Unemployment Insurance, Precautionary Savings, and Fiscal Multipliers

Rubén Domínguez-Díaz¹ Donghai Zhang²

¹Banco de España ²National University of Singapore & University of Bonn

Banco de España - CEMFI Workshop

May 2023 ¹

¹Disclaimer: The views expressed in this presentation are those of the authors and do not necessarily reflect the views of Banco de España or the Eurosystem.

Introduction

- Unemployment insurance (UI) duration systematically extended during bad times in the US
 - A four-fold increase during Great Recession and a three-fold increase during pandemic
 - Stands out as one of the main countercyclical stabilization measures
- Opposing effects of UI extensions on unemployments
 - Supply: increase wages and depress hiring, moral hazard
 - Demand: increase transfers to high-MPC unemployed and reduce precautionary savings
- Mixed results in the literature leave debate unsettled
 - Contractionary effects: Hagedorn et al. (2019), Johnston and Mas (2018)
 - Expansionary or non-negative effects: Di Maggio and Kermani (2016), Chodorow-Reich et al. (2018), Boone et al. (2021), Dieterle et al. (2020)

Introduction

- Unemployment insurance (UI) duration systematically extended during bad times in the US
 - A four-fold increase during Great Recession and a three-fold increase during pandemic
 - Stands out as one of the main countercyclical stabilization measures
- Opposing effects of UI extensions on unemployment:
 - Supply: increase wages and depress hiring, moral hazard
 - Demand: increase transfers to high-MPC unemployed and reduce precautionary savings
- Mixed results in the literature leave debate unsettled
 - Contractionary effects: Hagedorn et al. (2019), Johnston and Mas (2018)
 - Expansionary or non-negative effects: Di Maggio and Kermani (2016), Chodorow-Reich et al. (2018), Boone et al. (2021), Dieterle et al. (2020)

Introduction

- Unemployment insurance (UI) duration systematically extended during bad times in the US
 - A four-fold increase during Great Recession and a three-fold increase during pandemic
 - Stands out as one of the main countercyclical stabilization measures
- Opposing effects of UI extensions on unemployment:
 - Supply: increase wages and depress hiring, moral hazard
 - Demand: increase transfers to high-MPC unemployed and reduce precautionary savings
- Mixed results in the literature leave debate unsettled
 - Contractionary effects: Hagedorn et al. (2019), Johnston and Mas (2018)
 - Expansionary or non-negative effects: Di Maggio and Kermani (2016), Chodorow-Reich et al. (2018), Boone et al. (2021), Dieterle et al. (2020)

- We reconsider the macroeconomic stabilization consequences of UI extensions
 - Propose a new identification scheme based on non-linear design of UI policy
 - Use macroeconomic model to rationalize and extend empirical results
- Identification based on the non-linear design of UI policy
 - → UI duration response to falling unemployment depends on pre-existing length of UI, e.g.
 - UI regular duration irrespective of state-level conditions
 - → Falling unemployment in state with regular UI will not change UI duration
 - UI additional extensions depend state-level unemployment
 - → Same fall in unemployment in state with extended UI can cut UI duration
 - Can apply similar logic to states that have different lengths of additional UI extensions
 - E,g. Regular UI provides a floor for UI duration

- We reconsider the macroeconomic stabilization consequences of UI extensions
 - Propose a new identification scheme based on non-linear design of UI policy
 - Use macroeconomic model to rationalize and extend empirical results
- Identification based on the non-linear design of UI policy
 - → UI duration response to falling unemployment depends on pre-existing length of UI, e.g.
 - UI regular duration irrespective of state-level conditions
 - → Falling unemployment in state with regular UI will not change UI duration
 - UI additional extensions depend state-level unemployment
 - → Same fall in unemployment in state with extended UI can cut UI duration
 - Can apply similar logic to states that have different lengths of additional UI extensions
 - E,g. Regular UI provides a floor for UI duration

- We reconsider the macroeconomic stabilization consequences of UI extensions
 - Propose a new identification scheme based on non-linear design of UI policy
 - Use macroeconomic model to rationalize and extend empirical results
- Identification based on the non-linear design of UI policy
 - → UI duration response to falling unemployment depends on pre-existing length of UI, e.g.
 - UI regular duration irrespective of state-level conditions
 - → Falling unemployment in state with regular UI will not change UI duration
 - UI additional extensions depend state-level unemployment
 - → Same fall in unemployment in state with extended UI can cut UI duration
 - Can apply similar logic to states that have different lengths of additional UI extensions
 - E,g. Regular UI provides a floor for UI duration

- We reconsider the macroeconomic stabilization consequences of UI extensions
 - Propose a new identification scheme based on non-linear design of UI policy
 - Use macroeconomic model to rationalize and extend empirical results
- Identification based on the non-linear design of UI policy
 - → UI duration response to falling unemployment depends on pre-existing length of UI, e.g.
 - UI regular duration irrespective of state-level conditions
 - → Falling unemployment in state with regular UI will not change UI duration
 - UI additional extensions depend state-level unemployment
 - → Same fall in unemployment in state with extended UI can cut UI duration
 - Can apply similar logic to states that have different lengths of additional UI extensions
 - E,g. Regular UI provides a floor for UI duration

- We reconsider the macroeconomic stabilization consequences of UI extensions
 - Propose a new identification scheme based on non-linear design of UI policy
 - Use macroeconomic model to rationalize and extend empirical results
- Identification based on the non-linear design of UI policy
 - → UI duration response to falling unemployment depends on pre-existing length of UI, e.g.
 - UI regular duration irrespective of state-level conditions
 - → Falling unemployment in state with regular UI will not change UI duration
 - UI additional extensions depend state-level unemployment
 - → Same fall in unemployment in state with extended UI can cut UI duration
 - Can apply similar logic to states that have different lengths of additional UI extensions
 - E,g. Regular UI provides a floor for UI duration

- We implement this by estimating local fiscal multipliers conditional on UI duration
 - Gov't spending shock demand shock changes unemployment and hence UI duration
 - Variation in fiscal multipliers across levels of UI duration infers effects of UI extensions
- We find UI extensions provide cushion against state-level shocks (G shocks)
 - Gov't spending crowds out UI in line with identification idea
 - Fiscal multipliers lower when UI duration extended
 - Results unlikely to be driven by size of recession or unobserved state-level characteristics
- Model of small-open-economy that incorporates main channels
 - Model accounts well for empirical results
 - We use the model to recover a **UI multiplier** pprox 1.2
 - We use the model to quantify channels affecting UI multiplier
 - ▶ Within demand-side channels: insurance ≥ transfers to high-MPC hhs.

- We implement this by estimating local fiscal multipliers conditional on UI duration
 - Gov't spending shock demand shock changes unemployment and hence UI duration
 - Variation in fiscal multipliers across levels of UI duration infers effects of UI extensions
- We find UI extensions provide cushion against state-level shocks (G shocks):
 - Gov't spending crowds out UI in line with identification idea
 - Fiscal multipliers lower when UI duration extended
 - Results unlikely to be driven by size of recession or unobserved state-level characteristics
- Model of small-open-economy that incorporates main channels
 - Model accounts well for empirical results
 - We use the model to recover a **UI multiplier** ≈ 1.2
 - We use the model to quantify channels affecting UI multiplier
 - ▶ Within demand-side channels: insurance ≥ transfers to high-MPC hhs.

- We implement this by estimating local fiscal multipliers conditional on UI duration
 - Gov't spending shock demand shock changes unemployment and hence UI duration
 - Variation in fiscal multipliers across levels of UI duration infers effects of UI extensions
- We find UI extensions provide cushion against state-level shocks (G shocks):
 - Gov't spending crowds out UI in line with identification idea
 - Fiscal multipliers lower when UI duration extended
 - Results unlikely to be driven by size of recession or unobserved state-level characteristics
- Model of small-open-economy that incorporates main channels
 - Model accounts well for empirical results
 - We use the model to recover a **UI multiplier** pprox 1.2
 - We use the model to quantify channels affecting UI multiplier
 - ▶ Within demand-side channels: insurance ≥ transfers to high-MPC hhs.

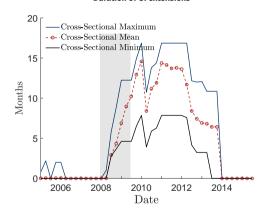
Related Literature

Macro effects of UI benefits:

- **Empirics**: Chodorow-Reich et al. (2018); Hagedorn et al. (2019); Di Maggio and Kermani (2016); Boone et al. (2021); Johnston and Mas (2018); Dieterle et al. (2020)
- Theory: Kekre (2021); McKay and Reis (2021); Gorn and Trigari (2021); Mitman and Rabinovich (2019); Krusell et al. (2010); Jung and Kuester (2015); Landais et al. (2018); Gorn and Trigari (2021)

Fiscal multipliers:

- Aggregate: Ramey and Zubairy (2018); Ramey (2011); Auerbach and Gorodnichenko (2012);
 Barnichon et al. (Forthcoming)
- Regional: Nakamura and Steinsson (2014); Bernardini et al. (2020); Dupor et al. (2022); Chodorow-Reich et al. (2012); Suárez Serrato and Wingender (2016); Acconcia et al. (2014); Basso and Rachedi (2021)
- Open economy with heterogeneous households: de Ferra et al. (2020); Auclert et al. (2021); Cugat (2019); Guo et al. (2020)



UI Policy & Identification

Unemployment Insurance Duration in the US

- US states: 26 weeks of regular UI duration
 - Irrespective of local unemployment
- UI duration extended during bad times:
 - EB program: if unemployment above threshold states can obtain additional UI extension of one quarter
 - EUC program (financial crisis): states could get additional UI extension of four quarters depending on unemployment
- Substantial variation in UI duration across time and states

