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Motivation

▶ Suppose the researcher has a forecasting model that produces h-step-ahead direct
density forecasts.

▶ Also suppose that the estimates are carried out at quarterly frequency, leading to
quarterly density forecasts.
▶ ⇒ a popular framework, when modelling and forecasting qoq GDP growth rates.

▶ Now suppose that the researcher is asked to aggregate the density forecasts stemming
from the model at a lower frequency.
▶ ⇒ a situation typical in institutions, where annual average GDP growth rates are

provided.

▶ The researcher could just draw multiples sequences of realizations from the h
estimated density forecasts and compute the distribution of annual average growth
rates.

▶ But direct forecasting schemes imply that the individual predictions do not embed
information on cross-horizon dependence...

▶ ...and this dependence is needed if the forecaster has to construct predictive objects
that are functions of several horizons, such as annual average growth rates.



1/14

Motivation

▶ Suppose the researcher has a forecasting model that produces h-step-ahead direct
density forecasts.

▶ Also suppose that the estimates are carried out at quarterly frequency, leading to
quarterly density forecasts.
▶ ⇒ a popular framework, when modelling and forecasting qoq GDP growth rates.

▶ Now suppose that the researcher is asked to aggregate the density forecasts stemming
from the model at a lower frequency.
▶ ⇒ a situation typical in institutions, where annual average GDP growth rates are

provided.

▶ The researcher could just draw multiples sequences of realizations from the h
estimated density forecasts and compute the distribution of annual average growth
rates.

▶ But direct forecasting schemes imply that the individual predictions do not embed
information on cross-horizon dependence...

▶ ...and this dependence is needed if the forecaster has to construct predictive objects
that are functions of several horizons, such as annual average growth rates.



1/14

Motivation

▶ Suppose the researcher has a forecasting model that produces h-step-ahead direct
density forecasts.

▶ Also suppose that the estimates are carried out at quarterly frequency, leading to
quarterly density forecasts.
▶ ⇒ a popular framework, when modelling and forecasting qoq GDP growth rates.

▶ Now suppose that the researcher is asked to aggregate the density forecasts stemming
from the model at a lower frequency.
▶ ⇒ a situation typical in institutions, where annual average GDP growth rates are

provided.

▶ The researcher could just draw multiples sequences of realizations from the h
estimated density forecasts and compute the distribution of annual average growth
rates.

▶ But direct forecasting schemes imply that the individual predictions do not embed
information on cross-horizon dependence...

▶ ...and this dependence is needed if the forecaster has to construct predictive objects
that are functions of several horizons, such as annual average growth rates.



1/14

Motivation

▶ Suppose the researcher has a forecasting model that produces h-step-ahead direct
density forecasts.

▶ Also suppose that the estimates are carried out at quarterly frequency, leading to
quarterly density forecasts.
▶ ⇒ a popular framework, when modelling and forecasting qoq GDP growth rates.

▶ Now suppose that the researcher is asked to aggregate the density forecasts stemming
from the model at a lower frequency.
▶ ⇒ a situation typical in institutions, where annual average GDP growth rates are

provided.

▶ The researcher could just draw multiples sequences of realizations from the h
estimated density forecasts and compute the distribution of annual average growth
rates.

▶ But direct forecasting schemes imply that the individual predictions do not embed
information on cross-horizon dependence...

▶ ...and this dependence is needed if the forecaster has to construct predictive objects
that are functions of several horizons, such as annual average growth rates.



1/14

Motivation

▶ Suppose the researcher has a forecasting model that produces h-step-ahead direct
density forecasts.

▶ Also suppose that the estimates are carried out at quarterly frequency, leading to
quarterly density forecasts.
▶ ⇒ a popular framework, when modelling and forecasting qoq GDP growth rates.

▶ Now suppose that the researcher is asked to aggregate the density forecasts stemming
from the model at a lower frequency.
▶ ⇒ a situation typical in institutions, where annual average GDP growth rates are

provided.

▶ The researcher could just draw multiples sequences of realizations from the h
estimated density forecasts and compute the distribution of annual average growth
rates.

▶ But direct forecasting schemes imply that the individual predictions do not embed
information on cross-horizon dependence...

