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Starting point

▶ DiD-type methods dominate empirical practice (Currie et al ’21), especially for policy evaluation

▶ Fundamentally based on a regression model rather than design assumptions

▶ Nevertheless, design-based thinking is invoked for “identification” arguments

▶ We show how to combine regression methods with design knowledge for experimental and
observational data
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Motivating example

▶ In Brazil the federal government randomly audits the local ones to prevent corruption

▶ Randomization is staggered: some municipalities are audited earlier, some – later

▶ Staggered rollout ⇒ DiD-type analysis (Colonnelli and Prem’21)

▶ Alternatively, can do a fully experimental analysis (?)

▶ We show how to conduct both simultaneously



Intuition

▶ Literature on experiments:

1. Regressions applied to experimental data can recover causal parameters even if misspecified
2. But need to be careful if experiments are complicated

▶ Literature on regressions:

1. If OLS works, then weighted OLS should also work
2. But there can be a price in terms of standard errors

▶ This is the logic behind the paper, but there are a lot of details



Two-way fixed effect (TWFE) regression model and estimator

TWFE model : Yit︸︷︷︸
outcome

= αi︸︷︷︸
unit FE

+ λt︸︷︷︸
time FE

+ τ︸︷︷︸
effect

· Wit︸︷︷︸
treatment

+ β · Xit︸︷︷︸
covariates

+ϵit

TWFE estimator : τ̂TWFE ← OLS(Yit ∼ unit dummy + time dummy +Wit + Xit)

▶ DiD estimator ⇐⇒ TWFE (with T = 2 and no covariates)

▶ τ̂TWFE is unbiased for τ under the TWFE model

▶ Biased with heterogeneous treatment effect or violation of parallel trends Borusyak et al ’17,

Goodman-Bacon ’17, de Chaisemartin and d’Haultfoeuille ’18, Athey and Imbens ’18, Sun and Abraham ’18

▶ Many alternative methods recently Imai and Kim ’16, Athey et al. ’17, Borusyak et al. ’17, Callaway and

Sant’Anna ’18, de Chaisemartin and d’Haultfoeuille ’18, Sun and Abraham ’18, Arkhangelsky and Imbens ’19,

Arkhangelsky et al. ’19, Ben-Michael et al. ’19, Roth and Sant’Anna ’20, ...
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Part I: DATE, RIPW, and design-based inference



Potential outcomes and doubly average treatment effect (DATE)

▶ Balanced panel: n units and T time periods; fixed T

▶ Binary treatment: Wi = (Wi1, . . . ,WiT ); Wi ∼ πi generalized propensity score Imbens ’00

▶ Potential outcomes: (Yit(1),Yit(0))
T
t=1; observed outcome Yit = Yit(Wit) (SUTVA)

▶ For simplicity no covariates for this part

▶ Causal estimand: average effect with user-specified weights ξ = (ξ1, . . . , ξt)

τDATE(ξ) =
T∑
t=1

ξt

(
1

n

n∑
i=1

(Yit(1)− Yit(0))

)
≜

T∑
t=1

ξtτt , e.g., τeq =
1

T

T∑
t=1

τt

How to leverage the treatment assignment mechanism to estimate DATE?
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Discussion I

▶ All randomness comes from {Wi}ni=1, which can be dependent (experimental analysis)

▶ Static model: potential outcomes depend only on current treatments

▶ Treatment effects can vary over units and periods:

τit ≜ Yit(1)− Yit(0)



Discussion II

▶ In simple experiments πi = π – the same protocol for all units

▶ Often not the case, e.g., different municipalities in Brazil have different chances of being audited

▶ Two questions:

1. If πi = π does the TWFE estimator work?

2. How should we adjust it if πi varies over units?

▶ Answer both questions simultaneously



First thought: IPW estimator

For cross-sectional data, the Hájek-IPW estimator is given by

τ̂ =

∑
Wi=1 Yi/P(Wi = 1)∑
Wi=1 1/P(Wi = 1)

−
∑

Wi=0 Yi/P(Wi = 0)∑
Wi=0 1/P(Wi = 0)

p→ ATE

Numerically equivalent to an IP-weighted LS estimator:

τ̂ ≜ argmin
τ

n∑
i=1

(Yi − µ−Wiτ)
2︸ ︷︷ ︸

least squares objective

1

πi (Wi )︸ ︷︷ ︸
propensity score

Key idea: reweighting the objective function via the treatment assignment mechanism