Duration of UI extensions

- Exploit the non-linear design of UI policy together with time and cross-sectional variation in UI duration
- Why **UI policy non-linear**?
 - State with **extended UI** can reduce UI duration if unemployment falls
 - State with regular UI cannot in response to same fall in unemployment
 - Conditional on UI extended, there can be cross-sectional variation in UI response
 - E.g. Regular UI provides **floor**: states with longer UI duration can reduce UI by more

- Unemployment in A temporarily higher: A has extended UI and B has regular UI
- Same demand shock (e.g. G_t) hits both **A** and **B** reducing unemployment
 - Effect on output in \mathbf{A} = effect of G_t + effects of cutting UI duration
 - Effect on output in \mathbf{B} = effect of G_t
- Can apply similar logic if **B** also has extended UI, but different from **A**:
 - E.g. regular UI as floor: size UI duration cut in A \neq size UI duration cut in E
- Implementation: estimate **fiscal multipliers** is US states with different levels of **UI duration**

- Unemployment in A temporarily higher: A has extended UI and B has regular UI
- Same demand shock (e.g. G_t) hits both **A** and **B** reducing unemployment
 - Effect on output in \mathbf{A} = effect of G_t + effects of cutting UI duration
 - Effect on output in **B** = effect of G_t
- Can apply similar logic if **B** also has extended UI, but different from **A**:
 - E.g. regular UI as floor: size UI duration cut in A \neq size UI duration cut in E
- Implementation: estimate **fiscal multipliers** is US states with different levels of **UI duration**

- Unemployment in A temporarily higher: A has extended UI and B has regular UI
- Same demand shock (e.g. G_t) hits both **A** and **B** reducing unemployment
 - Effect on output in \mathbf{A} = effect of G_t + effects of cutting UI duration
 - Effect on output in B = effect of G_t
- Can apply similar logic if **B** also has extended UI, but different from **A**:
 - E.g. regular UI as floor: size UI duration cut in A \neq size UI duration cut in B
- Implementation: estimate **fiscal multipliers** is US states with different levels of **UI duration**

- Unemployment in A temporarily higher: A has extended UI and B has regular UI
- Same demand shock (e.g. G_t) hits both **A** and **B** reducing unemployment
 - Effect on output in \mathbf{A} = effect of G_t + effects of cutting UI duration
 - Effect on output in B = effect of G_t
- Can apply similar logic if B also has extended UI, but different from A:
 - E.g. regular UI as floor: size UI duration cut in A \neq size UI duration cut in B
- Implementation: estimate fiscal multipliers is US states with different levels of UI duration

Data

Data

- Quarterly regional US dataset from Regional Economic Accounts of BEA
 - Quarterly GDP and government value added at state-level
 - Gov. value added: spent within the region, excludes UI benefits
- Government spending shocks as in Blanchard and Perotti (2002):
 - Government spending predetermined within the quarter
- UI benefits extensions:
 - Actual additional UI duration for each US state (Chodorow-Reich et al., 2018)
- Sample period: 2005Q1 2015Q4

Effects of Gov't Spending on UI duration

Government Spending crowds out UI

Key in our approach: G_t induces UI duration changes

 Estimate the response of UI duration to gov spending by LPs (Jordà, 2005):

$$\begin{split} \log \text{UI Duration}_{i,t+h} = & \beta_h \log G_{i,t} + \gamma_h \left(L \right) Z_{i,t-1} + \\ & \alpha_{i,h} + \delta_{t,h} + \varepsilon_{i,t+h}, \quad h \geq 0 \end{split}$$

- G_{i,t}: Gov't spending in state
- $Z_{i,t}$: lags of $\{G, Y, UI \text{ Duration}\}$
- $\alpha_{i,h}$, $\delta_{t,h}$: state & time fixed-effects

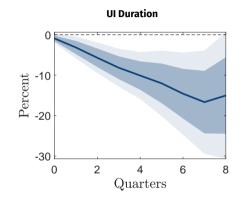
Government Spending crowds out UI

Key in our approach: G_t induces UI duration changes

 Estimate the response of UI duration to gov. spending by LPs (Jordà, 2005):

$$\begin{split} \log \text{UI Duration}_{i,t+h} = & \beta_h \log G_{i,t} + \gamma_h \left(L \right) Z_{i,t-1} + \\ & \alpha_{i,h} + \delta_{t,h} + \varepsilon_{i,t+h}, \quad h \geq 0, \end{split}$$

- G_{i,t}: Gov't spending in state i
- $Z_{i,t}$: lags of $\{G, Y, UI \text{ Duration}\}$
- $\alpha_{i,h}$, $\delta_{t,h}$: state & time fixed-effects


Government Spending crowds out UI

Key in our approach: G_t induces UI duration changes

 Estimate the response of UI duration to gov. spending by LPs (Jordà, 2005):

$$\begin{split} \log \text{UI Duration}_{i,t+h} = & \beta_h \log G_{i,t} + \gamma_h \left(L \right) Z_{i,t-1} + \\ & \alpha_{i,h} + \delta_{t,h} + \varepsilon_{i,t+h}, \quad h \geq 0, \end{split}$$

- $G_{i,t}$: Gov't spending in state i
- $Z_{i,t}$: lags of $\{G, Y, UI \text{ Duration}\}$
- $\alpha_{i,h}$, $\delta_{t,h}$: state & time fixed-effects

Government Spending crowds out UI - High vs. Low UI Duration

$$\begin{split} \log \text{UI Duration}_{i,t+h} &= \beta_h \log G_{i,t} + \gamma_h \left(L \right) Z_{i,t-1} + \alpha_{i,h} + \delta_{t,h} \\ &+ \mathbb{I}_{i,t-1}^{HT} \left(\beta_h^{HT} \log G_{i,t} + \gamma_h^{HT} \left(L \right) \log Z_{i,t-1} \right) \\ &+ \mathbb{I}_{i,t-1}^{LT} \left(\beta_h^{LT} \log G_{i,t+h} + \gamma_h^{LT} \left(L \right) \log Z_{i,t-1} \right) + \varepsilon_{i,t+h} \end{split}$$

- $\mathbb{I}_{i,t-1}^{HT} = 1$: UI extended and > median
- $\mathbb{I}_{i,t-1}^{LT}=1$: UI extended and < median
- $oldsymbol{eta}_h^{HT}$ $oldsymbol{eta}_h^{LT}$: diff. response high vs. low UI duration

Government Spending crowds out UI - High vs. Low UI Duration

$$\begin{split} \log \text{UI Duration}_{i,t+h} &= \beta_h \log G_{i,t} + \gamma_h \left(L\right) Z_{i,t-1} + \alpha_{i,h} + \delta_{t,h} \\ &+ \mathbb{I}_{i,t-1}^{HT} \left(\beta_h^{HT} \log G_{i,t} + \gamma_h^{HT} \left(L\right) \log Z_{i,t-1}\right) \\ &+ \mathbb{I}_{i,t-1}^{LT} \left(\beta_h^{LT} \log G_{i,t+h} + \gamma_h^{LT} \left(L\right) \log Z_{i,t-1}\right) + \varepsilon_{i,t+h} \end{split}$$

- $\mathbb{I}_{i,t-1}^{HT}=1$: UI extended and > median
- $\mathbb{I}_{i,t-1}^{LT}=1$: UI extended and < median
- β_h^{HT} β_h^{LT} : diff. response high vs. low UI duration

Government Spending crowds out UI – High vs. Low UI Duration

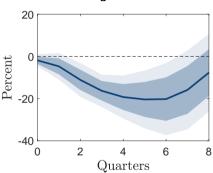
$$\begin{split} \log \text{UI Duration}_{i,t+h} &= \beta_h \log G_{i,t} + \gamma_h \left(L \right) Z_{i,t-1} + \alpha_{i,h} + \delta_{t,h} \\ &+ \mathbb{I}_{i,t-1}^{HT} \left(\beta_h^{HT} \log G_{i,t} + \gamma_h^{HT} \left(L \right) \log Z_{i,t-1} \right) \\ &+ \mathbb{I}_{i,t-1}^{LT} \left(\beta_h^{LT} \log G_{i,t+h} + \gamma_h^{LT} \left(L \right) \log Z_{i,t-1} \right) + \varepsilon_{i,t+h} \end{split}$$

- $\mathbb{I}_{i,t-1}^{HT} = 1$: UI extended and > median
- $\mathbb{I}_{i,t-1}^{LT}=1$: UI extended and < mediar
- eta_h^{HT} eta_h^{LT} : diff. response high vs. low UI duration

Government Spending crowds out UI – High vs. Low UI Duration

$$\begin{split} \log \text{UI Duration}_{i,t+h} &= \beta_h \log G_{i,t} + \gamma_h \left(L\right) Z_{i,t-1} + \alpha_{i,h} + \delta_{t,h} \\ &+ \mathbb{I}_{i,t-1}^{HT} \left(\beta_h^{HT} \log G_{i,t} + \gamma_h^{HT} \left(L\right) \log Z_{i,t-1}\right) \\ &+ \mathbb{I}_{i,t-1}^{LT} \left(\beta_h^{LT} \log G_{i,t+h} + \gamma_h^{LT} \left(L\right) \log Z_{i,t-1}\right) + \varepsilon_{i,t+h} \end{split}$$

- $\mathbb{I}_{i,t-1}^{HT} = 1$: UI extended and > median
- $\mathbb{I}_{i,t-1}^{LT} = 1$: UI extended and < median
- β_h^{HT} β_h^{LT} : diff. response high vs. low UI duration