▶ ...and this dependence is needed if the forecaster has to construct predictive objects
that are functions of several horizons, such as annual average growth rates.



1/14

Motivation

▶ Suppose the researcher has a forecasting model that produces h-step-ahead direct
density forecasts.

▶ Also suppose that the estimates are carried out at quarterly frequency, leading to
quarterly density forecasts.
▶ ⇒ a popular framework, when modelling and forecasting qoq GDP growth rates.

▶ Now suppose that the researcher is asked to aggregate the density forecasts stemming
from the model at a lower frequency.
▶ ⇒ a situation typical in institutions, where annual average GDP growth rates are

provided.

▶ The researcher could just draw multiples sequences of realizations from the h
estimated density forecasts and compute the distribution of annual average growth
rates.

▶ But direct forecasting schemes imply that the individual predictions do not embed
information on cross-horizon dependence...

▶ ...and this dependence is needed if the forecaster has to construct predictive objects
that are functions of several horizons, such as annual average growth rates.



1/14

Motivation

▶ Suppose the researcher has a forecasting model that produces h-step-ahead direct
density forecasts.

▶ Also suppose that the estimates are carried out at quarterly frequency, leading to
quarterly density forecasts.
▶ ⇒ a popular framework, when modelling and forecasting qoq GDP growth rates.

▶ Now suppose that the researcher is asked to aggregate the density forecasts stemming
from the model at a lower frequency.
▶ ⇒ a situation typical in institutions, where annual average GDP growth rates are

provided.

▶ The researcher could just draw multiples sequences of realizations from the h
estimated density forecasts and compute the distribution of annual average growth
rates.

▶ But direct forecasting schemes imply that the individual predictions do not embed
information on cross-horizon dependence...

▶ ...and this dependence is needed if the forecaster has to construct predictive objects
that are functions of several horizons, such as annual average growth rates.



1/14

Motivation

▶ Suppose the researcher has a forecasting model that produces h-step-ahead direct
density forecasts.

▶ Also suppose that the estimates are carried out at quarterly frequency, leading to
quarterly density forecasts.
▶ ⇒ a popular framework, when modelling and forecasting qoq GDP growth rates.

▶ Now suppose that the researcher is asked to aggregate the density forecasts stemming
from the model at a lower frequency.
▶ ⇒ a situation typical in institutions, where annual average GDP growth rates are

provided.

▶ The researcher could just draw multiples sequences of realizations from the h
estimated density forecasts and compute the distribution of annual average growth
rates.

▶ But direct forecasting schemes imply that the individual predictions do not embed
information on cross-horizon dependence...

▶ ...and this dependence is needed if the forecaster has to construct predictive objects
that are functions of several horizons, such as annual average growth rates.



2/14

Contribution

▶ We propose to use copulas (Sklar, 1959) to combine the individual direct h-step-ahead
predictive distributions into a joint predictive distribution.

▶ The benefit
1. The joint predictive distribution takes the cross-horizon dependence into account.

2. Allows you to compute predictive objects that are functions of several horizons (e.g.
annual average growth rates).

3. Implementation of the approach is simple.

▶ The cost: need a pseudo-out-of-sample to compute reliable estimates of PITs’
correlations.
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Overview of the main results

▶ Monte Carlo simulations show that our approach improves the predictive distributions
relative to other approximation methods.

▶ good approximations to the true underlying target-frequency density forecasts for
different DGPs

▶ robust to misspecified forecasting models and fairly small training samples

▶ In three empirical examples, we show that the proposed copula-approach leads to
improved density forecasts in the target frequency

▶ annual-average forecasts of US CPI inflation using year-on-year direct forecasts.

▶ quarter-on-quarter forecasts of variables in FRED MD month-on-month direct forecasts.

▶ annual-average forecasts of US GDP growth using quarter-on-quarter direct forecasts



3/14

Overview of the main results

▶ Monte Carlo simulations show that our approach improves the predictive distributions
relative to other approximation methods.

