Bayesian Bi-level Sparse Group Regression for Macroeconomic Forecasting

Matteo Mogliani ${ }^{1}$ and Anna Simoni ${ }^{2}$

${ }^{1}$ Banque de France
${ }^{2}$ CREST-CNRS, Ensae and Ecole Polytechnique

Conference on Real-Time Data Analysis, Methods, and Applications, October 19-20, 2023

The views expressed in this paper are those of the authors and do not necessarily reflect those of the Banque de France or the Eurosystem.

Optimal forecast of y_{t}, h horizons ahead, based on a set of predictors $\mathbf{x}_{t}:=\left(\mathbf{x}_{1, t}^{\prime}, \ldots, \mathbf{x}_{N, t}^{\prime}\right)^{\prime}$ to track economic conditions in real-time.

- Large datasets with predictors organized into N groups (each with a possibly infinite number of elements, strong covariation, common characteristics).
- The forecasting / nowcasting model we consider is: $\forall t=1, \ldots, T, \forall h \geq 0$,

$$
\begin{equation*}
y_{t}=\sum_{j=1}^{N} \varphi_{j}\left(x_{j, t-h, 1}, x_{j, t-h, 2}, \ldots\right)+\varepsilon_{t}, \quad \mathbf{E}\left[\varepsilon_{t} \mid \mathbf{x}_{1, t-h-\ell}, \ldots, \mathbf{x}_{N, t-h-\ell}, \ell \geq 0\right]=0 \tag{1}
\end{equation*}
$$

where:

- $j=1, \ldots, N$ is the group index,
- $\varphi_{j}(\cdot)$ denotes a j-specific unknown function of $\mathbf{x}_{j, t-h}$ taking values in \mathbb{R},
- $\mathbf{x}_{j, t}:=\left\{x_{j, t, i}\right\}_{i \geq 1}$ for every $j \in\{1, \ldots, N\}$,
- If $\mathbf{x}_{1, t}$ contains the lagged values of y_{t}, then $\mathbf{x}_{1, t}=\left(y_{t-1}, y_{t-2}, \ldots\right)^{\prime}$.
- Unify high-dimensional and nonparametric regression settings.

Motivating Example 1: MIDAS.

The Mixed Data Sampling (MIDAS) regression model (e.g. Ghysels et al. 2006, 2007) can be written as: $\forall t=1, \ldots, T, \forall h=0,1 / m, 2 / m, \ldots$

$$
\begin{equation*}
y_{t}^{L}=\sum_{u=1}^{p_{y}} \beta_{u} L^{u} y_{t}^{L}+\sum_{j=2}^{N} \Psi\left(L^{1 / m} ; \boldsymbol{\theta}_{j}\right) x_{j, t-h}^{H}+\varepsilon_{t}^{L}, \tag{2}
\end{equation*}
$$

where $\Psi\left(L^{1 / m} ; \boldsymbol{\theta}_{j}\right)$ is the high-frequency lag polynomial

$$
\begin{equation*}
\Psi\left(L^{1 / m} ; \boldsymbol{\theta}_{j}\right)=\sum_{u=0}^{p_{x}} \psi\left(u ; \boldsymbol{\theta}_{j}\right) L^{u / m} \tag{3}
\end{equation*}
$$

- This model can be cast in model (1) with N groups:
- the first group is $\varphi_{1}\left(\mathbf{x}_{1, t}\right)=\boldsymbol{\theta}_{1}^{\prime}\left(y_{t-1}, \ldots, y_{t-p_{y}}\right)^{\prime}$ with $\boldsymbol{\theta}_{1}:=\left(\beta_{1}, \ldots, \beta_{p_{y}}\right)^{\prime}$,
- the remaining $N-1$ groups are given by each high-frequency predictor:

$$
\forall j=2, \ldots, N,
$$

$$
\varphi_{j}\left(x_{j, t-h}^{H}, \ldots, x_{j, t-h-p_{x} / m}^{H}\right)=\Psi\left(L^{1 / m} ; \boldsymbol{\theta}_{j}\right) x_{j, t-h}^{H} .
$$

Motivating Example 1: MIDAS. (cont.)

- Possible parameterizations of the weighting function $\psi\left(u ; \boldsymbol{\theta}_{j}\right)$:
- unrestricted MIDAS (Foroni, Marcellino \& Schumacher, 2015): $\psi\left(u ; \boldsymbol{\theta}_{j}\right)=\theta_{u, j}$;
- Almon lag polynomials (power polynomials): $\psi\left(u ; \boldsymbol{\theta}_{j}\right)=\sum_{i=0}^{C} \theta_{j, i} u^{i}$;
- more generally, by using orthogonal basis functions $\left\{\phi_{i}(u)\right\}_{i}$ on \mathbb{R}_{+}we obtain:

$$
\begin{equation*}
\psi\left(u ; \boldsymbol{\theta}_{j}\right)=\sum_{i=1}^{\infty} \theta_{j, i} \phi_{i}(u) . \tag{4}
\end{equation*}
$$

Hence,

$$
\begin{aligned}
& \varphi_{j}\left(\mathbf{x}_{j, t-h}\right)=\Psi\left(L^{1 / m} ; \boldsymbol{\theta}_{j}\right) x_{j, t-h}^{H} \\
&=\sum_{u=0}^{p_{x}} \sum_{i=1}^{\infty} \theta_{j, i} \phi_{i}(u) x_{j, t-h-u / m}^{H}=\sum_{i=1}^{\infty} \theta_{j, i} \Phi_{i}^{\prime} \mathbf{x}_{j, t-h},
\end{aligned}
$$

where $\Phi_{i}:=\left(\phi_{i}(0), \phi_{i}(1), \ldots, \phi_{i}\left(p_{x}\right)\right)^{\prime}$.

- Related literature: Babii et al. (2022, JBES, Grouped Lasso estimator), Mogliani \& Simoni (2021, JoE - without sparsity within groups).

Additional motivating examples encompassed in model (1).

1). Nonlinear predictive model for $y_{t}: \forall t=1, \ldots, T$,

$$
y_{t}=\sum_{j=1}^{N} \varphi_{j}\left(x_{j, t-h}\right)+\varepsilon_{t}, \quad \mathbf{E}\left[\varepsilon_{t} \mid x_{j, t-h-\ell}, j=1, \ldots, N, \ell \geq 0\right]=0
$$

where $\varphi_{j}(\cdot)$ is an unknown function of one covariate. For a set of approximating functions $\left\{\phi_{j 1}, \phi_{j 2}, \ldots\right\}$,

$$
\varphi_{j}\left(x_{j, t-h}\right)=\sum_{i=1}^{\infty} \phi_{j i}\left(x_{j, t-h}\right) \theta_{j, i}, \quad j \in\{1, \ldots, N\}
$$

2). Data-poor environment with many lags per each predictor and for y_{t}.
3). Grouped predictors in a data-rich environment where each group of covariates $\mathbf{x}_{j, t}$ contains $\leq g$ elements. By assuming a linear model: $\forall t=1, \ldots, T$,

$$
\begin{equation*}
y_{t}=\sum_{j=1}^{N} \mathbf{x}_{j, t-h}^{\prime} \boldsymbol{\theta}_{j}+\varepsilon_{t}, \quad \mathbf{E}\left[\varepsilon_{t} \mid \mathbf{x}_{1, t-h-\ell}, \ldots, \mathbf{x}_{N, t-h-\ell}, \ell \geq 0\right]=0 \tag{5}
\end{equation*}
$$

and $\varphi_{j}\left(\mathbf{x}_{j, t-h}\right)=\mathbf{x}_{j, t-h}^{\prime} \boldsymbol{\theta}_{j}$.

1) Propose a Bayesian approach to deal with / exploit the sparse group structure:

- we construct a hierarchical prior that:
- induces a bi-level sparsity: some groups and some predictors inside a group can be irrelevant for forecasting the target variable, conditional on the remaining predictors;
- treats the coefficients of each block independently but, after marginalization, imposes a correlation among the coefficients in each block
- appealing because:
- it allows assessment of the uncertainty;
- it has a build-in prediction with optimal properties;
- easy to introduce stochastic volatility (to robustify the forecasting accuracy in volatile periods exhibiting large fluctuations)

2) Establish frequentist asymptotic properties.
3) Gibbs sampler with a one step of Metropolis-Hasting.
4) Monte Carlo exercise to study finite sample properties.
5) Empirical application: nowcast of US GDP with grouped predictors.

Outline:

(1) Introduction
(2) The Model and the Prior
(3) Monte Carlo experiments
(4) Empirical application
(5) Theoretical Properties

By assuming $\varepsilon_{t} \sim^{i . i . d .} \mathcal{N}\left(0, \sigma^{2}\right)$ then the sampling model is: $\forall h \geq 0$

$$
y_{t} \mid \mathbf{x}_{t-h}, \varphi, \sigma^{2} \sim \mathcal{N}\left(\sum_{j=1}^{N} \varphi_{j}\left(\mathbf{x}_{j, t-h}\right), \sigma^{2}\right)
$$

where:

- $\mathbf{x}_{t}:=\left(\mathbf{x}_{1, t}^{\prime}, \ldots, \mathbf{x}_{N, t}^{\prime}\right)^{\prime}$ is a vector of potentially infinite dimension,
- $\mathbf{X}:=\left(\mathbf{x}_{-h+1}, \ldots, \mathbf{x}_{T-h}\right)^{\prime}$ is a matrix with T rows,
- $\varphi:=\left(\varphi_{1}, \ldots, \varphi_{N}\right)^{\prime}, \varphi \in \mathcal{H}$, Hilbert space.

