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Motivation

Forecasting literature offers different methods how to condition multivariate forecasts on future paths of a

subset of model variables (e.g. Waggoner and Zha (1999), Bańbura, Giannone, and Lenza (2015) or more

recently Chan et al. (2023))

−→ Limiting the information set to future paths of variables ignores the evolution of risks around these

forecasts

Conditional Density Forecasting: new methodology to condition model-based forecasting densities on

off-model information (e.g. from options) about some of its marginal distributions.

Idea: Reweight the draws from the model-based marginals of the forecasting density qθ(y) to match a

target density pη(y) that satisfies external information.

How: We propose an algorithm that uses tempered importance sampling to adjust the model-based

forecasting densities to the user specified target densities

Why: Understanding possibly asymmetric risks around forecasts of macroeconomic variables
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Related Literature

Methodological contribution:

• Motivation is similar to the idea of entropic tilting developed in Robertson, Tallman, and

Whiteman (2005) and Krüger, Clark, and Ravazzolo (2017)

• The performance of the entropic tilting methodology crucially hinges on the support of the original

distribution Qθ

• Application of Tempered Importance Sampling by Herbst and Schorfheide (2014)

−→ Our approach is more flexible and robust.

Macro@Risk Literature:

• Analyse asymmetric risks around macroeconomic forecasts (Adrian, Boyarchenko, and Giannone (2019),

Montes-Galdón and Ortega (2022) or Wolf (2022)).

• Multivariate skew-T distribution of Azzalini and Capitanio (2003) to capture asymmetric densities in

option-implied moments.
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Basic Idea: Importance Sampling

Proposal

The researcher wants to introduce external information on a subset of variables y e
i ∈ yi that is given by the

distribution Pη into a model-based forecast:

yi ∼ qθ(y)

Target

The researcher can re-weight the draws {yi}Ni=1 so that draws y e
i from the final forecasting density satisfy

the information in pη(yi ) using importance sampling:

ỹi ∼ MN ({yi}Ni=1|{Wi}Ni=1) with Wi =
wi∑N
i=1 wi

and wi =
pη(y

e
i )

qθ(y e
i )

The tuples {yi ,Wi}Ni=1 provide a particle approximation of the final density.
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Problems

Quality of the importance sampler depends on the Kullback-Leibler Divergence D(Pη|Qθ).

• In our case, the proposal density is predetermined: −→ It is a model-based (forecasting) density qθ(yi ).

• Target density pη(yi ) might be ”far apart” with a high Kullback-Leibler divergence.

1. For high-dimensional qη(yi ) the probability mass is concentrated in a small region of the high dimensional

space

2. External information that will improve or alter the forecast density might often imply a very different mean

and variance of pη(yi ) compared to qθ(yi ).

−→ To overcome these problems we resort to tempered importance sampling

(Neal (2001), Herbst and Schorfheide (2014))

Additional Problems:

• External information might only be available for transformations of the model variables of interest (e.g.

growth rates or log vs. levels) −→ implies a change in the respective marginal distributions

• We consider Bayesian estimation setting without a closed form solution of the model-based predictive

density qθ(yi ).
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Tempered Importance Sampling

Tempered Importance Sampling uses a sequence of Nϕ bridge distributions

pn(yi |µη,Ση/ϕn) with 0 < ϕ1 < ... < ϕNϕ
= 1 (1)

that converge towards the target distribution p(yi |µη,Ση) for ϕn → 1.

1. Correction

Wi,n ∝ pn(yi,n−1|µη,Ση/ϕn)

pn−1(yi,n−1|µη,Ση/ϕn−1)

2. Selection

ỹi,n ∼ MN ({yi,n−1}Ni=1|{Wi,n}Ni=1)

3. Mutation

Propagate the resampled particles {ỹi}Ni=1 using M steps of an MH-Algorithm with a transition Kernel

yi,n ∼ Kn(yn|ỹi,n)

that has the stationary distribution pn(yi |µη,Ση/ϕn)
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Tempered Importance Sampling: Example
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Figure 1: Proposal and Target densities qθ(y) and pη(y) with probability masses concentrated in different regions of the real

line and Kullback-Leibler divergence of 107,22. Bridge distributions are close by construction and converge to pη(y) as ϕn → 1.