▶ good approximations to the true underlying target-frequency density forecasts for
different DGPs

▶ robust to misspecified forecasting models and fairly small training samples

▶ In three empirical examples, we show that the proposed copula-approach leads to
improved density forecasts in the target frequency

▶ annual-average forecasts of US CPI inflation using year-on-year direct forecasts.

▶ quarter-on-quarter forecasts of variables in FRED MD month-on-month direct forecasts.

▶ annual-average forecasts of US GDP growth using quarter-on-quarter direct forecasts



3/14

Overview of the main results

▶ Monte Carlo simulations show that our approach improves the predictive distributions
relative to other approximation methods.

▶ good approximations to the true underlying target-frequency density forecasts for
different DGPs

▶ robust to misspecified forecasting models and fairly small training samples

▶ In three empirical examples, we show that the proposed copula-approach leads to
improved density forecasts in the target frequency

▶ annual-average forecasts of US CPI inflation using year-on-year direct forecasts.

▶ quarter-on-quarter forecasts of variables in FRED MD month-on-month direct forecasts.

▶ annual-average forecasts of US GDP growth using quarter-on-quarter direct forecasts



3/14

Overview of the main results

▶ Monte Carlo simulations show that our approach improves the predictive distributions
relative to other approximation methods.

▶ good approximations to the true underlying target-frequency density forecasts for
different DGPs

▶ robust to misspecified forecasting models and fairly small training samples

▶ In three empirical examples, we show that the proposed copula-approach leads to
improved density forecasts in the target frequency

▶ annual-average forecasts of US CPI inflation using year-on-year direct forecasts.

▶ quarter-on-quarter forecasts of variables in FRED MD month-on-month direct forecasts.

▶ annual-average forecasts of US GDP growth using quarter-on-quarter direct forecasts



3/14

Overview of the main results

▶ Monte Carlo simulations show that our approach improves the predictive distributions
relative to other approximation methods.

▶ good approximations to the true underlying target-frequency density forecasts for
different DGPs

▶ robust to misspecified forecasting models and fairly small training samples

▶ In three empirical examples, we show that the proposed copula-approach leads to
improved density forecasts in the target frequency

▶ annual-average forecasts of US CPI inflation using year-on-year direct forecasts.

▶ quarter-on-quarter forecasts of variables in FRED MD month-on-month direct forecasts.

▶ annual-average forecasts of US GDP growth using quarter-on-quarter direct forecasts



3/14

Overview of the main results

▶ Monte Carlo simulations show that our approach improves the predictive distributions
relative to other approximation methods.

▶ good approximations to the true underlying target-frequency density forecasts for
different DGPs

▶ robust to misspecified forecasting models and fairly small training samples

▶ In three empirical examples, we show that the proposed copula-approach leads to
improved density forecasts in the target frequency

▶ annual-average forecasts of US CPI inflation using year-on-year direct forecasts.

▶ quarter-on-quarter forecasts of variables in FRED MD month-on-month direct forecasts.

▶ annual-average forecasts of US GDP growth using quarter-on-quarter direct forecasts



3/14

Overview of the main results

▶ Monte Carlo simulations show that our approach improves the predictive distributions
relative to other approximation methods.

▶ good approximations to the true underlying target-frequency density forecasts for
different DGPs

▶ robust to misspecified forecasting models and fairly small training samples

▶ In three empirical examples, we show that the proposed copula-approach leads to
improved density forecasts in the target frequency

▶ annual-average forecasts of US CPI inflation using year-on-year direct forecasts.

▶ quarter-on-quarter forecasts of variables in FRED MD month-on-month direct forecasts.

▶ annual-average forecasts of US GDP growth using quarter-on-quarter direct forecasts



4/14

Statistical framework

▶ Suppose the forecaster has a set of direct h-step-ahead predictive densities for T
forecast origins, denoted by {{gt,h}Hh=1}Tt=1 and with predictive CDF {{Gt,h}Hh=1}Tt=1,
for outcome variables Yt+h, h = 1, ..,H

▶ The subscript h denotes the forecast horizon and the subscript t denotes the forecast
origin.

▶ Let then QT (yT+1, ..., yT+h|R) denote the joint predictive CDF of YT+1, ...,YT+h for
forecast origin T , conditional on the correlation matrix R and constructed using CGa.