To reduce the dimension of the model, we assume there exist

- a vector $\mathbf{z}_{j, t-h}:=\left(z_{j, t-h, 1}, \ldots, z_{j, t-h, g}\right)^{\prime}$ of transformations of $\mathbf{x}_{j, t-h}$
- and parameters $\left\{\theta_{j, i}\right\}_{i=1}^{g}$
such that for every $j \in\{1, \ldots, N\}$, the function $\varphi_{j}\left(\mathbf{x}_{j, t-h}\right)$ is well approximated by

$$
\varphi_{j}\left(\mathbf{x}_{j, t-h}\right) \approx \sum_{i=1}^{g} z_{j, t-h, i} \theta_{j, i}=\mathbf{z}_{t-h}^{\prime} \boldsymbol{\theta}
$$

where $g \geq 1$ is a truncation parameter.

We introduce:

- for every $j=1, \ldots, N$, define $\boldsymbol{\theta}_{j}:=\left(\theta_{j, 1}, \ldots, \theta_{j, g}\right)^{\prime} \in \mathbb{R}^{g}$,
- $\boldsymbol{\theta}:=\left(\boldsymbol{\theta}_{1}^{\prime}, \ldots, \boldsymbol{\theta}_{N}^{\prime}\right)^{\prime} \in \Theta \subset \mathbb{R}^{N g}$,
- $\mathbf{z}_{t}:=\left(\mathbf{z}_{1, t}^{\prime}, \ldots, \mathbf{z}_{N, t}^{\prime}\right)^{\prime}$ is a $(g N \times 1)$ vector,
- and $\mathbf{Z}:=\left(\mathbf{z}_{1-h}, \ldots, \mathbf{z}_{T-h}\right)^{\prime}$ is a $(T \times g N)$ matrix.

Examples:

(1) MIDAS:

$$
\begin{aligned}
\varphi_{j}\left(\mathbf{x}_{j, t-h}\right)=\Psi\left(L^{1 / m} ; \boldsymbol{\theta}_{j}\right) x_{j, t-h}^{H}=\sum_{u=0}^{p_{x}} & \sum_{i=1}^{\infty} \theta_{j, i} \phi_{i}(u) x_{j, t-h-u / m}^{H} \\
& \approx \sum_{i=1}^{g} \theta_{j, i} \Phi_{i}^{\prime} \mathbf{x}_{j, t-h}=\sum_{i=1}^{g} \theta_{j, i z} z_{j, t-h, i},
\end{aligned}
$$

where $\Phi_{i}:=\left(\phi_{i}(0), \phi_{i}(1), \ldots, \phi_{i}\left(p_{x}\right)\right)^{\prime}, z_{j, t-h, i}:=\Phi_{i}^{\prime} \mathbf{x}_{j, t-h}$, and

$$
\mathbf{z}_{j, t-h}:=\left(\mathbf{x}_{j, t-h}^{\prime} \Phi_{1}, \ldots, \mathbf{x}_{j, t-h}^{\prime} \Phi_{g}\right)^{\prime}
$$

(2) Grouped predictors: $\mathbf{z}_{j, t}=\mathbf{x}_{j, t}$, no approximation.
(3) Nonlinear predictive models: we approximate $\varphi_{j}\left(x_{j, t-h}\right)$ as

$$
\varphi_{j}\left(x_{j, t-h}\right) \approx \sum_{i=1}^{g} \phi_{j i}\left(x_{j, t-h}\right) \theta_{j, i}=: \mathbf{z}_{j, t-h}^{\prime} \boldsymbol{\theta}_{j} .
$$

Let $\left(\varphi_{0}, \sigma_{0}^{2}\right)$ be the true value of $\left(\varphi, \sigma^{2}\right)$ that generates the data.

$$
y_{t} \mid \mathbf{x}_{t-h}, \varphi_{0}, \sigma_{0}^{2} \sim \mathcal{N}\left(\sum_{j=1}^{N} \varphi_{0, j}\left(\mathbf{x}_{j, t-h}\right), \sigma_{0}^{2} \mathbf{I}_{T}\right)
$$

The approximation bias in the mean is

$$
\begin{aligned}
& B_{0, t}(g):=\mathbf{E}\left[y_{t} \mid\left\{\mathbf{x}_{t-h}\right\}_{t=1, \ldots, T}\right]-\mathbf{z}_{t-h}^{\prime} \boldsymbol{\theta}_{0} \\
&=\sum_{j=1}^{N}\left(\varphi_{0, j}\left(\mathbf{x}_{j, t-h}\right)-\mathbf{z}_{j, t-h}^{\prime} \boldsymbol{\theta}_{0, j}\right), \quad \forall t=1, \ldots, T
\end{aligned}
$$

and $B_{0}(g):=\left(B_{0,1}(g), \ldots, B_{0, T}(g)\right)^{\prime}$ is a T-vector.

- In this paper we adopt a Bayesian approach and specify a convenient prior that is degenerate at zero for the quantity $B_{t}(g)$.

Sparsity structure:

We assume bi-level sparsity:
Bi-level sparsity is the feature of the model that guarantees \exists an approximation

$$
\mathbf{z}_{t-h}^{\prime} \boldsymbol{\theta}_{0} \equiv \sum_{j=1}^{N} \mathbf{z}_{j, t-h}^{\prime} \boldsymbol{\theta}_{0, j}
$$

to $\sum_{j=1}^{N} \varphi_{0, j}\left(\mathbf{x}_{j, t-h}\right)$ in (1) with a small number of active groups and of non-zero coefficients for each active group such that the approximation bias $B_{0, t}(g)$ is small relative to the estimation error.

Sparse Group Selection with spike-and-slab prior

We specify a prior that induces exact sparsity both at the group level and within groups.

- This prior puts all its mass on the approximation $\mathbf{z}_{t-h}^{\prime} \boldsymbol{\theta}$ conditional on \mathbf{z}_{t-h}.
- For every group $j=1, \ldots, N, \boldsymbol{\theta}_{j}=V_{j}^{1 / 2} \mathbf{b}_{j}, \mathbf{b}_{j}:=\left(b_{j, 1}, \ldots, b_{j, g}\right)^{\prime}$, $V_{j}^{1 / 2}:=\operatorname{diag}\left(v_{j 1}, \ldots, v_{j g}\right)$ and $v_{j i} \geq 0$ for $i=1, \ldots, g$.
- We treat the truncation parameter g as deterministic and, under Assumption 6.1, it might depend on s_{0}
- The double spike-and-slab prior is inspired from Xu \& Ghosh (2015).

Sparse Group Selection with spike-and-slab prior (cont.)

Prior distributions inducing bi-level sparsity (hard spike-and-slab): $\forall j=1, \ldots, N$

$$
\begin{align*}
B_{t, j}(g) \mid \mathbf{x}_{t-h}, g & \sim \delta_{0}, \quad \forall t=1, \ldots, T \tag{6}\\
\mathbf{b}_{j} \mid g, \pi_{0} & \stackrel{\text { ind. }}{\sim}\left(1-\pi_{0}\right) \mathcal{N}_{g}\left(0, I_{g}\right)+\pi_{0} \delta_{0}\left(\mathbf{b}_{j}\right), \tag{7}\\
v_{j i} \mid \pi_{1}, \tau_{j} & \stackrel{i n d .}{\sim}\left(1-\pi_{1}\right) \mathcal{N}^{+}\left(0, \tau_{j}^{2}\right)+\pi_{1} \delta_{0}\left(v_{j i}\right), \quad i=1, \ldots, g \tag{8}
\end{align*}
$$

where $\mathcal{N}^{+}\left(0, \tau_{j}^{2}\right)$ denotes a truncated $\mathcal{N}\left(0, \tau_{j}^{2}\right)$ distribution truncated below at 0 .
Prior on the hyperparameters and model variance:

$$
\begin{aligned}
\tau_{j} & \stackrel{\text { ind }}{\sim} \Gamma\left(\frac{1}{2}, \lambda_{1, j}\right) \\
\pi_{0} & \sim \mathcal{B} \operatorname{eta}\left(c_{0}, d_{0}\right) \\
\pi_{1} & \sim \mathcal{B} \operatorname{eta}\left(c_{1}, d_{1}\right) \\
\sigma^{2} & \sim \mathcal{I} \Gamma(a, b)
\end{aligned}
$$

Outline:

(1) Introduction
(2) The Model and the Prior
(3) Monte Carlo experiments

Example 1: DGP with grouped predictors
Example 2: DGP with mixed-frequency data
4) Empirical application
(5) Theoretical Properties

Outline:

(1) Introduction
(2) The Model and the Prior
(3) Monte Carlo experiments

Example 1: DGP with grouped predictors
Example 2: DGP with mixed-frequency data
(4) Empirical application
(5) Theoretical Properties
,

Outline:

(1) Introduction
(2) The Model and the Prior
(3) Monte Carlo experiments

Example 1: DGP with grouped predictors

Example 2: DGP with mixed-frequency data
(4) Empirical application
(5) Theoretical Properties