• Draws from Qθ are sequentially adapted to Pη using a number of bridge distributions that converge to

the target density

• Number of bridge distributions NϕN
is set adaptively to guarantee even weights. Details
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Conditional Density Forecasting Algorithm:

For i = 1, ...,N:

1. Draw yi,1 ∼ q
(
yi |µ(i)

θ ,Σ
(i)
θ

)
2. Select the subset y e

i,1 ∈ yi,1 for which there exists external information on the transformation h(y e
i,1).

2.1 Obtain initial importance weights Wi,1 ∝
p1(h(y

e
i,1)|µη,Ση/ϕ1)

q
(
yi |µ

(i)
θ

,Σ
(i)
θ

)
2.2 Resample y e

i,1 ∼ MN ({y e
i,1}Ni=1|{Wi,1}Ni=1)

3. For n = 2 : NϕN

3.1 Correction: Obtain weights Wi,n ∝ pn(h(y
e
i,n−1)|µη,Ση/ϕn)

pn−1(h(y
e
i,n−1)|µη,Ση/ϕn−1)

3.2 Selection: Resample y e
i,n ∼ MN

(
{yi,n−1e}Ni=1|{Wi,n}Ni=1

)
3.3 Mutation: For j = 1 : H

3.3.1 Draw ŷ e
i,n ∼ q

(
y e
i |y

e
i,n, µ

(i)
θ , cnΣ

(i)
θ

)
3.3.2 Compute

α =
pn(h(ŷ e

i,n)|µη ,Ση/ϕn)

pn(h(y e
i,n)|µη ,Ση/ϕn)

×

∣∣∣∣∣det(Jh−1 (y e
i,n))

det(Jh−1 (ŷ e
i,n))

∣∣∣∣∣ (2)

where Jh−1 (y) denotes the Jacobian of the inverse transformation of h(y).

3.3.3 Draw u ∼ U(0, 1).

Iff u < α :

Set y e
i,n = ŷ e

i,n

3.3.4 Draw the other variables y−e
i from conditional density

y−e
i ∼ q

(
y−e
i |y e

i,Nϕ
, µ

(i)
θ,−e|e ,Σ

(i)
θ,−e|e

)
7



Relationship to Entropic Tilting

BASIC IDEA: Reweight draws from a model-based distribution F (y) to adapt them to a target distribution

F ′(y). F ′(y) is closest distribution that satisfies a number of constraints ḡ :

D(F |F ′) =

∫
f ′(y) log(

f ′(y)

f (y)
)dy s.t.

∫
f ′(y)g(y)dy = ḡ and

∫
f ′(y)dy = 1

• Solution is given by Radon-Nikodym Derivative

f ′(y) ∝ Λf (y) with Λ ∝ exp (γ′g(y)) and γ =

[∫
exp (γ′g(y))(g(y)− ḡ)dF (y)

]
→ In finite samples Λ does not exists if D(F |F ′) becomes too large.

• Draws {yi}Ni=1 from F , are resampled using the normalized importance weights

W (yi ) =
f ′(yi ) exp (γ

′g(yi ))∑N
i=1 f

′(yi ) exp (γ′g(yi ))

• While entropic tilting works directly with the moment constraints, our approach takes the moments to

build a target density

• Requires additional assumption on the density but allows to move the draws in the mutation step to

overcome particle degeneracy.
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Application: Transmission of oil-price risks to inflation

• We use our methodology to introduce information from option prices of oil in the density forecast of a

small euro area BVAR model and in the NAWM (paper).

• Based on Breeden and Litzenberger (1978), it is possible to construct probability densities and implied

moments of underlying assets from derivative prices at the date of expiry.

• Information content of option implied moments is also documented in Bauer and Chernov (2021) or

Day and Lewis (1992).