▶ Remember that a copula is a multivariate CDF characterizing the dependence
structure between random variables ⇒ any multivariate joint distribution can be
expressed in terms of univariate marginals and a copula.

▶ Hence, QT (yT+1, ..., yT+H |R) = CGa(GT ,1(yT+1), ...,GT ,H(yT+H)|R).
▶ Then, the forecaster can obtain an estimate of QT (yT+1, ..., yT+H |R) using an

algorithm drawing from the joint predictive distribution.
▶ In the paper we have an analytical example that illustrates how the copula approach

captures the cross-horizon dependence.
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Estimation algorithm

Algorithm 1: Joint Predictive Distribution
1. Compute the realized PITs, {{PITt,h}Hh=1}T−H

t=1 , of the predictive CDFs
{{Gt,h}Hh=1}T−H

t=1 .

2. Compute the rank correlations of PITt,h across the different h to get an estimate of R̂.

3. Use R̂ in combination with CGa to obtain the joint distribution Q̂T (yT+1, .., yT+H |R̂).
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Monte Carlo simulations - design of the experiments

▶ Simulate quarterly growth rates using an AR(1).

Yt = τ + ρYt−1 + et

where et may follow 3 different distributions:

et ∼ N (0, σ2) et ∼ Skew-N (µ, ξ, δ) et ∼ Skew-t(µ, ξ, δ, ν)

with δ = −0.83, ν = 8, and µ and ξ calibrated such that mean = 0 and
variance = σ2 = 0.25.

▶ 2 types of forecasting models, each producing direct h-step-ahead forecasts:

Yt+h = τh + γhYt + ut+h linear regression when et Normal

Yt+h(q) = τh(q) + γh(q)Yt + ut+h(q) quantile regression otherwise

▶ We set :

Tis = 200 quarterly in-sample obs, held fixed in a rolling-window scheme

Toos = 50 quarterly oos obs, for the computation of historical PITs

Teval = 200 quarterly oos obs for the computation of (50) annual average
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Monte Carlo simulations - design of the experiments

▶ We produce annual-average forecasts every four quarters for horizons of one, two,
and three years ahead.

▶ The benchmark is the true annual average distribution.
▶ We compare the proposed copula approach to a “simple” approach ignoring serial

dependence.
▶ Annual average distributions are based on the well-known aggregation formula of qoq

growth rates:

AAY2 =
ȲQ2Y1ȲQ3Y1ȲQ4Y1ȲQ1Y2

(
1 + ȲQ2Y2 + ȲQ2Y2ȲQ3Y2 + ȲQ2Y2ȲQ3Y2ȲQ4Y2

)
1 + ȲQ2Y1

(
1 + ȲQ3Y1ȲQ3Y1ȲQ4Y1

) − 1

where ȲQbYc denotes the gross qoq growth rate in quarter b of year c

▶ We test for correct specification of the resulting annual-average predictive
distributions as well as for equal predictive performance relative to the true
annual-average predictive distribution.
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(
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Monte Carlo results: qoq to annual-average transformation 1/2

Table: Tests of predictive performance: rejection frequency for annual average forecast

Normal Skew Normal Skew t

ρ Model h=1 h=2 h=3 h=1 h=2 h=3 h=1 h=2 h=3

Log-score

0.8 Naïve 0.59 0.74 0.67 0.47 0.68 0.62 0.47 0.69 0.64
Copula 0.09 0.07 0.07 0.06 0.05 0.06 0.04 0.07 0.08

0.5 Naïve 0.30 0.51 0.45 0.22 0.42 0.42 0.24 0.44 0.43
Copula 0.05 0.06 0.09 0.04 0.10 0.09 0.03 0.07 0.09

0.1 Naïve 0.06 0.10 0.11 0.10 0.10 0.09 0.06 0.09 0.10
Copula 0.12 0.21 0.22 0.14 0.19 0.18 0.09 0.21 0.20

Note: the rejection frequency of the null hypothesis of a Giacomini and White (2006) test of unconditional

equal predictive ability. The nominal size is 5%. Standard errors of the tests were computed using a HAC

with a bandwidth = h − 1
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Monte Carlo results: qoq to annual-average transformation 2/2