Design of the experiments

We consider the MIDAS model:

$$
\begin{aligned}
y_{t}^{L} & =0.5+0.3 y_{t-1}^{L}+\sum_{j=1}^{N} \sum_{i=0}^{p_{x}=11} \psi(i ; \widetilde{\boldsymbol{\theta}}) x_{j, t-i / 3}^{H}+\varepsilon_{t}^{L} \\
x_{j, t}^{H} & =0.9 x_{j, t-1 / 3}^{H}+\epsilon_{j, t}^{H} \\
\psi\left(i ; \boldsymbol{\theta}_{j}\right) & =\left(\frac{i+1}{p_{x}+1}\right)^{\theta_{1}-1}\left(1-\frac{i+1}{p_{x}+1}\right)^{\theta_{2}-1} \frac{\Gamma\left(\theta_{1}+\theta_{2}\right)}{\Gamma\left(\theta_{1}\right) \Gamma\left(\theta_{2}\right)}+\theta_{3} \\
\binom{\varepsilon_{t}^{L}}{\boldsymbol{\epsilon}_{t}^{H}} & \sim \text { i.i.d. } \mathcal{N}\left[\binom{0}{\mathbf{0}},\left(\begin{array}{cc}
\sigma^{2} & \mathbf{0} \\
\mathbf{0} & \boldsymbol{\Sigma}_{\epsilon}
\end{array}\right)\right]
\end{aligned}
$$

- $T=200$
- $N=\{50,100\}$
- $s_{0}^{g r}=\{5,10\}$
- $\boldsymbol{\Sigma}_{\epsilon}=\mathcal{S}_{\epsilon} \mathcal{R}_{\epsilon} \mathcal{S}_{\epsilon}$, with \mathcal{S}_{ϵ} diagonal matrix with elements σ_{ϵ} and \mathcal{R}_{ϵ} a Toeplitz correlation matrix with off-diagonal elements $\rho_{\epsilon}^{\left|j-j^{\prime}\right|}$ for all $j \neq j^{\prime}$
- $\sigma=0.5$ and σ_{ϵ} fixed such that NSR $=0.2$.
- $\rho_{\epsilon}=0.5$

Weighting function $\psi(i ; \widetilde{\boldsymbol{\theta}})$

MIDAS lag polynomials

We estimate the model by approximating the true weighting function through a set of polynomials:

- $\psi(i ; \boldsymbol{\theta})=\theta_{i, j} \Rightarrow$ linear lag polynomials (Unrestricted MIDAS)
- $\psi(i ; \boldsymbol{\theta})=\sum_{p=1}^{g} \theta_{p, j} i^{p} \Rightarrow$ algebraic power lag polynomials (Almon, w and w/o end-point restrictions; Mogliani \& Simoni, 2021)
- $\psi(i ; \boldsymbol{\theta})=\sum_{p=1}^{g} \theta_{p, j} \phi_{p}(i) \Rightarrow \phi_{p}(i)$ orthogonal lag polynomials:
- Legendre
- Bernstein
- Chebyshev first-kind (T)

We set $g=5$ ($=3$ for restricted Almon). Orthogonal polynomials are normalized and shifted over the interval $[0,1]$.

We iterate the Gibbs sampler for 50000 sweeps (+10000 burn-in) and we perform 100 MC simulations.

Monte Carlo simulations: selection and predictive accuracy

			DGP 1 fast-decaying		DGP 2 bell-shaped		DGP 3slow-decaying		$\begin{gathered} \hline \hline \text { DGP 4 } \\ \text { flat } \end{gathered}$	
N	$s_{0}^{\text {gr }}$	Polynomial	TPR	CRPS	TPR	CRPS	TPR	CRPS	TPR	CRPS
50	5	Unrestricted	99.8	0.71	99.8	0.67	98.8	0.74	45.8	0.93
		Almon	65.4	0.82	38.3	0.92	48.3	0.90	85.4	0.81
		Restr. Almon	98.0	0.70	83.6	0.71	96.2	0.71	93.3	0.81
		Legendre	60.3	0.86	92.0	0.72	60.9	0.86	81.1	0.81
		Bernstein	98.2	0.73	99.7	0.66	98.4	0.73	57.4	0.89
		Chebychev U	60.3	0.86	95.3	0.71	62.9	0.86	81.9	0.81
100	5	Unrestricted	99.6	0.70	99.7	0.68	95.9	0.75	30.5	0.96
		Almon	44.4	0.89	23.7	0.97	31.3	0.95	65.2	0.85
		Restr. Almon	95.9	0.69	83.4	0.71	94.3	0.71	80.7	0.83
		Legendre	40.7	0.92	71.9	0.78	42.2	0.91	57.1	0.88
		Bernstein	91.6	0.74	98.8	0.66	96.4	0.73	37.2	0.94
		Chebychev U	41.7	0.91	80.1	0.76	43.1	0.91	58.8	0.87
100	10	Unrestricted	12.6	0.99	15.1	0.98	11.7	0.99	10.2	1.00
		Almon	9.5	1.00	9.2	1.00	9.2	1.00	9.5	1.00
		Restr. Almon	51.7	0.86	36.5	0.91	39.3	0.91	12.7	0.99
		Legendre	10.8	0.99	11.2	0.99	10.6	0.99	9.5	1.00
		Bernstein	11.8	0.99	17.3	0.98	12.5	0.99	10.2	1.00
		Chebychev U	10.8	0.99	11.6	0.99	10.7	0.99	9.5	1.00

Table: TPR and CRPS denote respectively the true positive rate and the continuously ranked probability score, the latter in relative terms with respect to the AR(1) benchmark.

Outline:

(1) Introduction
(2) The Model and the Prior
(3) Monte Carlo experiments

Example 1: DGP with grouped predictors
Example 2: DGP with mixed-frequency data
(4) Empirical application
(5) Theoretical Properties

Empirical application: nowcasting US GDP in a mixed-frequency framework.

Nowcasting exercise of US GDP in the following mixed-frequency framework:

$$
y_{t}=\alpha+\beta y_{t-1}+\sum_{j=2}^{N} \sum_{u=0}^{p_{x}} \psi\left(u ; \boldsymbol{\theta}_{j}\right) x_{j, t-h-u / m}+\varepsilon_{t},
$$

where

- $y_{t}=400 \log \left(Y_{t} / Y_{t-1}\right)=$ annualized quarterly growth rate of GDP,
- $\mathbf{x}_{t}=$ vector of $N=122$ macroeconomic series sampled at monthly frequency and extracted from the FRED-MD database (McCracken \& Ng, 2016).
- The data sample starts in 1980Q1, while the pseudo out-of-sample analysis spans 2013Q1 to 2022Q4.
- Rolling window of $T=132$ quarterly observations, and h-step-ahead posterior predictive densities for $y_{\tau} \mid x_{\tau-h}, \tau>T$ are generated from:

$$
\begin{equation*}
f\left(y_{\tau} \mid x_{\tau-h}, y, \mathbf{X}\right)=\int f_{0}\left(y_{\tau} \mid \varphi, \sigma^{2}, x_{\tau-h}\right) \Pi\left(\varphi, \sigma^{2} \mid y, \mathbf{X}\right) d \varphi d \sigma^{2} \tag{9}
\end{equation*}
$$

Empirical application: nowcasting US GDP in a mixed-frequency framework.

- 3 nowcasting horizons: $h=0,1 / 3,2 / 3$ and two lag polynomials: restricted Almon and the orthonormal Bernstein polynomials.
- We allow for time-varying volatility with heavy tails and occasional outliers in the regression errors (to account for the Great Moderation, the Great Recession, and the Covid crisis).

We consider two modelling strategies to exploit our bi-level sparsity prior approach:
(1) First, we estimate the forecasting model on the whole set of 122 indicators. The total number of parameters is either 244 (restricted Almon) or 732 (Bernstein).
(2) Alternative strategy: estimating the model on separate groups of indicators, where the groups are set according to partition of indicators defined in McCracken \& Ng (2016).

- We have a total number of 8 groups (output and income; labour market; housing; consumption, orders, and inventories; money and credit; interest and exchange rates; prices; stock market), each one including between 5 and 31 indicators.

Empirical application: nowcasting US GDP in a mixed-frequency framework.

Summing up, we estimate a large set of alternative specifications, according to:

- the 2 lag polynomials (Almon and Bernstein),
- the 5 volatility process (homoskedastic, SV, SV with Student- t shocks, SV with outliers, SV with Student- t shocks and outliers),
- and the 2 partition strategies (whole dataset $v s 8$ groups).

To process this large amounts of results, we combine the set of obtained individual density forecasts.

Empirical application: nowcasting US GDP - RESULTS.

	BSGS-SS			BSGL		
	$\mathrm{h}=0$	$\mathrm{~h}=1 / 3$	$\mathrm{~h}=2 / 3$	$\mathrm{~h}=0$	$\mathrm{~h}=1 / 3$	$\mathrm{~h}=2 / 3$
Panel A. RMSFE						
Groups - Almon	0.77	0.75	0.74	0.82	0.72	0.75
Groups - Bernstein	0.70	0.62	0.81	0.84	0.74	0.74
Groups - all	0.67	0.71	0.77	0.91	0.72	0.74
Whole dataset - Almon	0.93	0.82	0.71	0.97	0.75	0.83
Whole dataset - Bernstein	0.69	0.96	0.87	3.00	1.00	0.87
Whole dataset - all	0.69	0.96	0.75	1.20	0.88	0.88
Panel B. LogS						
Groups - Almon	10.04	6.16	8.56	9.28	5.72	6.67
Groups - Bernstein	9.83	12.92	3.63	7.07	2.12	6.65
Groups - all	10.05	10.98	6.25	9.02	10.56	7.56
Whole dataset - Almon	9.56	5.18	8.05	4.22	9.81	6.55
Whole dataset - Bernstein	11.33	6.34	5.95	5.96	-15.46	6.20
Whole dataset - all	12.84	4.03	6.77	7.34	-12.46	6.27
Panel C. CRPS						
Groups - Almon	0.79	0.77	0.75	0.81	0.72	0.78
Groups - Bernstein	0.75	0.67	0.85	0.85	0.77	0.77
Groups - all	0.74	0.71	0.79	0.85	0.72	0.76
Whole dataset - Almon	0.92	0.82	0.74	4.23	3.75	3.86
Whole dataset - Bernstein	0.73	0.92	0.86	6.29	4.34	4.45
Whole dataset - all	0.72	0.93	0.76	0.98	0.80	0.86

Table: BSGS-SS denotes the proposed bi-level sparsity prior. BSGL denotes the Bayesian Sparse Group Lasso prior (Xu \& Ghosh, 2015). RMSFE, LogS, and CRPS denote respectively the root mean squared forecast error, the log-score, and the continuously ranked probability score, in relative terms with respect to the $\mathrm{AR}(1)$ benchmark.