Government Spending crowds out UI - High vs. Low UI Duration

2. Conditionally on UI extended, states with longer UI duration respond more:

$$\begin{split} \log \text{UI Duration}_{i,t+h} &= \beta_h \log G_{i,t} + \gamma_h \left(L \right) Z_{i,t-1} + \alpha_{i,h} + \delta_{t,h} \\ &+ \mathbb{I}_{i,t-1}^{HT} \left(\beta_h^{HT} \log G_{i,t} + \gamma_h^{HT} \left(L \right) \log Z_{i,t-1} \right) \\ &+ \mathbb{I}_{i,t-1}^{LT} \left(\beta_h^{LT} \log G_{i,t+h} + \gamma_h^{LT} \left(L \right) \log Z_{i,t-1} \right) + \varepsilon_{i,t+h} \end{split}$$

- $\mathbb{I}_{i,t-1}^{HT} = 1$: UI extended and > median
- $\mathbb{I}_{i,t-1}^{LT} = 1$: UI extended and < median
- β_h^{HT} β_h^{LT} : diff. response high vs. low UI duration

UI Duration – High vs. Low UI Duration

Fiscal Multipliers & UI duration

Empirical Specification – Fiscal Multipliers

Estimate local fiscal multipliers using state-dependent LPs (Jordà, 2005; Ramey and Zubairy, 2018)

$$\begin{split} \sum_{h=0}^{H} Y_{i,t+h} &= \beta_{h} \sum_{h=0}^{H} G_{i,t+h} + \gamma_{h} (L) Z_{i,t-1} + T_{i,t-1}^{*} \left(\beta_{h}^{UI} \sum_{h=0}^{H} G_{i,t+h} + \gamma_{h}^{UI} (L) Z_{i,t-1} \right) \\ &+ \alpha_{i,h} + \delta_{t,h} + \eta_{h} T_{i,t-1}^{*} + \varepsilon_{i,t+h}, \quad h \geq 0, \end{split}$$

- ullet $Y_{i,t+h}$, $G_{i,t+h}$: state i's GDP and gov. spending change over potential output
- β_h : multiplier during "normal times"
- $T_{i,t}^*$: additional UI duration in state i
- $oldsymbol{eta}_h^{UI}$: additional effect on fiscal multiplier of extended UI benefits

Empirical Specification – Fiscal Multipliers

Estimate local fiscal multipliers using state-dependent LPs (Jordà, 2005; Ramey and Zubairy, 2018)

$$\sum_{h=0}^{H} Y_{i,t+h} = \beta_h \sum_{h=0}^{H} G_{i,t+h} + \gamma_h (L) Z_{i,t-1} + T_{i,t-1}^* \left(\beta_h^{UI} \sum_{h=0}^{H} G_{i,t+h} + \gamma_h^{UI} (L) Z_{i,t-1} \right) + \alpha_{i,h} + \delta_{t,h} + \eta_h T_{i,t-1}^* + \varepsilon_{i,t+h}, \quad h \ge 0,$$

- $Y_{i,t+h}$, $G_{i,t+h}$: state i's GDP and gov. spending change over potential output
- β_h: multiplier during "normal times"
- $T_{i,t}^*$: additional UI duration in state i
- $oldsymbol{eta}_h^{UI}$: additional effect on fiscal multiplier of extended UI benefits

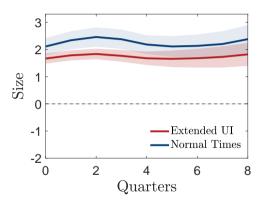
Empirical Specification – Fiscal Multipliers

Estimate local fiscal multipliers using state-dependent LPs (Jordà, 2005; Ramey and Zubairy, 2018)

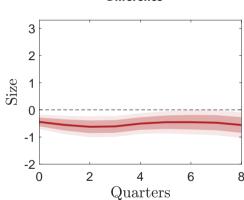
$$\sum_{h=0}^{H} Y_{i,t+h} = \beta_h \sum_{h=0}^{H} G_{i,t+h} + \gamma_h (L) Z_{i,t-1} + T_{i,t-1}^* \left(\beta_h^{UI} \sum_{h=0}^{H} G_{i,t+h} + \gamma_h^{UI} (L) Z_{i,t-1} \right) + \alpha_{i,h} + \delta_{t,h} + \eta_h T_{i,t-1}^* + \varepsilon_{i,t+h}, \quad h \ge 0,$$

- $Y_{i,t+h}$, $G_{i,t+h}$: state i's GDP and gov. spending change over potential output
- β_h: multiplier during "normal times"
- $T_{i,t}^*$: additional UI duration in state i
- β_h^{UI} : additional effect on fiscal multiplier of extended UI benefits

Empirical Specification – Fiscal Multipliers


Estimate local fiscal multipliers using state-dependent LPs (Jordà, 2005; Ramey and Zubairy, 2018)

$$\sum_{h=0}^{H} Y_{i,t+h} = \beta_h \sum_{h=0}^{H} G_{i,t+h} + \gamma_h (L) Z_{i,t-1} + T_{i,t-1}^* \left(\beta_h^{UI} \sum_{h=0}^{H} G_{i,t+h} + \gamma_h^{UI} (L) Z_{i,t-1} \right) + \alpha_{i,h} + \delta_{t,h} + \eta_h T_{i,t-1}^* + \varepsilon_{i,t+h}, \quad h \ge 0,$$


- $Y_{i,t+h}$, $G_{i,t+h}$: state i's GDP and gov. spending change over potential output
- β_h: multiplier during "normal times"
- $T_{i,t}^*$: additional UI duration in state i
- β_h^{UI} : additional effect on fiscal multiplier of extended UI benefits

Fiscal Multipliers & UI Extensions

Difference

employment & consumption

gov't Direct Expenditure

Extensions

- If anything, fiscal multipliers larger in recessions (Auerbach and Gorodnichenko, 2012)
- Yet, extend baseline to run horse-race:

$$\begin{split} &\sum_{h=0}^{H} Y_{l,t+h} = \beta_{h} \sum_{h=0}^{H} G_{l,t+h} + \gamma_{h} \left(L \right) Z_{l,t-1} + \alpha_{l,h} + \delta_{t,h} + \varepsilon_{l,t+h} \\ &+ T_{l,t-1}^{*} \left(\beta_{h}^{III} \sum_{h=0}^{H} G_{l,t+h} + \gamma_{h}^{III} \left(L \right) Z_{l,t-1} \right) + \mathbb{I}_{l,t-1}^{REC} \left(\beta_{h}^{REC} \sum_{h=0}^{H} G_{l,t+h} + \gamma_{h}^{REC} \left(L \right) Z_{l,t-1} \right) \end{split}$$

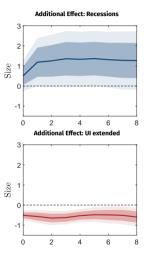
- β_{i}^{UI} : additional effect of UI extended
- $\mathbb{I}_{i,k=1}^{\text{ABC}}$: state *i* with 2 qrts. of negative growth
- β_h^{REC}: additional effect of recession

- If anything, fiscal multipliers larger in recessions (Auerbach and Gorodnichenko, 2012)
- Yet, extend baseline to run horse-race:

$$\begin{split} & \sum_{h=0}^{H} Y_{i,t+h} = \beta_{h} \sum_{h=0}^{H} G_{i,t+h} + \gamma_{h} \left(L \right) Z_{i,t-1} + \alpha_{i,h} + \delta_{t,h} + \varepsilon_{i,t+h} \\ & + T_{i,t-1}^{*} \left(\beta_{h}^{UI} \sum_{h=0}^{H} G_{i,t+h} + \gamma_{h}^{UI} \left(L \right) Z_{i,t-1} \right) + \mathbb{I}_{i,t-1}^{REC} \left(\beta_{h}^{REC} \sum_{h=0}^{H} G_{i,t+h} + \gamma_{h}^{REC} \left(L \right) Z_{i,t-1} \right) \end{split}$$

- β_b^{UI} : additional effect of UI extended
- $\mathbb{I}_{i,t-1}^{REC}$: state i with 2 qrts. of negative growth
- β_h^{REC} : additional effect of recession

- If anything, fiscal multipliers larger in recessions (Auerbach and Gorodnichenko, 2012)
- Yet, extend baseline to run horse-race:


$$\begin{split} & \sum_{h=0}^{H} Y_{i,t+h} = \beta_{h} \sum_{h=0}^{H} G_{i,t+h} + \gamma_{h} \left(L \right) Z_{i,t-1} + \alpha_{i,h} + \delta_{t,h} + \varepsilon_{i,t+h} \\ & + T_{i,t-1}^{*} \left(\beta_{h}^{UI} \sum_{h=0}^{H} G_{i,t+h} + \gamma_{h}^{UI} \left(L \right) Z_{i,t-1} \right) + \mathbb{I}_{i,t-1}^{REC} \left(\beta_{h}^{REC} \sum_{h=0}^{H} G_{i,t+h} + \gamma_{h}^{REC} \left(L \right) Z_{i,t-1} \right) \end{split}$$

- β_h^{UI} : additional effect of UI extended
- $\mathbb{I}^{REC}_{i,t-1}$: state i with 2 qrts. of negative growth
- β_h^{REC} : additional effect of recession