First thought: IPW estimator

For cross-sectional data, the Hájek-IPW estimator is given by
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Two examples with 3 time periods

Transient treatments

Wi ∈ {(0, 0, 0), (0, 0, 1), (0, 1, 0), (1, 0, 0)}

τ̂IPW
p→ 1

3
τ1 +

1

3
τ2 +

1

3
τ3 = τeq

Staggered rollouts

Wi ∈ {(0, 0, 0), (0, 0, 1), (0, 1, 1), (1, 1, 1)}

τ̂IPW
p→ 0.3τ1 + 0.4τ2 + 0.3τ3
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Effective estimand of IPW-TWFE estimator

Theorem (Arkh., Imbens, Lei, and Luo ’21)

Under regularity conditions (overlap, limited dependence, bounded moments), as n→∞,

τ̂IPW
p→

T∑
t=1

ξtτt

and for transient/staggered designs

ξt ∝ ηt(1− ηt), where ηt =
|w ∈ S : wt = 1|

|S|
,

where S =
⋃

i Supp(Wi )

What if we want DATE with pre-specified weights (e.g., τeq)?
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Reshaped IPW estimator

Given a data-independent distribution Π on S:

RIPW estimator: τ̂RIPW(Π) ≜ argmin
τ

n∑
i=1

T∑
t=1

(Yit − αi − λt −Witτ)
2Π(Wi )

πi (Wi )

▶ The IPW-TWFE estimator is the RIPW-TWFE estimator with Π ∼ Unif(S)

▶ When πi = Π, the RIPW-TWFE estimator reduces to the TWFE estimator

For what Π does τ̂RIPW(Π)
p→ τDATE(ξ)?
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DATE equation

Theorem (Arkh., Imbens, Lei, and Luo ’21)

Given S and Π with Supp(Π) = S, τ̂TWFE

p→ τDATE(ξ) iff

EW∼Π

[
(diag(W)− ξW⊤)J(W − EW∼Π[W])

]
= 0 (DATE equation),

where J = I − 1T1
⊤
T /T .

▶ Only depends on the support

▶ Quadratic equations on (Π(w) : w ∈ S) with linear constraints (simplex, positivity)

▶ Closed-form solutions exist in many examples (DiD, cross-over, staggered rollouts, transient, ...)



An interpretation of DATE equation

▶ When πi = Π, τ̂TWFE = τ̂RIPW(Π)
p→ τDATE(ξ)

▶ DATE equation gives a completely randomized experiment for which TWFE “works”!

▶ Conflict with the literature that TWFE has negative weights?

▶ Not really! Wi ’s are treated as fixed in the literature but as random in our work

▶ When talking about “weights”, important to specify the sources of randomness
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Negative weighting

▶ The weights discussed in the literature:

E[τ̂TWFE |W]︸ ︷︷ ︸
conditional estimand

=
n∑

i=1

T∑
t=1

ζit(W)︸ ︷︷ ︸
conditional weight

τit

The result proved in the literature: for most designs (e.g., staggered rollout with T > 2)

∃(i , t) : ζit(W) < 0, almost surely

▶ The weights discussed in our work:

E[τ̂TWFE]︸ ︷︷ ︸
unconditional estimand

=
n∑

i=1

T∑
t=1

E[ζit(W)]︸ ︷︷ ︸
unconditional weight

τit

The result proved in our work: for any design for which the DATE equation has a solution:

∀(i , t) : E[ζit(W)] > 0
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Negative weighting for TWFE: simulation example
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Design-based inference for RIPW estimator

RIPW estimator: τ̂(Π) ≜ argmin
τ

n∑
i=1

T∑
t=1

(Yit − αi − λt −Witτ)
2Π(Wi )

πi (Wi )

Theorem

Under the same setting, as n→∞,

√
n(τ̂(Π)− τ(ξ)) =

1√
n

n∑
i=1

Vi + oP (1) (RIPW converges to DATE)

for some complicated but estimable “influence functions” Vi



Lessons

▶ In simple experiments (πi = π) the TWFE estimator delivers τ(ξ), where ξ depends on π

▶ In complicated experiments, you need to adjust the TWFE (or rely on the model!)