Outline:

(1) Introduction
(2) The Model and the Prior
(3) Monte Carlo experiments
(4) Empirical application
(5) Theoretical Properties

The Theoretical framework.

- $\left(\varphi_{0}, \sigma_{0}^{2}, \boldsymbol{\theta}_{0}\right)$ denotes the true value of $\left(\varphi, \sigma^{2}, \boldsymbol{\theta}\right)$ that generates the data.
- $\mathbf{E}_{0}[\cdot]$ denotes the expectation taken with respect to the true data distribution conditional on ($\mathbf{X}, \varphi_{0}, \sigma_{0}^{2}$).
- Our asymptotic analysis is for $T \rightarrow \infty$. We allow $N, s_{0}^{g r}, s_{0}$ and $g \rightarrow \infty$ with T.
$\boldsymbol{\theta}_{0}$ is $\left(s_{0}, s_{0}^{g r}\right)$-sparse, where
- $s_{0}^{g r}:=\left|S_{0}^{g r}\right| \ll N, S_{0}^{g r}:=\left\{j \in\{1, \ldots, N\} ;\left\|\boldsymbol{\theta}_{0, j}\right\|_{2}>0\right\}$ is the group support and $s_{0}^{g r}$ is the number of active groups.
- If $S_{0}^{g r} \neq \varnothing$, for every $j \in S_{0}^{g r}$ let $S_{0, j}$ be the set of the indices of the nonzero elements in $\boldsymbol{\theta}_{0, j}$.
- So, $S_{0}:=\bigcup_{j \in S_{0}^{g r}} S_{0, j}$ is the support of θ.
\bullet Number of active coefficients: $s_{0}:=\sum_{j \in S_{0}^{g^{r}}}\left|S_{0, j}\right| \ll N g$ and $\left|S_{0, j}\right| \ll g$.

The Theoretical framework. (cont.)

Rate of contraction of the posterior distribution:

$$
\epsilon:=\max \left\{\sqrt{\frac{s_{0}^{g r} \log (N)}{T}}, \sqrt{\frac{s_{0} \log (T)}{T}}, \sqrt{\frac{s_{0} \log \left(s_{0}^{g r} g\right)}{T}}\right\}
$$

Define $\|\mathbf{Z}\|_{o}:=\max \left\{\left\|\mathbf{Z}_{j}\right\|_{o p} ; 1 \leq j \leq N\right\}$, where \mathbf{Z}_{j} is the $(T \times g)$-submatrix of \mathbf{Z} made of all the rows and the columns corresponding to the indices in the j-th group.

Posterior consistency.

Theorem 1
Suppose Assumptions 6.1, 6.2, 6.3 and 6.4 hold. Let $\epsilon \rightarrow 0$. Then, for a sufficiently large $M>0$:
$\sup _{\left(\varphi_{0}, \sigma_{0}^{2}\right) \in \mathcal{F}_{0}\left(s_{0}, s_{0}^{g r} ; \mathbf{Z}\right)} \mathbf{E}_{0}\left[\Pi\left(\varphi ;\left\|\sum_{j=1}^{N}\left(\varphi_{j}^{(T)}(\mathbf{X})-\varphi_{0, j}^{(T)}(\mathbf{X})\right)\right\|_{2}^{2} \leq M T \epsilon^{2} \mid y, \mathbf{X}\right)\right] \rightarrow 0$.

Remarks:

- In the grouped predictors example:

$$
\left\|\sum_{j=1}^{N}\left(\varphi_{j}^{(T)}(\mathbf{X})-\varphi_{0, j}^{(T)}(\mathbf{X})\right)\right\|_{2}^{2}=\left\|\mathbf{X}\left(\boldsymbol{\theta}-\boldsymbol{\theta}_{0}\right)\right\|_{2}^{2}
$$

- Similarly, in the MIDAS example:

$$
\left\|\sum_{j=1}^{N}\left(\varphi_{j}^{(T)}(\mathbf{X})-\varphi_{0, j}^{(T)}(\mathbf{X})\right)\right\|_{2}^{2}=\left\|\mathbf{Z}^{\infty}\left(\boldsymbol{\theta}^{\infty}-\boldsymbol{\theta}_{0}^{\infty}\right)\right\|_{2}^{2}
$$

with $\boldsymbol{\theta}^{\infty}=\left\{\theta_{j 1}, \theta_{j 2}, \ldots\right\}_{j=1}^{N}$ an infinite dimensional vector, \mathbf{z}_{t}^{∞} is defined similarly and $\mathbf{Z}^{\infty}=\left(\mathbf{z}_{1-h}^{\infty}, \ldots, \mathbf{z}_{T-h}^{\infty}\right)^{\prime}$ is a matrix with T rows and an infinite number of columns.

Grouped predictors \& MIDAS: Parameter recovery.

We now look at parameter recovery of our procedure (i.e. consistency of the marginal posterior of $\boldsymbol{\theta}$ - coefficients of the approximation of φ).

Definition 1 (Smallest scaled sparse singular value.)
For every $s, r>0$, the smallest scaled sparse singular value of dimension (s, r) is defined as

$$
\begin{equation*}
\widetilde{\phi}(s, r):=\inf \left\{\frac{\|\mathbf{Z} \boldsymbol{\theta}\|_{2}^{2}}{\|\mathbf{Z}\|_{\partial}^{2}\|\boldsymbol{\theta}\|_{2}^{2}}, 0 \leq s_{\boldsymbol{\theta}}^{g_{\boldsymbol{\theta}}} \leq s \text { and } 0 \leq s_{\boldsymbol{\theta}} \leq r\right\} . \tag{11}
\end{equation*}
$$

- The double sparse eigenvalue condition requires that for every $s, r>0, \exists \mathrm{a}$ constant $\kappa>0$ such that $\widetilde{\phi}(s, r)>\kappa$. Under this assumption:

$$
\|\mathbf{Z} \boldsymbol{\theta}\|_{2}^{2} \geq \kappa\|\mathbf{Z}\|_{o}^{2}\|\boldsymbol{\theta}\|_{2}^{2}
$$

- We use the notation $\widetilde{\phi}_{0}:=\widetilde{\phi}\left(M_{0} \widetilde{s}_{0}^{g r}+s_{0}^{g r}, M_{1} \widetilde{s}_{0}+s_{0}\right)$ for two positive constants M_{0} and M_{1}.

Grouped predictors \& MIDAS: Parameter recovery. (cont.)

Theorem 2
Suppose Assumptions 6.1, 6.2, 6.3 and 6.4 hold. Let $\epsilon \rightarrow 0$. Then, for every constant $M_{3} \geq 2 M+\bar{\sigma}^{2} / 8$ where M is as in Theorem 3 we have:

$$
\begin{equation*}
\sup _{\left(\varphi_{0}, \sigma_{0}^{2}\right) \in \mathcal{F}_{0}\left(s_{0}, s_{0}^{r} ; \mathbf{Z}\right)} \mathbf{E}_{0}\left[\Pi\left(\boldsymbol{\theta} \in \Theta ; \left.\left\|\boldsymbol{\theta}-\boldsymbol{\theta}_{0}\right\|_{2}^{2} \geq \frac{M_{3} T \epsilon^{2}}{\widetilde{\phi}_{0}\|\mathbf{Z}\|_{o}^{2}} \right\rvert\, y, \mathbf{X}\right)\right] \rightarrow 0 . \tag{12}
\end{equation*}
$$

If there exists two constants $\kappa_{\ell}, \kappa_{z}>0$ such that $\widetilde{\phi}(s, r)>\kappa_{\ell}$ and $\|\mathbf{Z}\|_{o} \leq \sqrt{\kappa_{z}} \sqrt{T}$ w.p.a. 1, then

$$
\begin{equation*}
\sup _{\left(\varphi_{0}, \sigma_{0}^{2}\right) \in \mathcal{F}_{0}\left(s_{0}, s_{0}^{g_{7}} ; \mathbf{Z}\right)} \mathbf{E}_{0}\left[\Pi\left(\boldsymbol{\theta} \in \Theta ; \left.\left\|\boldsymbol{\theta}-\boldsymbol{\theta}_{0}\right\|_{2}^{2} \geq \frac{M_{3} \epsilon^{2}}{\kappa_{\ell} \kappa_{z}} \right\rvert\, y, \mathbf{X}\right)\right] \rightarrow 0 . \tag{13}
\end{equation*}
$$

Conclusions

- Optimal forecast of y_{t}, h horizons ahead, based on a set of grouped-predictors to track economic conditions in real-time.
- We propose a Bayesian approach (assessment of the uncertainty, introduce stochastic volatility).
- We exploit the group structure and the sparsity, and construct a prior that induces bi-level sparsity.
- Demonstrate good asymptotic properties for this prior.
- Good performance to nowcast US GDP growth.