Table: Tests of correct specification: rejection frequency for annual average forecast

Normal Skew Normal Skew t

ρ Model h=1 h=2 h=3 h=1 h=2 h=3 h=1 h=2 h=3

PIT

0.8 Naïve 0.56 0.85 0.82 0.60 0.84 0.78 0.57 0.81 0.77
Copula 0.08 0.10 0.13 0.07 0.07 0.11 0.06 0.09 0.12

0.5 Naïve 0.29 0.46 0.47 0.28 0.41 0.40 0.36 0.46 0.46
Copula 0.11 0.15 0.18 0.05 0.09 0.10 0.08 0.11 0.13

0.1 Naïve 0.08 0.09 0.09 0.09 0.07 0.09 0.08 0.09 0.08
Copula 0.13 0.20 0.20 0.08 0.10 0.12 0.08 0.14 0.12

Note: rejection frequency at 5% nominal size of the null hypothesis of uniformity of PITs of the Rossi and

Sekhposyan (2019) test correct calibration of the density forecasts. The test is based on the

Kolmogorov-Smirnov statistic. Standard errors of the tests were computed using a HAC with a

bandwidth = h − 1
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Empirical application 1: from month-on-month to quarter-on-quarter

▶ Large-scale forecasting exercise based on monthly data from FRED-MD from 1959:M1
to 2019:M12.

▶ We closely follow McCracken and McGillicuddy (2019) and consider random bivariate
systems, Zt = (Yt ,Xt)

′.
▶ We first compute density forecasts for month-on-month values Yt+h, with

h = 1, . . . , 12 months, and then we use these predictive densities to compute
quarter-on-quarter density forecasts through our proposed copula approach.

Table: Relative performance of copula approach for quarter-on-quarter forecasts

Lag length Statistics Great moderation Full sample

h = 1 h = 2 h = 3 h = 4 h = 1 h = 2 h = 3 h = 4

CRPS

AR(4) Median 1.00 1.01 1.10 1.21 1.00 1.01 1.12 1.23
Test 0.08 0.25 0.62 0.73 0.08 0.27 0.66 0.74

Note: Row "Median" shows the relative CRPS of the naïve approach relative to the copula approach, i.e.,

numbers larger than one indicate a worse performance of the naïve approach. Values in the row "Test"

shows the percentage of times that a Giacomini and West (2006) test of unconditional equal predictive

ability rejects the null hypothesis at a 5% level.
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Empirical application 2: Inflation-at-Risk
▶ Inspired by Korobilis (2017): QR-Lasso of yoy US CPI inflation on 22 predictors.
▶ We transform yoy density forecasts into annual average density forecasts.
▶ Empirical PITs computed from 1975 to 1984. Out-of-sample from 1985 onwards.
▶ Forecast origin is YM12.
▶ According to the CRPS ratio the copula-based approach delivers a 10% better

performance (statistically significant at the 1% level using Giacomini and White
(2006)).

Figure: IaR for 2001 and 2011

(a) 2001 (b) 2011
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Empirical application 3: Growth-at-Risk

▶ Inspired by Adrian et al. (2019): QR of qoq US GDP growth on NFCI.
▶ We transform qoq density forecasts into annual average density forecasts.
▶ Empirical PITs computed from 1993 to 2001. Out-of-sample from 2002 onwards.
▶ Forecast origin is YQ4.

Figure: GaR for the year 2008 (forecast origin in 2007Q4)
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Concluding remarks

▶ We provide a copula-based approach to combine direct forecasts to obtain new
predictive objects that are function of several horizons (e.g. annual average growth
rates).

▶ The approach is simple to implement and requires only enough oos observations to
compute the correlation of PITs at the necessary horizons.

▶ In a Monte Carlo exercise, we show that our methodology outperforms the “simple”
approach whenever the serial correlation across different forecasting horizons is not
extremely low.

▶ Three empirical applications provide evidence that the copula approach can provide
better density forecasts than the “simple” approach.

Work in progress:
▶ Provide some guidance on how strong the cross-horizon correlation must be for the

copula approach to be preferable.
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Thank you for your attention
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