• Option-implied probability densities are provided for variables such as exchange rates, interest rates or

oil prices and are regularly published by the ECB, the BoE or the Federal Reserve.

9



Application: Transmission of oil-price risks to inflation
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Figure 2: Skewness of the option implied probability density functions of oil prices using quarterly data from 2008 to 2022 for

different forecast horizons obtained from the ECB’s Statistical Data Warehouse. The probability density of the future oil price

exhibits large fluctuations in the evolution of skewness for all horizons, and over the full sample.
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Multivariate Skew-T

We model the option implied densities as a multivariate Skew-T distribution introduced by Azzalini and

Capitanio (2003)

Multivariate Skew-T Distribution I

y ∈ Rp, follows a a multivariate Skew-T with density τ(y |ξ,Ω, λ, ν) where ξ ∈ Rp determines the location,

Ω is a p × p Covariance matrix, λ ∈ Rp is the shape parameter and ν ∈ N are the degrees of freedom.

Bivariate Skew-T Distribution
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Figure 3: Simple two-dimensional example with ξi = 0 and ωi = 1 for i = {1, 2}. The correlation coefficient is ρ = 0.8 and the

shape parameters are given by λ1 = −2 and λ2 = 0. This gives λ1(2) = −2 and λ2(1) = −1.024. Marginals

−→ Positive correlation between y1 and y2 results in negative skewness of both marginals. 11



Skew-T: Theoretical Moments

Based on Azzalini and Capitanio (2003), the first three theoretical moments of the univariate skew-T

distribution are given by the following set of equations:

Moment Matching

γoil
i = κi(j)

ν
(
3− δ2i(j)

)
ν − 3

− 3ν

ν − 2
+ 2κ2

i(j)

[
ν

ν − 2
− κ2

i(j)

]

κi(j) =

√
vΓ

(
1
2 (ν − 1)

)
√
πΓ

(
1
2ν

) δi(j)

λi(j) =
δi(j)√
1− δ2i(j)

σoil
i = ωi

√[
ν

ν − 2
− κ2

i(j)

]
µoil
i = ξi + ωiκi(j)

In a second step we recover the vectors of the joint lambdas λi from the observed marginals λi(j)
Details
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Introducing external information in a BVAR model

We obtain qθ(y) from the forecasting density of a reduced form BVAR

yt = ζ + A1yt−1 + ...+ Asyt−s + ut with ut ∼ N (0,Σ)

• Variables: logs of the price of oil, real GDP, prices including and excluding energy, US/Dollar exchange

rate, employment as well as the long and short term interest rates.

• Priors: Hierarchical approach of Giannone, Lenza, and Primiceri (2015) and Covid correction of Lenza

and Primiceri (2020)

The proposal density for the i th draw yi = [y ′
T+1, ..., y

′
T+P ] is then given by the multivariate forecasting

distribution ( Proposal ) of the model and takes the form

qθ(yi ) = φ(y |µ(i),Σ(i))

The target density is the multivariate skew-T fitted to the option implied moments.

pη(y
oil
i ) = τ(yoil |ξ̂, Ω̂, λ̂, ν)
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Results from the BVAR

We first use our method to investigate the effect of the strong increase in oil prices on inflation due to the

begin of the war in Ukraine in the first quarter of 2022.

• We estimate the BVAR model using data up to 2022Q1 and introduce the information of the

option-implied densities at the 4th of March.

• Table 1 displays the option-implied moments for all forecasting horizons p

p Mean SD Skewness

1 110.2 38.88 1.8

2 103.16 40.64 1.56

3 98.92 40.59 1.28

4 95.3 41.1 1.14

5 92.13 41.88 1.09

6 89.75 41.99 1.01

Table 1: Option-implied moments Fitted

Given the debate about the pass-through of high energy prices to inflation we are particularly interested in

the effect on both, inflation and and core inflation.
14



Inflation Risks

Figure 4: Forecasting densities for inflation and core inflation. The shaded areas show the 16, 25, 75 and 84 percent quantiles

of the annualized inflation rate together with the median (solid black line). The dotted red lines show the 16 and 84 percent

quantiles of the original distribution.