Bayesian Bi-level Sparse Group Regression for Macroeconomic Forecasting

Matteo Mogliani ${ }^{1}$ and Anna Simoni ${ }^{2}$

${ }^{1}$ Banque de France
${ }^{2}$ CREST-CNRS, Ensae and Ecole Polytechnique

Conference on Real-Time Data Analysis, Methods, and Applications, October 19-20, 2023

The views expressed in this paper are those of the authors and do not necessarily reflect those of the Banque de France or the Eurosystem.

References

Azzalini, A. \& Capitanio, A. (2014). The Skew-Normal and Related Families. Institute of Mathematical Statistics Monographs. Cambridge (UK): Cambridge University Press.
Babii, A., Ghysels, E., \& Striaukas, J. (2022). Machine learning time series regressions with an application to nowcasting. Journal of Business \& Economic Statistics, 40(3), 1094-1106.

Cai, T. T., Zhang, A. R., \& Zhou, Y. (2022). Sparse group lasso: Optimal sample complexity, convergence rate, and statistical inference. IEEE Transactions on Information Theory, 68(9), 5975-6002.
Foroni, C., Marcellino, M., \& Schumacher, C. (2015). Unrestricted mixed data sampling (MIDAS): MIDAS regressions with unrestricted lag polynomials. Journal of the Royal Statistical Society: Series A (Statistics in Society), 178(1), 57-82.
Kastner, G. \& Fruhwirth-Schnatter, S. (2014). Ancillarity-sufficiency interweaving strategy (ASIS) for boosting MCMC estimation of stochastic volatility models. Computational Statistics and Data Analysis, 76, 408-423.
Li, Z., Zhang, Y., \& Yin, J. (2022). Minimax rates for high-dimensional double sparse structure over ℓ_{q}-balls.
McCracken, M. W. \& Ng, S. (2016). FRED-MD: A monthly database for macroeconomic research. Journal of Business \& Economic Statistics, 34(4), 574-589.

Mogliani, M. \& Simoni, A. (2021). Bayesian midas penalized regressions: Estimation, selection, and prediction. Journal of Econometrics, 222(1, Part C), 833-860.
Omori, Y., Chib, S., Shephard, N., \& Nakajima, J. (2007). Stochastic volatility with leverage: Fast and efficient likelihood inference. Journal of Econometrics, 140(2), 425-449.
Xu, X. \& Ghosh, M. (2015). Bayesian variable selection and estimation for group lasso. Bayesian Analysis, 10(4), 909-936.

Stochastic Volatility.

Modify the model as follows:
$y_{t}=\sum_{j=1}^{N} \varphi_{j}\left(x_{j, t-h, 1}, x_{j, t-h, 2}, \ldots\right)+e^{\sigma_{t} / 2} \varepsilon_{t}, \quad \mathbf{E}\left[\varepsilon_{t} \mid \mathbf{x}_{1, t-h-\ell}, \ldots, \mathbf{x}_{N, t-h-\ell}, \ell \geq 0\right]=0$,
$\sigma_{t}=\mu_{1}+\mu_{2}\left(\sigma_{t-1}-\mu_{1}\right)+u_{t}, \quad u_{t} \sim \mathcal{N}\left(0, \xi^{2}\right)$
with

- μ_{2} being between -1 and 1 (for stationarity);
- $\sigma_{0} \sim \mathcal{N}\left(\mu_{1}, \xi^{2} /\left(1-\mu_{2}^{2}\right)\right)$;
- $\varepsilon_{t} \sim \mathcal{N}(0,1)$ or $\varepsilon_{t} \mid \tau_{t} \sim \mathcal{N}\left(0, \tau_{t}\right)$ with $\tau_{t} \sim$ Inv-Gamma $\left(\frac{\nu}{2}, \frac{\nu}{2}\right)$ (which gives $\left.\exp \left\{\sigma_{t} / 2\right\} \varepsilon_{t} \mid \sigma_{t} \sim t_{\nu}\left(0, \exp \left\{\sigma_{t}\right\}\right)\right)$.

Solve the intractability of the SV's likelihood function by treating the latent volatilities as unknown parameters (augmentation).
So, replace the inverse-gamma prior for σ^{2} with the above $\operatorname{AR}(1)$ model and

$$
\begin{aligned}
\mu_{1} & \sim \mathcal{N}\left(\underline{\mu_{1}}, \underline{V_{1}}\right) \\
\left(\mu_{2}+1\right) / 2 & \sim \mathcal{B} \operatorname{eta}\left(a_{2}, b_{2}\right) \\
\xi^{2} & \sim \operatorname{Gamma}\left(0.5,0.5 / V_{\xi}\right) \\
\nu & \sim \mathcal{U}(0, \underline{\nu})
\end{aligned}
$$

Design of the experiments with SV

We consider the same DGP as above, but we now include SV:

$$
\begin{aligned}
y_{t}^{L} & =0.5+0.3 y_{t-1}^{L}+\sum_{j=1}^{N} \sum_{i=0}^{p_{x}=11} \psi(i ; \widetilde{\boldsymbol{\theta}}) x_{j, t-i / 3}^{H}+e^{\sigma_{t} / 2} \varepsilon_{t}^{L} \\
\sigma_{t} & =\mu_{1}+\mu_{2}\left(\sigma_{t-1}-\mu_{1}\right)+u_{t}, \quad u_{t}
\end{aligned} \sim \mathcal{N}\left(0, \xi^{2}\right)
$$

- $\mu_{1}=2 \log (0.5)$
- $\mu_{2}=0.90$
- $\xi=\sqrt{0.05}$

We employ standard samplers for SV (Omori et al., 2007), but we consider an interweaving-strategy between centered and non-centered parameterization (Kastner \& Fruhwirth-Schnatter, 2014).

Simulation results (SV): True Positive Rate

Notes: True Positive Rate $=$ True Positive/(True Positive+False Negative $)$.

Simulation results (SV): relative RMSFE

Notes: relative RMSFE w.r.t. AR(1)-SV, computed over 50 out-of-sample observations. Error bars denote ± 2 SE computed through bootstrap.

Simulation results (SV): relative Log Score

Notes: relative Log Score w.r.t. AR(1)-SV, computed over 50 out-of-sample observations. Error bars denote ± 2 SE computed through bootstrap.

The next assumption restricts the size of the approximation bias $B_{0, t}(g)$ and guarantees that it is small relative to the estimation error (similar to Belloni et al. 2014).

Assumption 6.1

Let $s_{0}^{g r}$, s_{0} be positive integers satisfying $s_{0}^{g r} \leq N$ and $s_{0}^{g r} \leq s_{0} \leq g s_{0}^{g r}$. The functions $\left\{\varphi_{0, j}\right\}_{j=1, \ldots, N}$ admit the following sparse approximation form: for every $j=1, \ldots, N$,

$$
\begin{aligned}
\varphi_{0, j}\left(\mathbf{x}_{j, t-h}\right) & =\quad \mathbf{z}_{j, t-h}^{\prime} \boldsymbol{\theta}_{0, j}+B_{0, t, j}(g), \quad \sum_{j=1}^{N} \mathbb{1}\left\{\left\|\boldsymbol{\theta}_{0, j}\right\|_{2}>0\right\} \leq s_{0}^{g r}, \\
\sum_{j=1}^{N} \sum_{i=1}^{g} \mathbb{1}\left\{\left|\theta_{0, j i}\right|>0\right\} \leq s_{0}, & \frac{1}{T} \sum_{t=1}^{T}\left(\sum_{j=1}^{N} B_{0, t, j}(g)\right)^{2} \leq \frac{s_{0}}{16 T} \sigma_{0}^{2} .
\end{aligned}
$$

For the asymptotic analysis we will let N, g, s_{0} and $s_{0}^{g r}$ to \nearrow with T.

The Model. (cont.)

This together with the Assumption 6.1 allows the size of the approximation model to grow with the sample size T.

Sparse Group Selection with spike-and-slab prior

Assumption 6.2 (Hyperparameters)

Let $\lambda_{\max }:=\max \left\{\lambda_{1, j} ; j \leq N\right\}$ and assume that
$\sqrt{T} /\left(\|\mathbf{Z}\|_{o} \min \left\{\log \left(g s_{0}^{g^{r}}\right), \log (T)\right\}\right)<C$ with probability 1 for some $C>0$. The scale parameters $\lambda_{1, j}$ are allowed to change with T and belong to the range:

$$
\max \left\{\frac{1}{\left|S_{0, j}\right|}, \frac{\sqrt{T}}{\|\mathbf{Z}\|_{o}}\right\} \underline{c} \leq \lambda_{1, j} \leq \lambda_{\max } \leq \bar{C} \min \left\{\log \left(s_{0}^{g r} g\right), \log (T)\right\}
$$

for two positive constants $1<\underline{c}<\bar{C}<\infty$ and where

$$
\|\mathbf{Z}\|_{o}:=\max \left\{\left\|\mathbf{Z}_{j}\right\|_{o p} ; 1 \leq j \leq N\right\},
$$

where \mathbf{Z}_{j} is the ($T \times g$)-submatrix of \mathbf{Z} made of all the rows and the columns corresponding to the indices in the j-th group.

Sparse Group Selection with spike-and-slab prior (cont.)