- If anything, fiscal multipliers larger in recessions (Auerbach and Gorodnichenko, 2012)
- Yet, extend baseline to run horse-race:

$$\begin{split} &\sum_{h=0}^{H} Y_{i,t+h} = \beta_{h} \sum_{h=0}^{H} G_{i,t+h} + \gamma_{h} \left(L \right) Z_{i,t-1} + \alpha_{i,h} + \delta_{t,h} + \varepsilon_{i,t+h} \\ &+ T_{i,t-1}^{*} \left(\beta_{h}^{\textit{UI}} \sum_{h=0}^{H} G_{i,t+h} + \gamma_{h}^{\textit{UI}} \left(L \right) Z_{i,t-1} \right) + \mathbb{I}_{i,t-1}^{\textit{REC}} \left(\beta_{h}^{\textit{REC}} \sum_{h=0}^{H} G_{i,t+h} + \gamma_{h}^{\textit{REC}} \left(L \right) Z_{i,t-1} \right) \end{split}$$

- β_h^{UI} : additional effect of UI extended
- $\mathbb{I}^{REC}_{i,t-1}$: state i with 2 qrts. of negative growth
- β_h^{REC} : additional effect of recession

Extension II – Exogenous UI extensions: unemployment measurement error

- Unobserved covariates driving results?
 - E.g., local wage rigidity can affect T^* and multiplier
 - If anything, source of amplification
- Use **UI extensions due unemployment measurement error** (Chodorow-Reich *et al.*, 2018) , ie. *orthogonal* to fundamentals

$$\begin{split} \sum_{h=0}^{H} Y_{i,t+h} &= \beta_h \sum_{h=0}^{H} G_{i,t+h} + \gamma_h \left(L \right) Z_{i,t-1} + \alpha_{i,h} + \delta_{t,h} + \varepsilon_{i,t+h} \\ &+ \mathbb{I}_{i,t-1}^{\widehat{T}} \left(\beta_h^{\widehat{T}} \sum_{h=0}^{H} G_{i,t+h} + \gamma_h^{\widehat{T}} \left(L \right) Z_{i,t-1} \right) \end{split}$$

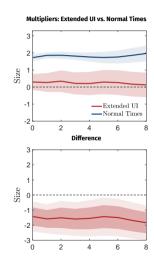
- $\mathbb{I}_{i,r-1}^{\widehat{T}}=1$: UI extended due to measurement error
- $\beta_h^{\widehat{T}}$: additional effect of UI extended due to measurement error

Extension II – Exogenous UI extensions: unemployment measurement error

- Unobserved covariates driving results?
 - E.g., local wage rigidity can affect T^* and multiplier
 - If anything, source of amplification
- Use UI extensions due unemployment measurement error (Chodorow-Reich et al., 2018), ie. orthogonal to fundamentals

$$\begin{split} \sum_{h=0}^{H} Y_{i,t+h} &= \beta_h \sum_{h=0}^{H} G_{i,t+h} + \gamma_h \left(L \right) Z_{i,t-1} + \alpha_{i,h} + \delta_{t,h} + \varepsilon_{i,t+h} \\ &+ \mathbb{I}_{i,t-1}^{\widehat{T}} \left(\beta_h^{\widehat{T}} \sum_{h=0}^{H} G_{i,t+h} + \gamma_h^{\widehat{T}} \left(L \right) Z_{i,t-1} \right) \end{split}$$

- $\mathbb{I}_{i,t-1}^{\widehat{T}}=1$: UI extended due to measurement error
- $\beta_h^{\hat{T}}$: additional effect of UI extended due to measurement error


Extension II - Exogenous UI extensions: unemployment measurement error

- Unobserved covariates driving results?
 - E.g., local wage rigidity can affect T^* and multiplier
 - If anything, source of amplification
- Use UI extensions due unemployment measurement error (Chodorow-Reich et al., 2018), ie. orthogonal to fundamentals

$$\sum_{h=0}^{H} Y_{i,t+h} = \beta_h \sum_{h=0}^{H} G_{i,t+h} + \gamma_h (L) Z_{i,t-1} + \alpha_{i,h} + \delta_{t,h} + \varepsilon_{i,t+h}$$

$$+ \mathbb{I}_{i,t-1}^{\widehat{T}} \left(\beta_h^{\widehat{T}} \sum_{h=0}^{H} G_{i,t+h} + \gamma_h^{\widehat{T}} (L) Z_{i,t-1} \right)$$

- $\mathbb{I}_{i,t-1}^{\widehat{T}}=1$: UI extended due to measurement error
- β_h^T : additional effect of UI extended due to measurement error

Model

Model Overview

- Small-open-economy in a monetary union (Galí and Monacelli, 2005)
- Search-and-matching frictions in the labor market (Mortensen and Pissarides, 1994)
- Heterogeneous households (Bewley-Hugget-Aiyagary):
 - Receive unemployment benefits while unemployed if eligible
 - Risk of exhausting UI benefits while unemployed
- Firms:
 - Standard New Keynesian block
 - Partly rigid wages affected by UI policy
- Local fiscal authority:
 - Government consumption on home goods
 - Sets UI duration according to UI policy rule that depends on unemployment

UI Eligibility & Households

- UI benefits expire stochastically ≈ limited duration of UI benefits
 - Loose eligibility during unemployment
 - Regain eligibility during employment

1. Eligible employed

- Keep job: remains eligible
- Loose job: loose eligibility with prob. pe_t

3. Eligible unemployed

- Find job: remains eligible
- Unemployed: non-eligible with prob. pe_t

2. Non-eligible employed

- Keep job: eligible with prob. pr
- Loose job: remains non-eligible

4. Non-eligible unempl.

- Find job: eligible with prob. pr
- Unemployed: remains non-eligible

- UI benefits expire stochastically ≈ limited duration of UI benefits
 - Loose eligibility during unemployment
 - Regain eligibility during employment

1. Eligible employed

- Keep job: remains eligible
- Loose job: loose eligibility with prob. pe_t
- 3. Eligible unemployed
- Find job: remains eligible
- Unemployed: non-eligible with prob. pe

2. Non-eligible employed

- Keep job: eligible with prob. pr
- Loose job: remains non-eligible
- 4. Non-eligible unempl.
- Find job: eligible with prob. pr
- Unemployed: remains non-eligible

- UI benefits expire stochastically ≈ limited duration of UI benefits
 - Loose eligibility during unemployment
 - Regain eligibility during employment

1. Eligible employed

- Keep job: remains eligible
- Loose job: loose eligibility with prob. pe_t
- 3. Eligible unemployed
- Find job: remains eligible
- Unemployed: non-eligible with prob. pe_t

2. Non-eligible employed

- Keep job: eligible with prob. pr
- · Loose job: remains non-eligible
- 4. Non-eligible unempl.
- Find job: eligible with prob. pr
- · Unemployed: remains non-eligible

- UI benefits expire stochastically ≈ limited duration of UI benefits
 - Loose eligibility during unemployment
 - Regain eligibility during employment

1. Eligible employed

- Keep job: remains eligible
- Loose job: loose eligibility with prob. pe_t

3. Eligible unemployed

- Find job: remains eligible
- Unemployed: non-eligible with prob. pe_t

2. Non-eligible employed

- Keep job: eligible with prob. pr
- · Loose job: remains non-eligible

4. Non-eligible unempl.

- Find job: eligible with prob. pr
- · Unemployed: remains non-eligible

- UI benefits expire stochastically ≈ limited duration of UI benefits
 - Loose eligibility during unemployment
 - Regain eligibility during employment

1. Eligible employed

- Keep job: remains eligible
- Loose job: loose eligibility with prob. pet

3. Eligible unemployed

- Find job: remains eligible
- Unemployed: non-eligible with prob. pe_t

2. Non-eligible employed

- Keep job: eligible with prob. pr
- · Loose job: remains non-eligible

4. Non-eligible unempl.

- Find job: eligible with prob. pr
- · Unemployed: remains non-eligible

- Household with idiosyncratic state vector $s = \{\beta, h, n, e, a\}$
- Chooses consumption of home (c_{Ht}) and foreign (c_{Et}) goods, savings a_t in mutual fund:

$$\begin{split} V_t\left(s\right) &= \max_{c_{Ht}, c_{Ft}, a_t} u\left(c_{Ht}, c_{Ft}\right) + \beta \mathbb{E}_t V_{t+1}\left(s'\right) \\ \text{s.t.} \quad & \frac{P_{Ht}}{P_t} c_{Ht} + \frac{P_{Ft}}{P_t} c_{Ft} + a_t = \left(1 - \tau_t\right) h_t \left(d_t + \mathbb{I}_{n=1} w_t + \mathbb{I}_{(n=0,e=1)} b_t + \mathbb{I}_{(n=0,e=0)} \tilde{b}_t\right) \\ &\quad + (1 + r_t^a) a_{t-1}, \quad a_t \geq 0. \end{split}$$

- Household with idiosyncratic state vector $s = \{\beta, h, n, e, a\}$
- Chooses consumption of home (c_{Ht}) and foreign (c_{Et}) goods, savings a_t in mutual fund:

$$\begin{split} V_t(s) &= \max_{c_{Ht}, c_{Ft}, a_t} u\left(c_{Ht}, c_{Ft}\right) + \beta \mathbb{E}_t V_{t+1}\left(s'\right) \\ \text{s.t.} \quad & \frac{P_{Ht}}{P_t} c_{Ht} + \frac{P_{Ft}}{P_t} c_{Ft} + a_t = \left(1 - \tau_t\right) h_t \left(d_t + \mathbb{I}_{n=1} w_t + \mathbb{I}_{(n=0,e=1)} b_t + \mathbb{I}_{(n=0,e=0)} \tilde{b}_t\right) \\ &\quad + (1 + r_t^a) a_{t-1}, \quad a_t \geq 0. \end{split}$$

