equilibrium effects?
- How to *approximate* excess savings?
 - 1. Keep the macroeconomic environment A_t , except for S_t^{agg}
 - 2. Keep fiscal policy and two consumption functions
 - 3. Households will respond given \mathcal{F}_t and \mathcal{C}^{Covid} to the macroeconomic environment
 - 4. However, set $\lambda_t = \lambda_{2019Q4}$ and let S_t^{agg} be determined endogenously
- This way captures all dynamics, but does not force the model to save as much as in 2020Q2. We trade-off the shape of the consumption distribution, in exchange for an approximation to an **equilibrium** saving rate

Counterfactuals: Excess Savings?

- Easy-to-use tool for policy analysis that feeds on public and transparent data
- Fiscal policy was very effective offsetting poor's income with no remarkable pass-through to consumption
- The median household over-saved just in 2020Q2, under-saved the rest of the pandemic