Conditional on π_{0} and $\left\{v_{j i}\right\}_{i=1}^{g}$, the prior (6)-(7) can be better understood as a mixture of a degenerate Gaussian process and a Dirac distribution at zero. To see this:

- denote $z_{j, t-h, i}:=z_{j, i}\left(\mathbf{x}_{j, t-h}\right)$;
- let $\Omega_{0, j}: \mathcal{H} \rightarrow \mathcal{H}$ be a covariance operator:

$$
\forall h \in \mathcal{H}, \quad\left(\Omega_{0, j} h\right)(\cdot):=\sum_{i=1}^{g} v_{j, i}^{2}\left\langle z_{j, i}, h\right\rangle z_{j, i}(\cdot)
$$

where $\langle\cdot, \cdot\rangle$ is the inner product in \mathcal{H}.

If \mathcal{H} is an infinite dimensional space (or it has dimension $>g$), then $\Omega_{0, j}$ is not injective and has a nontrivial null space that contains $B_{t, j}(g)$.

Hence, (6)-(7) induce the following conditional mixture prior on the random function φ_{j} : for every $j \in\{1, \ldots, N\}$,

$$
\begin{equation*}
\varphi_{j} \mid \pi_{0},\left\{v_{j, i}\right\}_{i=1}^{g}, g \sim\left(1-\pi_{0}\right) \mathcal{G} \mathcal{P}\left(0, \Omega_{0, j}\right)+\pi_{0} \delta_{0}\left(\varphi_{j}\right) \tag{14}
\end{equation*}
$$

Sparse Group Selection with spike-and-slab prior (cont.)

The induced prior on $\left\{\theta_{j, i}, j=1, \ldots, N, i=1, \ldots, g\right\}$ (conditional on π_{0}, π_{1}) is as follows.

- $\theta_{j, i}=0$ with probability:

$$
\begin{aligned}
& \quad \Pi\left(\theta_{j, i}=0 \mid \pi_{0}, \pi_{1}\right)= \\
& \quad \Pi\left(\theta_{j, i}=0 \mid j-\text { th group is active, } \pi_{0}, \pi_{1}\right) \Pi\left(j-\text { th group is active } \mid \pi_{0}, \pi_{1}\right) \\
& +\Pi\left(\theta_{j, i}=0 \mid j-\text { th group is not active, } \pi_{0}, \pi_{1}\right) \Pi\left(j-\text { th group is not active } \mid \pi_{0}, \pi_{1}\right) \\
& =\pi_{1}\left(1-\pi_{0}\right)\left(1-\pi_{1}^{g}\right)+1\left(\pi_{0}+\pi_{1}^{g}-\pi_{0} \pi_{1}^{g}\right),
\end{aligned}
$$

where $\Pi\left(j-\right.$ th group is active $\left.\mid \pi_{0}, \pi_{1}\right)$ is equal to

$$
\Pi\left(\left\|\mathbf{b}_{j}\right\|_{2}>0\right) \Pi\left(\exists i \in\{1, \ldots, g\} ; v_{j i}>0\right) .
$$

- Conditionally on $\left\{\theta_{j, i} \neq 0\right\}$: the Lebesgue density of $\theta_{j, i}$ is

$$
f_{\theta_{j, i}}\left(\theta_{j, i} \mid \tau_{j}\right)=\int_{\mathbb{R}_{+}} \frac{1}{\pi \tau_{j}} \underbrace{\frac{1}{t} \exp \left\{-\frac{1}{2}\left(\frac{\theta_{j, i}^{2}}{t \tau_{j}^{2}}+t\right)\right\}}_{=\operatorname{GIG}\left(t ; 1, \theta_{j, i}^{2} / \tau_{j}^{2}, 0\right) 2 K_{0}\left(\left|\theta_{j, i}\right| / \tau_{j}\right)} d t=\frac{2}{\pi \tau_{j}} K_{0}\left(\left|\theta_{j, i}\right| / \tau_{j}\right)
$$

where $\operatorname{GIG}(t ; a, b, p)$ denotes the pdf of a Generalized Inverse Gaussian distribution with parameters a, b and p, and $K_{0}(\cdot)$ is the modified Bessel function of the second kind. We remark that

$$
\sqrt{\pi / 2} e^{-\left|\theta_{j, i}\right| / \tau_{j}}\left(\left|\theta_{j, i}\right| / \tau_{j}+a\right)^{-1 / 2}<K_{0}\left(\left|\theta_{j, i}\right| / \tau_{j}\right)<\sqrt{\pi / 2} e^{-\left|\theta_{j, i}\right| / \tau_{j}}\left(\left|\theta_{j, i}\right| / \tau_{j}\right)^{-1 / 2}
$$

for every $a \geq 1 / 4$.

- $f_{\theta_{j, i}}\left(\theta_{j, i} \mid \tau_{j}\right)$ is upper bounded by the density of a $\operatorname{Gamma}\left(1 / 2, \tau_{j}\right)$.
- The induced conditional prior on $\theta_{j, i}$ is:

$$
\begin{align*}
\theta_{j, i} \mid\{\text { group } j \text { is active }\}, \pi_{0}, \pi_{1}, \tau_{j} & \sim\left(1-\pi_{1}\right) f_{\theta_{j, i}}\left(\theta_{j, i} \mid \tau_{j}\right)+\pi_{1} \delta_{0}\left(\theta_{j, i}\right) \\
\theta_{j i} \mid\{\text { group } j \text { is not active }\}, \pi_{0}, \pi_{1}, \tau_{j} & \sim \delta_{0}\left(\theta_{j, i}\right) . \tag{15}
\end{align*}
$$

Example 1: Design of the experiments

We consider the linear model with grouped predictors:

$$
\begin{aligned}
y_{t} & =0.2+0.3 y_{t-1}+\sum_{j=1}^{N} \sum_{p=1}^{g} z_{j, t, p} \theta_{p, j}+\varepsilon_{t} \\
z_{j, t, p} & =0.9 z_{j, t-1, p}+\epsilon_{j, t, p} \\
\binom{\varepsilon_{t}}{\boldsymbol{\epsilon}_{t}} & \sim \text { i.i.d. } \mathcal{N}\left[\binom{0}{\mathbf{0}},\left(\begin{array}{cc}
\sigma^{2} & \mathbf{0} \\
\mathbf{0} & \boldsymbol{\Sigma}_{\epsilon}
\end{array}\right)\right]
\end{aligned}
$$

- $\boldsymbol{\Sigma}_{\epsilon}=\mathcal{S}_{\epsilon} \mathcal{R}_{\epsilon} \mathcal{S}_{\epsilon}$ block-diagonal matrix,
- \mathcal{S}_{ϵ} is a $(N g \times N g)$ diagonal matrix with elements σ_{ϵ},
- $\mathcal{R}_{\varepsilon}$ is a block-diagonal Toeplitz correlation matrix with N blocks - each of size $(g \times g)$ - and featuring diagonal elements equal to one and off-diagonal elements $\rho_{j, \epsilon}^{\left|p-p^{\prime}\right|}$ for all $p \neq p^{\prime}$.
- $S_{0}^{g r}$ and $S_{0, j}$ randomly set.

Example 1: Design of the experiments (cont.)

- $\left|\theta_{p, j}\right|=0.5$, for each $j \in S_{0}^{g r}$ and $p \in S_{0, j}$, and 0 otherwise.
- The sign of $\theta_{p, j}$ is a fixed realization of random draws with replacement from $\{-1,1\}$.
- $\sigma=0.50$ and σ_{ϵ} fixed such that NSR $=0.2$.
- $\rho_{j, \epsilon}=0.50$.

Table: Monte Carlo simulations: estimation and selection accuracy

$N g$	N	g	$s_{0}^{g r}$	MSE_{θ}	VAR_{θ}	$\mathrm{BIAS}_{\theta}^{2}$	TPR_{N}	TPR_{g}	MCC_{N}	MCC_{g}
100	5	20	1	0.01	0.00	0.00	99.7	99.8	1.00	1.00
	10	10	1	0.00	0.00	0.00	99.7	99.7	1.00	1.00
	10	10	5	0.04	0.04	0.00	99.5	99.4	0.99	0.99
	20	5	5	0.03	0.03	0.00	99.8	99.7	1.00	0.99
	20	5	10	1.90	0.74	1.17	41.6	39.6	0.49	0.54
	5	60	1	0.01	0.01	0.00	99.5	99.8	1.00	1.00
	10	30	1	0.01	0.00	0.00	99.7	100.0	1.00	1.00
	10	30	5	0.05	0.05	0.00	98.8	98.8	0.99	0.99
	20	15	5	0.06	0.06	0.00	97.9	98.0	0.98	0.98
	20	15	10	2.54	0.32	2.22	18.3	16.9	0.29	0.37

Table: $T=200, s_{0, j}=1, s_{0}=s_{0}^{g r}$. MSE, VAR, and BIAS ${ }^{2}$ denote the Mean Squared Error, the Variance, and the Squared Bias, respectively. TPR and MCC denote the True Positive Rate and the Matthews Correlation Coefficient, respectively, computed at the groups level (subscript N) and at the variables level (subscript g).

- Selection deteriorates only with $s_{0}^{g r}$ and/or $s_{0} \uparrow$ while T fixed (consistently with the theoretical rate).
- BSGS-SS largely outperforms the Sparse Group Lasso.