- Income depends on employment & eligibility status:
 - Employed: wage w₊
 - Unemployed and eligible: UI benefits b.
 - Unemployed non-eligible: "safety-net" transfers \hat{b}_t

Firms & Wages

Firms

- Differentiated goods producers: set prices s.t. Rottemberg adjust. costs.
 - NKPC:

$$\log(1+\pi_{H,t}) = \kappa_p \left(\frac{MC_t}{P_{Ht}} - \frac{\varepsilon - 1}{\varepsilon}\right) + \mathbb{E}_t \frac{1}{1 + r^a} \log(1 + \pi_{H,t+1}) \frac{Y_{t+1}^D}{Y_t^D}$$

- ullet Labor goods producers: post vacancies u_t to hire workers
 - **Free-entry**: value of job J_t^L , vacancy filling rate q_t

$$\kappa_{\nu} = q_t J_t^L$$

Wage rule: weighted between Nash wage and st.-st. wage :

$$w_t = \left(w_t^{nash}\right)^{\phi^w} (\bar{w})^{1-\phi^v}$$

Firms

- Differentiated goods producers: set prices s.t. Rottemberg adjust. costs.
 - NKPC:

$$\log(1+\pi_{H,t}) = \kappa_p \left(\frac{MC_t}{P_{Ht}} - \frac{\varepsilon - 1}{\varepsilon}\right) + \mathbb{E}_t \frac{1}{1 + r^a} \log(1 + \pi_{H,t+1}) \frac{Y_{t+1}^D}{Y_t^D}$$

- Labor goods producers: post vacancies v_t to hire workers
 - **Free-entry**: value of job J_t^L , vacancy filling rate q_t

$$\kappa_{\nu} = q_t J_t^L$$

• Wage rule: weighted between Nash wage and st.-st. wage :

$$w_t = \left(w_t^{nash}\right)^{\phi^w} (\bar{w})^{1-\phi^w}$$

ullet Union bargains w_t^{nash} on behalf of workers to maximize average surplus from employment

$$w_t^{nash} = \arg\max_{w_t} (J_t^L)^{1-\eta} (\Delta_t^{n,u})^{\eta}$$

• Average surplus from employment $\Delta_t^{n,u}$:

$$\Delta_t^{n,u} = (n_t^e + u_t^e) \Delta_{t,e=1}^{n,u} + (n_t^{ne} + u_t^{ne}) \Delta_{t,e=0}^{n,u}$$

• Average surplus from employment for eligible workers $\Delta_{t,e=1}^{n,u}$:

$$\Delta_{t,e=1}^{n,u} = U(C_{t,e=1}^n) - U(C_{t,e=1}^u) + \beta (1-\delta)(1-f_{t+1})(\Delta_{t+1,e=1}^{n,u} + pe_t \Delta_{t+1,n=0}^{e,ne})$$

$$\Delta_{t,e=0}^{n,u} = U(C_{t,e=0}^n) - U(C_{t,e=0}^u) + \beta (1-\delta) (1-f_{t+1}) (\Delta_{t+1,e=0}^{n,u} + pr \Delta_{t+1,n=1}^{ne,e})$$

ullet Union bargains w_t^{nash} on behalf of workers to maximize average surplus from employment

$$w_t^{nash} = \arg\max_{w_t} (J_t^L)^{1-\eta} (\Delta_t^{n,u})^{\eta}$$

• Average surplus from employment $\Delta_t^{n,u}$:

$$\Delta_t^{n,u} = (n_t^e + u_t^e) \Delta_{t,e=1}^{n,u} + (n_t^{ne} + u_t^{ne}) \Delta_{t,e=0}^{n,u}$$

• Average surplus from employment for eligible workers $\Delta_{t,e=1}^{n,u}$:

$$\Delta_{t,e=1}^{n,u} = U(C_{t,e=1}^n) - U(C_{t,e=1}^u) + \beta (1-\delta)(1-f_{t+1})(\Delta_{t+1,e=1}^{n,u} + pe_t \Delta_{t+1,n=0}^{e,ne})$$

$$\Delta_{t,e=0}^{n,u} = U(C_{t,e=0}^n) - U(C_{t,e=0}^u) + \beta (1-\delta) (1-f_{t+1}) (\Delta_{t+1,e=0}^{n,u} + pr \Delta_{t+1,n=1}^{ne,e})$$

ullet Union bargains w_t^{nash} on behalf of workers to maximize average surplus from employment

$$w_t^{nash} = \underset{w_t}{\operatorname{arg\,max}} (J_t^L)^{1-\eta} (\Delta_t^{n,u})^{\eta}$$

• Average surplus from employment $\Delta_t^{n,u}$:

$$\Delta_t^{n,u} = (n_t^e + u_t^e) \Delta_{t,e=1}^{n,u} + (n_t^{ne} + u_t^{ne}) \Delta_{t,e=0}^{n,u}$$

• Average surplus from employment for eligible workers $\Delta_{t,e=1}^{n,u}$:

$$\Delta_{t,e=1}^{n,u} = U(C_{t,e=1}^n) - U(C_{t,e=1}^u) + \beta (1-\delta)(1-f_{t+1})(\Delta_{t+1,e=1}^{n,u} + pe_t \Delta_{t+1,n=0}^{e,ne})$$

$$\Delta_{t,e=0}^{n,u} = U(C_{t,e=0}^n) - U(C_{t,e=0}^u) + \beta (1-\delta) (1-f_{t+1}) (\Delta_{t+1,e=0}^{n,u} + pr \Delta_{t+1,n=1}^{ne,e})$$

ullet Union bargains w_t^{nash} on behalf of workers to maximize average surplus from employment

$$w_t^{nash} = \underset{w_t}{\operatorname{arg\,max}} (J_t^L)^{1-\eta} (\Delta_t^{n,u})^{\eta}$$

• Average surplus from employment $\Delta_t^{n,u}$:

$$\Delta_t^{n,u} = (n_t^e + u_t^e) \Delta_{t,e=1}^{n,u} + (n_t^{ne} + u_t^{ne}) \Delta_{t,e=0}^{n,u}$$

• Average surplus from employment for eligible workers $\Delta_{t,e=1}^{n,u}$:

$$\Delta_{t,e=1}^{n,u} = U(C_{t,e=1}^n) - U(C_{t,e=1}^u) + \beta (1-\delta)(1-f_{t+1})(\Delta_{t+1,e=1}^{n,u} + pe_t \Delta_{t+1,n=0}^{e,ne})$$

$$\Delta_{t,e=0}^{n,u} = U(C_{t,e=0}^n) - U(C_{t,e=0}^u) + \beta(1-\delta)(1-f_{t+1})(\Delta_{t+1,e=0}^{n,u} + pr\Delta_{t+1,n=1}^{ne,e})$$

Local Government

- Monetary authority sets nominal rate to fix nominal exchange rate
- Fiscal authority, budget constraint:

$$\frac{P_{Ht}}{P_t}G_t + (1+r_t)B_{H,t-1} + \frac{b_t}{b_t}U_t^e + \tilde{b}_tU_t^{ne} = B_{H,t} + \tau_t \left(w_t N_t + b_t U_t^e + \tilde{b}_t U_t^{ne} + d_t\right) + T_t$$

- Government consumption G_t : $log\Big(rac{G_t}{G}\Big)=
 ho_G\log\Big(rac{G_{t-1}}{G}\Big)+arepsilon_t^G$, , $arepsilon_t^G\sim \mathcal{N}(0,1)$
- Federal transfers pay for UI expenses: $T_t T = (b_t U_t^e + \tilde{b}_t U_t^{ne}) (b U^e + \tilde{b} U^{ne})$
- Local government debt $B_{H,t}$ stays constant and taxes au_t adjusts to balance budget
- UI benefits level: $b_t = bw_t$, $b \in (0, 1)$
- Safety-net transfers to non-eligible: $\tilde{b}_t = \tilde{b}w_t$, $\tilde{b} < b$

- Monetary authority sets nominal rate to fix nominal exchange rate
- Fiscal authority, budget constraint:

$$\frac{P_{Ht}}{P_t}G_t + (1+r_t)B_{H,t-1} + \frac{b_t}{b_t}U_t^e + \tilde{b}_tU_t^{ne} = B_{H,t} + \tau_t \left(w_t N_t + b_t U_t^e + \tilde{b}_t U_t^{ne} + d_t\right) + T_t$$

- Government consumption G_t : $log\left(\frac{G_t}{G}\right) = \rho_G \log\left(\frac{G_{t-1}}{G}\right) + \varepsilon_t^G$, , $\varepsilon_t^G \sim \mathcal{N}(0,1)$
- Federal transfers pay for UI expenses: $T_t T = (b_t U_t^e + \hat{b}_t U_t^{ne}) (b U^e + \hat{b} U^{ne})$
- Local government debt $B_{H,t}$ stays constant and taxes au_t adjusts to balance budget
- UI benefits level: $b_t = bw_t$, $b \in (0, 1)$
- Safety-net transfers to non-eligible: $\tilde{b}_t = \tilde{b}w_t$, $\tilde{b} < b$

- Monetary authority sets nominal rate to fix nominal exchange rate
- Fiscal authority, budget constraint:

$$\frac{P_{Ht}}{P_t}G_t + (1+r_t)B_{H,t-1} + \frac{b_t}{b_t}U_t^e + \tilde{b}_tU_t^{ne} = B_{H,t} + \tau_t \left(w_t N_t + b_t U_t^e + \tilde{b}_t U_t^{ne} + d_t\right) + T_t$$