▶ Adjustment is simple: the propensity weights + factor that fixes the estimand

▶ The RIPW estimator is asymptotically normal and can be used for inference



Part II: Double robustness of RIPW estimator



Discussion

▶ In academic research panel experiments are still rare and we use TFWE for observational data

▶ Nevertheless, we can construct π̂i and hope that it is close enough to πi

▶ Researches often do this informally, e.g., by relating adoption dates to observed covariates

▶ RIPW allows us to do this systematically



Estimating assignment models

▶ Different designs require for different models:

1. Staggered rollout – duration models, e.g., Cox proportional hazard model
2. Independent decisions – logit model
3. Dynamic decisions – stationary Markov models

▶ In the first case, can use Xi = (Xi1, . . . ,XiT ) to fit an assignment model π̂i (·):

▶ In the last two cases, can additionally incorporate unobserved heterogeneity using sufficiency
arguments



RIPW estimator is double robust for observational studies

τ̂(Π) ≜ argmin
τ

n∑
i=1

T∑
t=1

( (Yit − m̂it)︸ ︷︷ ︸
regression adjustment

−αi − λt −Witτ)
2 Π(Wi )

π̂i (Wi )︸ ︷︷ ︸
assignment modeling

▶ For the regression adjustment can use β⊤Xit or something more flexible

▶ Robustness: RIPW
p→DATE if

▶ either the assignment model is well estimated

▶ or the TWFE model is correct

▶ We also derive CI by cross-fitting m̂it and π̂i (·)



Intuition for robustness

▶ If the assignment model is well estimated (π̂i ≈ πi ),

Design-based results =⇒ Consistency

▶ If the TWFE model is approximately correct after regression adjustment (m̂it ≈ mit),

Weighted OLS =⇒ Consistency



Part III: Empirical illustration



State of emergency in the early COVID-19 pandemic

A state of emergency is a situation in which a government
is empowered to perform actions or impose policies
that it would normally not be permitted to undertake



How the state of emergency affects economic activities in short term

▶ Interested in ATE of the state of emergency on dine-in rate during 02/29 – 03/13, 2020

▶ State of emergency was less confounded; the first policy affecting the vast majority of the public

▶ Restaurant industry is responding to the policy swiftly, thus immune to long-term confounders

▶ Declaration time (assignment model) is easier to model than the dine-in rate (outcome model)

▶ Dine-in rate is driven by many unmeasured behavioral variables

▶ Declaration time is mainly driven by the progress of the pandemic and the authority’s attitude

▶ Covariates:

▶ State-level accumulated confirmed cases

▶ The vote share of Democrats based on the 2016 presidential election data

▶ Number of hospital beds per-capita
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Cox proportional hazard model for assignment model
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Cox proportional hazard model for assignment model

▶ Treat the declaration of a state of emergency as an “event”

▶ Fit the distribution of declaration time Ti by the Cox model (related to Shaikh and Toulis ’19)

▶ Let F̂i be the estimated survival function of unit i ,

π̂i (Wi ) =

{
F̂i (Ti )− F̂i (Ti + 1) (State i declares before 03/13)

1− F̂i (03/13) (otherwise)
.



RIPW estimate

▶ For outcome model, fit m̂it = X⊤
it β̂TWFE

▶ For both models, use 10-fold cross-fitting

▶ Estimand: equally-weighted DATE

▶ Estimate: −4.0% (95% CI [−8.6%, 0.6%] , 90% CI [−7.9%,−0.1%])

▶ Unweighted TWFE: −1.1% (95% CI [−4.3%, 2.1%], 90% CI [−3.8%, 1.6%])



Part IV: Extensions



Dynamics

▶ The static model is restrictive and goes against common practice in applications

▶ Researchers usually estimate a more flexible event study specification:

Yit = αi + λt +
k∑

j=0

τjWit−j + ϵit

▶ It is important to understand if this presents a challenge for our strategy



Preliminary results on dynamics

▶ Potential outcomes now depend on histories:

(w1, . . . ,wt)→ Yit(w1, . . . ,wt)

▶ Suppose we have a separable time-homogenous model:

Yit(w1, . . . ,wt) = αit +
k∑

j=0

τijwt−j

▶ Then the reweighted event-study specification is design-robust in the same sense as before



Conclusion



Summary

▶ DATE equation identifies all randomization schemes for which TWFE converges to DATE

▶ RIPW estimators permit valid design-based inference for most practical designs

▶ They are double-robust and work for general designs (not limited to staggered adoption)

▶ Practically, they empower the users to leverage the information from the assignment model