• Introducing the information of the options results in an upward shift of the full distribution

• Positive skewness in the distribution of the oil prices results in upside risks to inflation marginals

• Core inflation rates remain elevated over the forecasting horizon compared to the BVAR

15



Forecasting Exercise

We look at the probabilistic forecasting performance in a real time forecasting exercise to forecast GDP,

inflation and core inflation.

• We estimate the same BVAR using data vintages starting in the last quarter of 2013 up until the third

quarter of 2021.

• With the onset of the Covid pandemic we again use the method of Lenza and Primiceri (2020).

• We use our algorithm to impose the option-implied distribution at the end of the quarter to the

forecasting density of the oil-price.

• Evaluation based on the continuous ranked probability score (CRPS)

CRPS(F , x) =

∫ ∞

−∞
(F (y)− 1(y − x))2 dy

16



Results: Forecasting Exercise
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Figure 5: The plot shows the ratios of the average CRPS over all horizons for the symmetric density forecasts under Qθ and

the skew-T forecasts under Pη . Values lower than 1 indicate better probabilistic forecasts under Pη . Including additional

information on the distribution from the options does not increase predictive accuracy in moderate periods but strongly

increases the probabilistic forecasts accuracy in times of economic turmoil. GDP Inflation Core Inflation
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Conclusion

We develop a methodology to adapt draws from a model-based distribution to a target distribution that is

specified based on external information:

• The algorithm uses a modified version of the tempered importance sampling method of Herbst and

Schorfheide (2014) to allow applications where the proposed draws are far away from the target density

Illustration of our algorithm by introducing external information about the distribution of future oil prices

obtained from derivative prices into the forecasting densities of a BVAR and the NAWM

• Adapting the forecasting distributions of the BVAR to the option-implied densities results in upside risks

to inflation and core inflation.

• Median forecasts of core inflation remain persistently higher over the forecasting horizon

• Real-time forecasting exercise indicates that introducing information about the marginal distribution of

oil prices improves forecasts for GDP and inflation measures during the Covid pandemic compared to

symmetric forecasting distributions.
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Appendix

Additional Material
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Fitting a skew-T distribution to oil price option-based forecasts

We recover the parameters of the multivariate skew-T distribution in two steps:

1. We match the option implied mean µoil
i , standard deviation σoil

i and skewness γoil
i of the marginal

forecast densities of oil prices to the moments of the skew-T distribution derived in Azzalini and

Capitanio (2003) for each forecasting horizon i = 1, ...,P

2. We use the results of Arellano-Valle and Genton (2010) to solve for the shape parameters of the joint

forecast density (λ̂) by solving the following system of equations

Joint Lambdas

λi = λi(−j)

√
1 + λ′

−i Ω̃ii|−iλ−i − Ω̄−1
ii Ω̄′

−iiλ−i ∀i = 1, ...,P

Back
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Multivariate Skew-T: Density

Based on Proposition 3 in Arellano-Valle and Genton (2010) the multivariate skew T distribution is closed

under marginalization.

Marginal Distributions

For a partition y = (y1, y2), with dimensions p1 and p2 and parameters (ξ,Ω, λ), the marginal densities of

yi with i = 1, 2 are given by

τ(y |ξi ,Ωii , λi(j), ν)

with

λi(j) =
λi + Ω̄−1

ii Ω̄ijλj√
1 + λ′

j Ω̃ii|jλj

and Ω̃ii|j = Ω̄jj − Ω̄ji Ω̄
−1
ii Ω̄ij

• shape parameter of the marginal distribution is a weighted sum of the vector of individual shape

parameters

• weights depend on the correlation between yi and yj
• λi = 0 does not imply that the marginal distribution of yi is symmetric.