- Government consumption G_t : $log\left(\frac{G_t}{G}\right) = \rho_G \log\left(\frac{G_{t-1}}{G}\right) + \varepsilon_t^G$, , $\varepsilon_t^G \sim \mathcal{N}(0,1)$
- Federal transfers pay for UI expenses: $T_t T = (b_t U_t^e + \tilde{b}_t U_t^{ne}) (b U^e + \tilde{b} U^{ne})$
- Local government debt $B_{H,t}$ stays constant and taxes au_t adjusts to balance budget
- UI benefits level: $b_t = bw_t$, $b \in (0, 1)$
- Safety-net transfers to non-eligible: $\tilde{b}_t = \tilde{b} w_t$, $\ \tilde{b} < b$

- Monetary authority sets nominal rate to fix nominal exchange rate
- Fiscal authority, budget constraint:

$$\frac{P_{Ht}}{P_t}G_t + (1+r_t)B_{H,t-1} + \frac{b_t}{b_t}U_t^e + \tilde{b}_tU_t^{ne} = B_{H,t} + \tau_t \left(w_t N_t + b_t U_t^e + \tilde{b}_t U_t^{ne} + d_t\right) + T_t$$

- Government consumption G_t : $log\left(\frac{G_t}{G}\right) = \rho_G log\left(\frac{G_{t-1}}{G}\right) + \varepsilon_t^G$, , $\varepsilon_t^G \sim \mathcal{N}(0,1)$
- Federal transfers pay for UI expenses: $T_t T = (b_t U^e_t + \tilde{b}_t U^{ne}_t) (b U^e + \tilde{b} U^{ne})$
- Local government debt $B_{H,t}$ stays constant and taxes au_t adjusts to balance budget
- UI benefits level: $b_t = bw_t$, $b \in (0, 1)$
- Safety-net transfers to non-eligible: $\tilde{b}_t = \tilde{b} w_t$, $\ \tilde{b} < b$

Government - UI benefits extensions

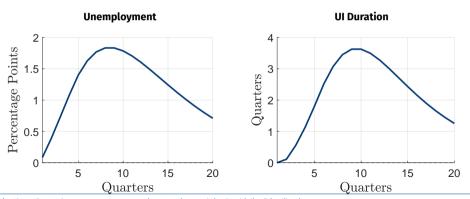
• UI benefits duration $UI_t^D = 1/pe_t$:

$$\mathsf{UI}_t^D = \begin{cases} \mathsf{UI}^D & \text{if} \quad U_t \leq \tilde{U}, \\ \mathsf{UI}^D \Big(\frac{U_{t-1}}{\tilde{U}} \Big)^{\phi_U} & \text{else}. \end{cases}$$

- If unemployment below threshold $ilde{U}$ keep UI duration at regular UI duration UI^D
- ullet We let UI duration follow a Taylor (1993)-type rule **when unemployment above** $ilde{U}$
 - Captures parsimoniously multiple thresholds active during our sample period
 - We will calibrate ϕ_U to match dynamics of $U\!I_t^D$ observed in our data

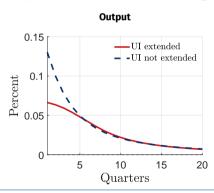
Calibration

Calibration

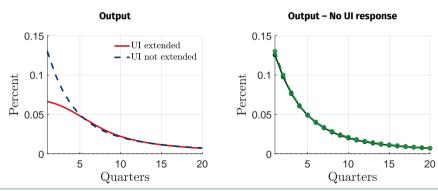

Parameter	Description	Value	Target / Source
Households			
1/σ	IES	0.5	Standard value
$oldsymbol{eta}_1$	Discount factor high	0.98	r = 0.04/4
eta_2	Discount factor low	0.85	MPC = 0.25
$ ho_h$	Persistence <i>h</i>	0.98	Bayer et al. (2019)
σ_h	Std. innovations to h	0.12	Bayer et al. (2019)
arepsilon	Elast. subs. intermediate goods	7	Standard value
η	Elast. subs. H and F goods	2	Nakamura and Steinsson (2014)
α	Share imported goods	0.3	Nakamura and Steinsson (2014)
Firms			
κ_{ν}	Vacancy posting cost	0.05	4.5% of quarterly wage
w	St-st. real wage	1.13	q = 0.71
ϕ^w	Wage rigidity	0.45	Elast. wage - productivity = 1/3
Z	St-st. productivity	1.33	C = 1
κ_p	Slope NKPC	0.05	Mean price duration of 5 q.

Calibration

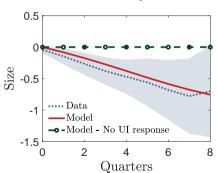
Parameter	Description	Value	Target / Source
Labor market	2 222		13 , 0
δ	Separation rate	0.10	Standard value
χ	Matching efficiency	0.66	N = 0.94
γ	Curvature matching function	0.5	Petrongolo and Pissarides (2001)
Government			
τ	Steady-state tax rate	0.24	G/Y = 0.20
B_H	Steady-state gov. debt	3	$B_H/4Y = 0.60$
b	Replacement rate UI	0.4	Standard value
$ ilde{b}$	Replacement rate safety-net	0.2	Nakajima (2012)
pe	Prob. loosing eligibility	0.5	Avg. duration UI of 2 q.
pr	Prop. regaining eligibility	0.5	2 q. to regain eligibility
$ ilde{ ilde{U}}$	UI extension threshold	6.0%	Chodorow-Reich et al. (2018)


Extended UI benefits in the model

- We first replicate in the model the average state in the data with extended UI:
 - We feed in shocks such that U_t raises to 7.7% as in data
 - Pick response of UI duration ϕ^U such that UI_t^D raises to 5.5 qrts. as in data

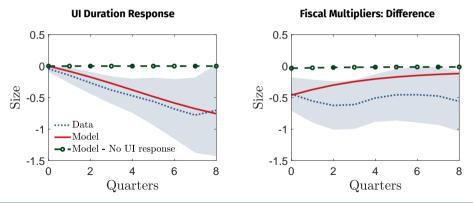

UI Extensions & Effects of Government Spending

- We compare the marginal effects of a gov't spending increase:
 - Starting from st.-st. where UI duration at regular level
 - Starting from the recession where UI duration extended
- We then repeat the exercise but assuming that UI duration is always at the regular leve


UI Extensions & Effects of Government Spending

- We compare the marginal effects of a gov't spending increase:
 - Starting from st.-st. where **UI duration at regular level**
 - Starting from the recession where UI duration extended
- We then repeat the exercise but assuming that UI duration is always at the regular level

- We pick the size of the G shock to match a cumulative fall in UI duration of 15% as in the data
- Model matches perfectly the difference in fiscal multipliers on impact
- Model without UI response predicts no difference in fiscal multipliers



- We pick the size of the G shock to match a cumulative fall in UI duration of 15% as in the data
- Model matches perfectly the difference in fiscal multipliers on impact
- Model without UI response predicts no difference in fiscal multipliers

- We pick the size of the G shock to match a cumulative fall in UI duration of 15% as in the data
- Model matches perfectly the difference in fiscal multipliers on impact
- Model without UI response predicts no difference in fiscal multipliers

Recovering UI multipliers from the model

UI Multipliers

Baseline

1.20

ullet Recover **UI Multiplier** using model: how many dollars Y_t increases for each dollar spent on UI

$$\frac{\sum_{t=0}^{T} \left(Y_t - Y\right) / Y}{\sum_{t=0}^{T} \left(\text{UI expenditures}_t - \text{UI expenditures} \right) / Y}$$

- Well within the range of previous empirical estimates:
 - Di Maggio and Kermani (2016): multiplier of 1.9 for UI levels
 - Chodorow-Reich and Coglianese (2019): back out multiplier of 1
 - Congressional Budget Office (2012) uses output multiplier of 1

Recovering UI multipliers from the model

UI Multipliers Baseline 1.20

ullet Recover **UI Multiplier** using model: how many dollars Y_t increases for each dollar spent on UI

$$\frac{\sum_{t=0}^{T}\left(Y_{t}-Y\right)/Y}{\sum_{t=0}^{T}\left(\text{UI expenditures}_{t}-\text{UI expenditures}\right)/Y}$$

- Well within the range of previous empirical estimates:
 - Di Maggio and Kermani (2016): multiplier of 1.9 for UI levels
 - Chodorow-Reich and Coglianese (2019): back out multiplier of 1
 - Congressional Budget Office (2012) uses output multiplier of 1

Recovering UI multipliers from the model

UI Multipliers Baseline 1.20

ullet Recover **UI Multiplier** using model: how many dollars Y_t increases for each dollar spent on UI

$$\frac{\sum_{t=0}^{T}\left(Y_{t}-Y\right)/Y}{\sum_{t=0}^{T}\left(\text{UI expenditures}_{t}-\text{UI expenditures}\right)/Y}$$

- Well within the range of previous empirical estimates:
 - Di Maggio and Kermani (2016): multiplier of 1.9 for UI levels
 - Chodorow-Reich and Coglianese (2019): back out multiplier of 1
 - Congressional Budget Office (2012) uses output multiplier of 1

- Three main channels drive effects of more generous UI extensions:
 - Wages: improves outside option and raises wages
 - Transfers: increases transfers to unemployed workers, households with high MPCs
 - Insurance: reduces the need to accumulate precautionary savings
- Measure contribution of each channel through counterfactuals
 - Complete Markets: only keeps detrimental effect from wages
 - Transfers: hhs. do expect changes in UI duration, but transfers never materialize
 - Insurance: shut down insurance by assuming that hhs. do not expect changes in U