Ex. 1: Results - robustness

Table: Monte Carlo simulations: modified DGP

				$\rho_{j, \epsilon}=0.75$		$\begin{gathered} \rho_{j, \epsilon}=0.75 \\ \mathcal{R}_{\epsilon} \text { full } \end{gathered}$		$\begin{gathered} \rho_{j, \epsilon}=0.75 \\ \mathcal{R}_{\epsilon} \text { full } \\ \epsilon_{t} \sim \text { Skew- } \mathcal{N} \\ \hline \end{gathered}$		$\mathrm{NSR}=0.5$	
Ng	N	g	$s_{0}^{\text {gr }}$	TPR_{N}	TPR_{g}	TPR_{N}	TPR_{g}	TPR_{N}	TPR_{g}	TPR_{N}	TPR_{g}
	5	20	1	99.8	99.8	100.0	100.0	100.0	100.0	97.5	98.2
	10	10	1	99.8	100.0	99.8	100.0	99.3	99.7	97.5	98.3
100	10	10	5	99.5	98.7	98.6	97.2	99.2	98.7	70.9	67.2
	20	5	5	99.8	99.1	94.9	92.4	95.8	93.7	74.0	73.0
	20	5	10	48.9	40.2	51.8	42.3	54.0	41.8	17.4	16.3
	5	60	1	99.7	99.7	99.7	99.7	99.7	99.8	97.3	98.3
	10	30	1	99.7	99.8	99.5	99.7	99.5	99.7	95.0	97.3
300	10	30	5	98.2	96.7	98.5	97.6	98.1	96.8	53.8	50.3
	20	15	5	98.8	98.1	98.7	98.2	98.0	96.7	51.0	49.8
	20	15	10	22.9	17.4	24.6	18.6	25.6	19.2	13.0	11.6

Table: See Table 15. The Skew- \mathcal{N} is parameterized as in Azzalini \& Capitanio (2014), with skew parameter set at -5 .

- Results overall robust to changes in some key calibration parameters.

Ex. 1: Results - out-of-sample

Table: Monte Carlo simulations: predictive accuracy

BSGS-SS									
$N g$	N	g	$s_{0}^{g r}$	RMSFE	LogS	CRPS	RMSFE	LogS	CRPS
100	5	20	1	0.71	0.35	0.71	0.77	0.27	0.77
	10	10	1	0.71	0.35	0.71	0.75	0.29	0.75
	10	10	5	0.73	0.32	0.73	0.94	0.06	0.95
	20	5	5	0.72	0.34	0.72	0.86	0.15	0.87
	20	5	10	0.95	0.05	0.95	0.98	0.01	0.99
300	5	60	1	0.71	0.34	0.71	0.87	0.14	0.88
	10	30	1	0.71	0.35	0.71	0.82	0.20	0.83
	10	30	5	0.74	0.31	0.74	1.11	-0.11	1.12
	20	15	5	0.73	0.32	0.73	1.03	-0.03	1.04
	20	15	10	1.02	-0.03	1.03	1.07	-0.07	1.08

Table: See Table 15. RMSFE, LogS, and CRPS denote respectively the root mean squared forecast error, the log-score, and the continuously ranked probability score, in relative terms with respect to the $\operatorname{AR}(1)$ benchmark.

The Theoretical framework.

- We adopt a frequentist point of view: $\left(\varphi_{0}, \sigma_{0}^{2}\right)$ denotes the true value of $\left(\varphi, \sigma^{2}\right)$ that generates the data.
- $\mathbf{E}_{0}[\cdot]$ denotes the expectation taken with respect to the true data distribution $\mathcal{N}_{T}\left(\sum_{j=1}^{N} \varphi_{0, j}^{(T)}, \sigma_{0}^{2} \mathbf{I}_{T}\right)$, conditional on $\left(\mathbf{X}, \varphi_{0}, \sigma_{0}^{2}\right)$.
- $\boldsymbol{\theta}_{0}=$ true value of the approximation.
- Our asymptotic analysis is for $T \rightarrow \infty$. We allow $N, s_{0}^{g r}, s_{0}$ and $g \rightarrow \infty$ with T.

The Theoretical framework. (cont.)

Rate of contraction of the posterior distribution:

$$
\epsilon:=\max \left\{\sqrt{\frac{s_{0}^{g r} \log (N)}{T}}, \sqrt{\frac{s_{0} \log (T)}{T}}, \sqrt{\frac{s_{0} \log \left(s_{0}^{g r} g\right)}{T}}\right\}
$$

which is equal to

$$
\epsilon:=\max \left\{\sqrt{\frac{s_{0}^{g r} \log (N)}{T}}, \sqrt{\frac{s_{0} \log \left(s_{0}^{g r} g\right)}{T}}\right\}
$$

if $\log (T) \leq \max \left\{s_{0}^{g r} \log (N), s_{0} \log \left(s_{0}^{g r} g\right)\right\}$.
If in addition, $\log (N) \asymp \log (N)-\log \left(s_{0}^{g r}\right)$ and $\log \left(s_{0}^{g r} g\right) \asymp \log \left(s_{0}^{g r} g\right)-\log \left(s_{0}\right)$ then ϵ corresponds to the minimax rate for recovering φ

$$
\max \left\{\sqrt{\frac{s_{0}^{g r} \log \left(N / s_{0}^{g r}\right)}{T}}, \sqrt{\frac{s_{0} \log \left(s_{0}^{g r} g / s_{0}\right)}{T}}\right\} .
$$

given in Cai et al. (2022) and in Li et al. (2022).

The Theoretical framework. (cont.)

- If $N=1$, then $s_{0}^{g r}=1, s_{0}=\left|S_{0,1}\right|$ and $\epsilon:=\underbrace{\sqrt{\frac{\left|S_{0,1}\right| \log (g)}{T}}}_{\text {rate for recovery of sparse }}$. vectors over ℓ_{0}-balls
- If only 1 element per group (\sharp of groups $=\sharp$ of parameters), then $g=1, s_{0}=s_{0}^{g r}$ and $\epsilon:=\underbrace{\sqrt{\frac{s_{0}^{g r} \log (N)}{T}}}_{\text {rate for recovery of sparse }}$. vectors over ℓ_{0}-balls
- The required sample size to achieve $\epsilon \rightarrow 0$:

$$
T>C \max \left\{s_{0}^{g r} \log (N), s_{0} \log \left(s_{0}^{g r} g\right)\right\}
$$

- $s_{0}^{g r} \log (N)$ corresponds to the complexity of capturing $s_{0}^{g r}$ non-zero groups,
- $s_{0} \log \left(s_{0}^{g r} g\right)$ corresponds to the complexity of estimating s non-zero elements of $\boldsymbol{\theta}$ in $s_{0}^{g r}$ known groups (estimation over ℓ_{0}-balls).

The Theoretical framework. (cont.)

Assumption 6.3
For positive and bounded constants $\underline{\sigma}^{2}, \bar{\sigma}^{2}, c_{g}$ and c_{θ}, suppose that:
(i) $0<\underline{\sigma}^{2} \leq \sigma_{0}^{2} \leq \bar{\sigma}^{2}<\infty$;
(ii) $\max \{\log (N), \log (T)\} \leq s_{0}^{g r} g$;
(iii) $\max _{j \in S_{0}^{g r}} \max _{i \in S_{0, j}}\left|\theta_{0, j, i}\right| \leq \log \left(s_{0}^{g r} g\right)$.

Define $\|\mathbf{Z}\|_{o}:=\max \left\{\left\|\mathbf{Z}_{j}\right\|_{o p} ; 1 \leq j \leq N\right\}$, where \mathbf{Z}_{j} is the $(T \times g)$-submatrix of \mathbf{Z} made of all the rows and the columns corresponding to the indices in the j-th group.

The Theoretical framework. (cont.)

Assumption 6.4 (Hyperparameters of the prior for $\left(\pi_{0}, \pi_{1}\right)$)
\exists constants $\kappa_{0}, \kappa_{1}>0$ such that the hyper-parameters $c_{0}, d_{0}, c_{1}, d_{1}$ of the Beta priors for π_{0} and π_{1} satisfy:
(i) $\frac{d_{0}+j-1}{\left(c_{0}+N-j\right)} \leq \kappa_{0} \frac{j}{\left[N^{u_{0}}(N-j+1)\right]}$ for every $\frac{\log (2)}{\log (N)}<u_{0}<s_{0}^{g r}$ and $\forall j \in\{1, \ldots, N\} \subseteq \mathbb{N}$,
(ii) $\frac{d_{1}+j-1}{\left(c_{1}+N g-j\right)} \leq \kappa_{1} \frac{j}{\left[(N g)^{u_{1}}(N g-j+1)\right]}$ for every $\frac{\log (2)}{\log (N g)}<u_{1}<s_{0}$ and $\forall j \in\{1, \ldots, g\} \subseteq \mathbb{N}$.

- Assumptions (6.4) (i) and (ii) demand: $c_{0}, c_{1} \uparrow$ together with $N, s_{0}^{g r}$ and g and control their rate.
- To satisfy the assumption, if $d_{0}=c s t$. and $d_{1}=c s t$. then, $c_{0} \gtrsim N^{u_{0}}$ and $c_{1} \gtrsim\left(s_{0}^{g} g\right)^{u_{1}}$, for u_{0}, u_{1} in the range of values given in the assumption and up to a constant.
- In practice, in finite samples one can choose the constants κ_{0} and κ_{1} very small as long as they are fixed and do not increase with T.