Return 21



Deriving the Forecasting Distribution

• BVAR-Model in Companion Form:

yt = ci +Φiyt−1 + Giεt

• Stacking the realizations over the full forecasting horizon in a vector yi yields
yT+1

yT+2

...

yT+h

 =


c̃i,T+1

c̃i,T+2

...

c̃i,T+h

+


Gi 0 0 0

ΦiGi Gi 0 0
...

...
. . . 0

Φh−1
i Gi Φh−2

i Gi · · · Gi




εT+1

εT+2

...

εT+h


with c̃i,T+h =

∑h
j=1 Φ

j−1
i ci +Φh

i yT .

• Redefining the terms results in the simple expression

yi = µi + Giε

• Given the distributional assumption about εt it follows that

yi ∼ N
(
y |µ(i),Σ(i)

)
with Σ(i) = GiG′

i

return
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Implementation Details

• We use the the adaptive tempering schedule of Herbst and Schorfheide (2019) to obtain the optimal

values for NϕN
and ϕn.

• We determine the particle approximation using the Inefficiency Ratio Ineff =
∑M

i=1 W
2
i

Tempering Schedule

In each iteration, we solve

ϕn = argmin
1

M

M∑
i

[
wi,n(ϕ)

1
M

∑M
i=1 wi,n(ϕ)

]2

− r∗

• To obtain a precise approximation of the target density we set r∗ = 1.01.

Return
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Fitted Marginal Densities for oil price

Figure 6: Fitted marginal skew T-densities that from the values in Table 1 together with the histogram of the final particles

{yOil
i,Nϕ

}Ni=1. The algorithm required a number of Nϕ = 40 tempering steps. Draws are very well adapted to the target

distribution and the positive skewness and increasing volatility is clearly visible. Return
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Appendix IV: Marginal Densities

Figure 7: Marginal conditional forecasting densities of annual GDP growth, inflation and core inflation. Return
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Results: Forecasting GDP
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Figure 8: The plot shows the ratios of the CRPS for the symmetric density forecasts under Qθ and the skew-T forecasts under

Pη for GDP and for all forecasting horizons. Values lower than 1 indicate better probabilistic forecasts under Pη
Return
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Results: Forecasting Inflation
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Figure 9: The plot shows the ratios of the CRPS for the symmetric density forecasts under Qθ and the skew-T forecasts under

Pη for inflation and for all forecasting horizons. Values lower than 1 indicate better probabilistic forecasts under Pη
Return
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Results: Forecasting Core Inflation
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Figure 10: The plot shows the ratios of the CRPS for the symmetric density forecasts under Qθ and the skew-T forecasts under

Pη for core inflation and for all forecasting horizons. Values lower than 1 indicate better probabilistic forecasts under Pη
Return
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Extensions

Our methodology requires knowledge of the conditional distribution of the proposal distribution. Second, we

use a tempering method that requires a target density with a parameter to control the scale of the

distribution.

• If the conditional distribution is not available, it is possible to approximate the proposal density q(x)

with a Gaussian mixture density that can be used to sample from in step 4.

Conditional Gaussian Mixture

q(x1|x2) =
K∑

k=1

[
πkφ(x2|µk,2,Σk,22)∑L
l=1 πlφ(x2|µl,2,Σl,22)

]
φ(x1|x2, µk,1|2,Σk,1|2)

• We propose another way to define the bridge distributions as given in Neal (2001)

Alternative Bridge Distribution

pn(yi ) = pη(yi )
ϕnqθ(yi )

(1−ϕn)
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Results from the NAWM

Figure 11: Forecasting densities for the year-on-year growth rate of GDP and PCD inflation. The shaded areas show the

16, 25, 75 and 84 percent quantiles of the tilted forecasting distributions. The dotted black lines show the 16 and 84 percent

quantiles of the original distribution. The solid black lines show the BMPE values. The results are obtained using a modified

version of the NAWM II model with an enhanced transmission channel of oil prices.

• Positive skewness in the distribution of the oil prices results in upside risks to inflation

• Positive skewness in the distribution of the oil prices results in downside risks to GDP growth

30