UI Multipliers						
Baseline						
1.20						

- Three main channels drive effects of more generous UI extensions:
 - Wages: improves outside option and raises wages
 - Transfers: increases transfers to unemployed workers, households with high MPCs
 - **Insurance**: reduces the need to accumulate precautionary savings
- Measure contribution of each channel through counterfactuals:

 - Insurance: shut down insurance by assuming that hhs. do not expect changes in UI

UI Multipliers

Baseline	Complete Markets	Transfers	Insurance
1.20	-0.20	0.78	0.51

- Three main channels drive effects of more generous UI extensions:
 - Wages: improves outside option and raises wages
 - Transfers: increases transfers to unemployed workers, households with high MPCs
 - Insurance: reduces the need to accumulate precautionary savings
- Measure contribution of each channel through counterfactuals:
 - Complete Markets: only keeps detrimental effect from wages
 - Transfers: hhs. do expect changes in UI duration, but transfers never materialize
 - Insurance: shut down insurance by assuming that hhs. do not expect changes in U

UI Multipliers						
Baseline	Complete Markets	Transfers	Insurance			
1.20	-0.20	0.78	0.51			

- Three main channels drive effects of more generous UI extensions:
 - Wages: improves outside option and raises wages
 - Transfers: increases transfers to unemployed workers, households with high MPCs
 - **Insurance**: reduces the need to accumulate precautionary savings
- Measure contribution of each channel through counterfactuals:
 - Complete Markets: only keeps detrimental effect from wages
 - Transfers: hhs. do expect changes in UI duration, but transfers never materialize
 - Insurance: shut down insurance by assuming that hhs. do not expect changes in U

Baseline Complete Markets Transfers Insurance 1.20 -0.20 0.78 0.51

- Three main channels drive effects of more generous UI extensions:
 - Wages: improves outside option and raises wages
 - Transfers: increases transfers to unemployed workers, households with high MPCs
 - Insurance: reduces the need to accumulate precautionary savings
- Measure contribution of each channel through counterfactuals:
 - Complete Markets: only keeps detrimental effect from wages
 - Transfers: hhs. do expect changes in UI duration, but transfers never materialize
 - Insurance: shut down insurance by assuming that hhs. do not expect changes in UI

Baseline Complete Markets Transfers Insurance 1.20 -0.20 0.78 0.51

Conclusion

- Stabilization consequences of countercyclical UI extensions?
- Exploit institutional non-linear design of UI policy in the US
 - Government spending crowds out UI duration
 - UI extensions reduce local fiscal multipliers
 - Effects are unlikely to be explained by recessions or unobserved covariates
- Model: SOE in monetary union with equilibrium unemployment
 - Heterogeneous agents economy rationalizes empirical findings
 - Baseline UI multiplier of 1.2
 - Transfers to **high-MPC unemployed** and **insurance** both key in driving results

References (1/7)

- ACCONCIA, A., CORSETTI, G. and SIMONELLI, S. (2014). Mafia and public spending: Evidence on the fiscal multiplier from a quasi-experiment. *American Economic Review*, **104** (7), 2185–2209.
- AUCLERT, A., ROGNLIE, M., SOUCHIER, M. and STRAUB, L. (2021). Exchange rates and monetary policy with heterogeneous agents: Sizing up the real income channel. Tech. rep., National Bureau of Economic Research.
- AUERBACH, A. J. and GORODNICHENKO, Y. (2012). Measuring the output responses to fiscal policy. *American Economic Journal: Economic Policy*, **4** (2), 1–27.
- BARNICHON, R., DEBORTOLI, D. and MATTHES, C. (Forthcoming). Understanding the Size of the Government Spending Multiplier: It's in the Sign. *The Review of Economic Studies*.
- BASSO, H. S. and RACHEDI, O. (2021). The young, the old, and the government: Demographics and fiscal multipliers. *American Economic Journal: Macroeconomics*, **13** (4), 110–41.
- BAYER, C., LÜTTICKE, R., PHAM-DAO, L. and TJADEN, V. (2019). Precautionary savings, illiquid assets, and the aggregate consequences of shocks to household income risk. *Econometrica*, **87** (1), 255–290.

References (2/7)

- BERNARDINI, M., DE SCHRYDER, S. and PEERSMAN, G. (2020). Heterogeneous Government Spending Multipliers in the Era Surrounding the Great Recession. *The Review of Economics and Statistics*, **102** (2), 304–322.
- BLANCHARD, O. and PEROTTI, R. (2002). An Empirical Characterization of the Dynamic Effects of Changes in Government Spending and Taxes on Output*. *The Quarterly Journal of Economics*, **117** (4), 1329–1368.
- BOONE, C., DUBE, A., GOODMAN, L. and KAPLAN, E. (2021). Unemployment insurance generosity and aggregate employment. *American Economic Journal: Economic Policy*, **13** (2), 58–99.
- CHODOROW-REICH, G., COGLIANESE, J. and KARABARBOUNIS, L. (2018). The Macro Effects of Unemployment Benefit Extensions: a Measurement Error Approach*. *The Quarterly Journal of Economics*, **134** (1), 227–279.
- and COGLIANESE, J. M. (2019). Unemployment insurance and macroeconomic stabilization. Unemployment Insurance and Macroeconomic Stabilization." In Recession Ready, ed. Heather Boushey, Ryan Nunn, and Jay Shambaugh.

References (3/7)

- —, FEIVESON, L., LISCOW, Z. and WOOLSTON, W. G. (2012). Does state fiscal relief during recessions increase employment? evidence from the american recovery and reinvestment act. *American Economic Journal: Economic Policy*. **4** (3), 118–45.
- CONGRESSIONAL BUDGET OFFICE (2012). Unemployment Insurance in the Wake of the Recent Recession. Tech. rep., Washington, DC: Congressional Budget Office.
- CUGAT, G. (2019). Emerging markets, household heterogeneity, and exchange rate policy. *Unpublished paper*.
- DE FERRA, S., MITMAN, K. and ROMEI, F. (2020). Household heterogeneity and the transmission of foreign shocks. *Journal of International Economics*, **124**, 103303, nBER International Seminar on Macroeconomics 2019.
- DI MAGGIO, M. and KERMANI, A. (2016). The importance of unemployment insurance as an automatic stabilizer. Tech. rep., National Bureau of Economic Research.

References (4/7)

- DIETERLE, S., BARTALOTTI, O. and BRUMMET, Q. (2020). Revisiting the effects of unemployment insurance extensions on unemployment: A measurement-error-corrected regression discontinuity approach. *American Economic Journal: Economic Policy*, **12** (2), 84–114.
- Dupor, B., Karabarbounis, M., Kudlyak, M. and Mehkari, M. S. (2022). *Regional Consumption Responses and the Aggregate Fiscal Multiplier*. Hoover Institution Economics Working Papers 22105.
- GALÍ, J. and MONACELLI, T. (2005). Monetary Policy and Exchange Rate Volatility in a Small Open Economy. The Review of Economic Studies, **72** (3), 707–734.
- GORN, A. and TRIGARI, A. (2021). Assessing the (De) Stabilizing Effects of Unemployment Benefit Extensions. Tech. rep., CEPR Discussion Paper No. DP16125.
- Guo, X., Ottonello, P. and Perez, D. J. (2020). Monetary Policy and Redistribution in Open Economies. Working Paper 28213, National Bureau of Economic Research.

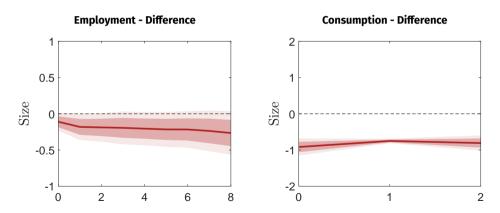
References (5/7)

- HAGEDORN, M., KARAHAN, F., MANOVSKII, I. and MITMAN, K. (2019). Unemployment Benefits and Unemployment in the Great Recession: The Role of Equilibrium Effects. Tech. rep., Federal Reserve Bank of New York Staff Reports, no. 646.
- JOHNSTON, A. C. and MAS, A. (2018). Potential unemployment insurance duration and labor supply: The individual and market-level response to a benefit cut. *Journal of Political Economy*, **126** (6), 2480–2522.
- JORDÀ, Ò. (2005). Estimation and inference of impulse responses by local projections. *American Economic Review*, **95** (1), 161–182.
- JUNG, P. and KUESTER, K. (2015). Optimal labor-market policy in recessions. *American Economic Journal: Macroeconomics*, **7** (2), 124–56.
- KEKRE, R. (2021). Unemployment Insurance in Macroeconomic Stabilization. Working Paper 29505, National Bureau of Economic Research.
- KRUSELL, P., MUKOYAMA, T. and ŞAHIN, A. (2010). Labour-Market Matching with Precautionary Savings and Aggregate Fluctuations. *The Review of Economic Studies*, **77** (4), 1477–1507.

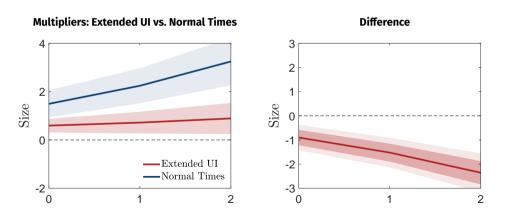
References (6/7)

- LANDAIS, C., MICHAILLAT, P. and SAEZ, E. (2018). A macroeconomic approach to optimal unemployment insurance: Theory. *American Economic Journal: Economic Policy*, **10** (2), 152–81.
- McKay, A. and Reis, R. (2021). Optimal Automatic Stabilizers. *The Review of Economic Studies*, **88** (5), 2375–2406.
- MITMAN, K. and RABINOVICH, S. (2019). Do Unemployment Benefit Extensions Explain the Emergence of Jobless Recoveries? Tech. rep., CEPR Discussion Paper No. DP13760.
- MORTENSEN, D. T. and PISSARIDES, C. A. (1994). Job creation and job destruction in the theory of unemployment. *The Review of Economic Studies*, **61** (3), 397–415.
- NAKAJIMA, M. (2012). A quantitative analysis of unemployment benefit extensions. *Journal of Monetary Economics*, **59** (7), 686–702.
- NAKAMURA, E. and Steinsson, J. (2014). Fiscal stimulus in a monetary union: Evidence from us regions. *American Economic Review*, **104** (3), 753–92.
- PETRONGOLO, B. and PISSARIDES, C. A. (2001). Looking into the black box: A survey of the matching function. *Journal of Economic Literature*, **39** (2), 390–431.

References (7/7)


- RAMEY, V. A. (2011). Identifying Government Spending Shocks: It's all in the Timing*. *The Quarterly Journal of Economics*, **126** (1), 1–50.
- and Zubairy, S. (2018). Government spending multipliers in good times and in bad: evidence from us historical data. *Journal of Political Economy*, **126** (2), 850–901.
- SUÁREZ SERRATO, J. C. and WINGENDER, P. (2016). Estimating Local Fiscal Multipliers. Working Paper 22425, National Bureau of Economic Research.
- TAYLOR, J. B. (1993). Discretion versus policy rules in practice. *Carnegie-Rochester Conference Series on Public Policy*, **39**, 195–214.

Appendix


Employment & Consumption Multiplier back

- State-level consumption expenditures from US Census at annual frequency
- State-level employment from Regional Accounts of BEA

Gov't Direct Expenditures back

- We replace gov't value-added by state-level government expenditure
- Only available at annual frequency from US Census

Labor Market

• Law of motion for **employment** N_t :

$$N_t = (1 - \delta)N_{t-1} + M_t$$

- δ : exogenous separation rate
- M_t : new matches
- New matches M_t formed according to:

$$M_t = \chi_t V_t^{\gamma} \left(1 - (1 - \delta) N_{t-1} \right)^{1 - \gamma}$$

- V_t : firms' vacancies, posted at cost κ_v
- χ_t : matching efficiency follows $\log AR(1)$ process

UI eligibility

- N_t^e : employed eligible
- N_t^{ne} : employed non-eligible
- U_t^e : unemployed eligible
- U_t^{ne} : unemployed non-eligible
- pe_t : prob. loosing eligibility
- · pr: prob. regaining eligibility

$$\begin{split} N_t^e &= (1 - \delta + \delta f_t) N_{t-1}^e + pr(1 - \delta + \delta f_t) N_{t-1}^{ne} + f_t \left(U_{t-1}^e + pr U_{t-1}^{ne} \right) \\ N_t^{ne} &= (1 - pr)(1 - \delta + \delta f_t) N_{t-1}^{ne} + (1 - pr) f_t U_{t-1}^{ne} \\ U_t^e &= (1 - f_t)(1 - pe_t) \left(U_{t-1}^e + \delta N_{t-1}^e \right) \\ U_t^{ne} &= (1 - f_t) \left(U_{t-1}^{ne} + \delta N_{t-1}^{ne} \right) + (1 - f_t) pe_t \left(U_{t-1}^e + \delta N_{t-1}^e \right) \end{split}$$

Foreign households back

• Export demand from Foreign households C_{Ht}^* :

$$C_{Ht}^* = \alpha \left(\frac{P_{Ht}^*}{P_t^*}\right)^{-\eta} C_t^*,$$

- Nominal exchange rate: \mathscr{E}_t
- Law of one price holds: $P_{Ht} = \mathscr{E}_t P_{Ht}^*$ and $P_{Ft} = \mathscr{E}_t P_{Ft}^*$
- Real exchange rate: $Q_t \coloneqq rac{\mathscr{E}_t P_t^*}{P_t}$
- Terms of trade: $S_t := \frac{P_{Ft}}{P_{Ht}}$

Firms - Labor good producers

• Value of a firm with a worker:

$$J_{t}^{L} = Z_{t} \frac{MC_{t}}{P_{t}} - \frac{W_{t}}{P_{t}} + \mathbb{E}_{t} \frac{1}{1 + r^{a}} (1 - \delta) J_{t+1}^{L},$$

· Free entry:

$$\kappa_{\nu} = q_t J_t^L$$

Nash Wage back

ullet Union bargains w_t^{nash} on behalf of workers to maximize average surplus from employment

$$w_t^{nash} = \underset{w_t}{\operatorname{arg\,max}} (J_t^L)^{1-\eta} (\Delta_t^{n,u})^{\eta}$$

• Average surplus from employment $\Delta_t^{n,u}$:

$$\Delta_t^{n,u} = (n_t^e + u_t^e) \Delta_{t,e=1}^{n,u} + (n_t^{ne} + u_t^{ne}) \Delta_{t,e=0}^{n,u}$$

• Average surplus from employment for eligible workers $\Delta_{t,e=1}^{n,u}$:

$$\Delta_{t,e=1}^{n,u} = U(C_{t,e=1}^n) - U(C_{t,e=1}^u) + \beta (1-\delta)(1-f_{t+1})(\Delta_{t+1,e=1}^{n,u} + pe_t \Delta_{t+1,n=0}^{e,ne})$$

• Average surplus from employment for non-eligible workers $\Delta_{t,e=0}^{n,u}$:

$$\Delta_{t,e=0}^{n,u} = U(C_{t,e=0}^n) - U(C_{t,e=0}^u) + \beta(1-\delta)(1-f_{t+1})(\Delta_{t+1,e=0}^{n,u} + pr\Delta_{t+1,n=1}^{ne,e})$$

• Average surplus from employment for eligible workers $\Delta_{t,e=1}^{n,u}$:

$$\Delta_{t,e=1}^{n,u} = U(C_{t,e=1}^n) - U(C_{t,e=1}^u) + \beta(1-\delta)(1-f_{t+1})(\Delta_{t+1,e=1}^{n,u} + pe_t\Delta_{t+1,n=0}^{e,ne})$$

• Average surplus from eligibility for unemployed workers $\Delta^{e,ne}_{t+1,n=0}$:

$$\Delta_{t,n=0}^{e,ne} = U(C_{t,e=1}^u) - U(C_{t,e=1}^u) + \beta \left[(1 - f_{t+1})(1 - \mathsf{pe}_{t+1}) \Delta_{t+1,n=0}^{e,ne} + f_{t+1}(1 - \mathsf{pr}) \Delta_{t+1,n=1}^{e,ne} \right]$$

• Average surplus from employment for non-eligible workers $\Delta_{t,e=0}^{n,u}$:

$$\Delta_{t,e=0}^{n,u} = U(C_{t,e=0}^n) - U(C_{t,e=0}^u) + \beta (1-\delta)(1-f_{t+1})(\Delta_{t+1,e=0}^{n,u} + pr\Delta_{t+1,n=1}^{ne,e})$$

• Average surplus from eligibility for employed workers $\Delta^{e,ne}_{t+1,n=1}$:

$$\Delta_{t,n=1}^{e,ne} = U(C_{t,e=1}^n) - U(C_{t,e=1}^n) + \beta \left[\left(1 - \delta(1 - f_{t+1}) \right) (1 - \operatorname{pr}) \Delta_{t+1,n=1}^{e,ne} + \delta(1 - f_{t+1}) (1 - \operatorname{pe}_{t+1}) \Delta_{t+1,n=0}^{e,ne} \right]$$

Firms - Producers of differentiated goods

· Set prices s.t. quadratic adjustment costs:

$$\begin{split} \max_{\left\{P_{jHt+k}\right\}_{k=0}^{\infty}} \mathbb{E}_t \sum_{k=0}^{\infty} (1+r^a)^{-k} \Bigg[\left(P_{jHt+k} - MC_{t+k}\right) Y_{jt+k}^D - \frac{\kappa_p}{2\varepsilon} \log \left(\frac{P_{jHt+k}}{P_{jHt+k-1}}\right)^2 P_{Ht+k} Y_{t+k}^D \Bigg], \\ \text{subject to} \quad Y_{jt}^D = \left(\frac{P_{jHt}}{P_{Ht}}\right)^{-\varepsilon} \left(C_{Ht} + C_{Ht}^* + G_t\right). \end{split}$$

NKPC:

$$\log(1+\pi_{H,t}) = \kappa_p \left(\frac{MC_t}{P_{Ht}} - \frac{\varepsilon - 1}{\varepsilon}\right) + \mathbb{E}_t \frac{1}{1+r^a} \log(1+\pi_{H,t+1}) \frac{Y_{t+1}^D}{Y_t^D},$$

Mutual Fund back

• Risk-neutral mutual fund issues A_t , purchases domestic B_{Ht} and foreign B_{Ft} bonds

$$A_t = B_{Ht} + Q_t B_{Ft}$$

Beginning-of-period flow constraint:

$$(1+r_t^a)A_{t-1}=(1+r_t)B_{H,t-1}+(1+r_t^*)Q_tB_{F,t-1}.$$

Non-arbitrage conditions:

$$\mathbb{E}_{t} \frac{1+i_{t}}{1+\pi_{t+1}} = \mathbb{E}_{t} \frac{1+i_{t}^{*}}{1+\pi_{t+1}^{*}} \frac{Q_{t+1}}{Q_{t}},$$

$$\mathbb{E}_{t} 1+r_{t+1}^{a} = \mathbb{E}_{t} 1+r_{t+1}$$