For positive integers $s_{0}^{g r}, s_{0}$ satisfying $s_{0}^{g r} \leq N$ and $s_{0}^{g r} \leq s_{0} \leq g s_{0}^{g r}$, we define

$$
\begin{aligned}
& \mathcal{F}\left(s_{0}, s_{0}^{g r} ; \mathbf{Z}\right):= \\
& \left\{\left(\varphi, \sigma^{2}\right) ;\|B(g)\|_{2}^{2} \leq \frac{s_{0} \sigma^{2}}{16}, s_{\boldsymbol{\theta}}^{g r} \leq s_{0}^{g r}, s_{\boldsymbol{\theta}} \leq s_{0},\|\theta\|_{\infty} \leq \log \left(s_{0}^{g r} g\right), \text { and } \sigma^{2} \in\left[\underline{\sigma}^{2}, \bar{\sigma}^{2}\right]\right\}
\end{aligned}
$$

where for every vector $\boldsymbol{\theta} \in \Theta \subset \mathbb{R}^{N g}$:

- there is an associated group structure - by using the inverse of the $\operatorname{Vec}(\cdot)$ operator we obtain a $(g \times N)$ matrix $\Upsilon(\boldsymbol{\theta})$ whose j-th column is equal to $\left(\theta_{g(j-1)+1}, \ldots, \theta_{g j}\right)^{\prime} \in \mathbb{R}^{g} ;$
- the columns of this matrix are the groups in $\boldsymbol{\theta}$;
- $S_{\boldsymbol{\theta}}^{g r} \subseteq\{1,2, \ldots, N\}$ is the set of indices of the active groups in $\boldsymbol{\theta}$ (the non-zero columns of $\Upsilon(\boldsymbol{\theta})$).
- $S_{\boldsymbol{\theta}} \subseteq\{1,2, \ldots, N g\}$ the set of nonzero elements in $\boldsymbol{\theta}$.
- For given positive integers $s_{0}^{g r}, s_{0}$ satisfying $s_{0}^{g r} \leq N$ and $s_{0}^{g r} \leq s_{0} \leq g s_{0}^{g r}$, all vectors $\boldsymbol{\theta} \in \Theta$ such that $\left|S_{\boldsymbol{\theta}}^{g r}\right| \leq s_{0}^{g r}$ and $\left|S_{\boldsymbol{\theta}}\right| \leq s_{0}$ are said to be $\left(s_{0}, s_{0}^{g r}\right)$-sparse.

Posterior consistency.

Theorem 3
Suppose Assumptions 6.1, 6.2, 6.3 and 6.4 hold. Let $\epsilon \rightarrow 0$. Then, for a sufficiently large $M>0$:
$\sup _{\left(\varphi_{0}, \sigma_{0}^{2}\right) \in \mathcal{F}_{0}\left(s_{0}, s_{0}^{g_{0}^{r}} ; \mathbf{Z}\right)} \mathbf{E}_{0}\left[\Pi\left(\varphi ;\left\|\sum_{j=1}^{N}\left(\varphi_{j}^{(T)}(\mathbf{X})-\varphi_{0, j}^{(T)}(\mathbf{X})\right)\right\|_{2}^{2} \leq M T \epsilon^{2} \mid y, \mathbf{X}\right)\right] \rightarrow 0$.

Remarks:

- In the grouped predictors example:

$$
\left\|\sum_{j=1}^{N}\left(\varphi_{j}^{(T)}(\mathbf{X})-\varphi_{0, j}^{(T)}(\mathbf{X})\right)\right\|_{2}^{2}=\left\|\mathbf{X}\left(\boldsymbol{\theta}-\boldsymbol{\theta}_{0}\right)\right\|_{2}^{2}
$$

Posterior consistency. (cont.)

- Similarly, in the MIDAS example:

$$
\left\|\sum_{j=1}^{N}\left(\varphi_{j}^{(T)}(\mathbf{X})-\varphi_{0, j}^{(T)}(\mathbf{X})\right)\right\|_{2}^{2}=\left\|\mathbf{Z}^{\infty}\left(\boldsymbol{\theta}^{\infty}-\boldsymbol{\theta}_{0}^{\infty}\right)\right\|_{2}^{2}
$$

with $\boldsymbol{\theta}^{\infty}=\left\{\theta_{j 1}, \theta_{j 2}, \ldots\right\}_{j=1}^{N}$ an infinite dimensional vector, \mathbf{z}_{t}^{∞} is defined similarly and $\mathbf{Z}^{\infty}=\left(\mathbf{z}_{1-h}^{\infty}, \ldots, \mathbf{z}_{T-h}^{\infty}\right)^{\prime}$ is a matrix with T rows and an infinite number of columns.

Sketch of the proof: posterior consistency for the Rényi divergence of order $\frac{1}{2}$,

$$
d\left(f_{0}, f\right):=-\frac{1}{T} \log \int \sqrt{f_{0} f}
$$

where $f_{0}=\mathcal{N}_{T}\left(\sum_{j=1}^{N} \varphi_{0, j}^{(T)}, \sigma_{0}^{2} \mathbf{I}_{T}\right)$ and $f=\mathcal{N}_{T}\left(\sum_{j=1}^{N} \varphi_{j}^{(T)}, \sigma^{2} \mathbf{I}_{T}\right)$.
[1]. f_{0} belongs to the Kullback-Leibler support of the prior distribution.
Let f^{g} be the Lebesgue density of $\mathcal{N}_{T}\left(\mathbf{Z} \boldsymbol{\theta}, \sigma^{2} \mathbf{I}_{T}\right)$.
We show that, for large T :

$$
\begin{equation*}
\Pi\left(\left(\boldsymbol{\theta}, \sigma^{2}\right) ; K\left(f_{0}, f^{g}\right) \leq T \epsilon^{2}, V\left(f_{0}, f^{g}\right) \leq T \epsilon^{2}\right) \geq e^{-C_{1} T \epsilon^{2}} \tag{17}
\end{equation*}
$$

for a constant $C_{1}=C_{1}\left(b, C_{c d}, \underline{c}, \bar{C}, \underline{\sigma}^{2}\right)>0$ and where, for two probability densities f_{1} and f_{2},

$$
K\left(f_{1}, f_{2}\right):=\int f_{1} \log \left(f_{1} / f_{2}\right)
$$

and

$$
V\left(f_{1}, f_{2}\right):=\int f_{1}\left(\log \left(f_{1} / f_{2}\right)-K\left(f_{1}, f_{2}\right)\right)^{2}
$$

[2]. Let

$$
\Theta\left(\widetilde{s}_{0}^{g r}, \widetilde{s}_{0}\right):=\left\{\boldsymbol{\theta} \in \Theta ; s_{\boldsymbol{\theta}}^{g r}<M_{0} \frac{T \epsilon^{2}}{\log (N)} \text { and } s_{\boldsymbol{\theta}}<M_{1} \frac{T \epsilon^{2}}{\log \left(s_{0}^{g r} g\right)}\right\}
$$

for two positive constants M_{0}, M_{1}.

Lemma 1 (Dimensionality)

Let us consider the prior in (7) and (8) with $c_{0}, c_{1}, d_{0}, d_{1}$ satisfying Assumption (6.4) (i) - (ii). Let $C_{1}, M_{0}, M_{1}>0$ be some constants such that
$C_{1}<\min \left\{u_{0}\left(M_{0}-1\right), u_{1}\left(M_{1}-1\right)\right\}-3$ that do not depend on $\left(\boldsymbol{\theta}_{0}, \sigma_{0}^{2}\right)$. Then, it holds that:

$$
\begin{aligned}
& \sup _{\boldsymbol{\theta}_{0} \in \bar{\Theta}_{0}, \sigma_{0}^{2} \in\left[\underline{\sigma}^{2}, \bar{\sigma}^{2}\right]} \mathbf{E}_{0} \Pi\left(\boldsymbol{\theta} ; s_{\boldsymbol{\theta}}^{g} \geq M_{0} \frac{T \epsilon^{2}}{\log (N)}, \left.s_{\boldsymbol{\theta}} \geq M_{1} \frac{T \epsilon^{2}}{\log \left(s_{0}^{g r} g\right)} \right\rvert\, y, \mathbf{Z}\right) \\
& \leq e^{-T \epsilon^{2}\left(-2 C_{1}+\min \left\{u_{0}\left(M_{0}-1\right), u_{1}\left(M_{1}-1\right)\right\}-3\right)}+\frac{1}{C_{1}^{2} T \epsilon^{2}}
\end{aligned}
$$

Posterior consistency. (cont.)

The support of the posterior can overshoot the true dimension $s_{0}^{g r}, s_{0}$ since

$$
\begin{aligned}
\frac{T \epsilon^{2}}{\log (N)}=\max \left\{s_{0}^{g r}, \frac{s_{0} \log (T)}{\log (N)},\right. & \left.\frac{s_{0} \log \left(s_{0}^{g r} g\right)}{\log (N)}\right\} \quad \text { and } \\
& \frac{T \epsilon^{2}}{\log \left(s_{0}^{g r} g\right)}=\max \left\{\frac{s_{0}^{g r} \log (N)}{\log \left(s_{0}^{g r} g\right)}, \frac{s_{0} \log (T)}{\log \left(s_{0}^{g r} g\right)}, s_{0}\right\} .
\end{aligned}
$$

[3]. Define the sieves:
$\mathcal{F}_{T}\left(C_{2}\right):=\left\{\left(\boldsymbol{\theta}, \sigma^{2}\right) \in \Theta\left(\widetilde{s}_{0}^{g r}, \widetilde{s}_{0}\right) \times \mathbb{R}_{+} ; \max _{1 \leq j \leq N}\left\|\boldsymbol{\theta}_{j}\right\|_{2} \leq \frac{C_{2}+1}{\underline{c}} \xi, T^{-1} \leq \sigma^{2} \leq e^{C_{2} T \epsilon^{2}}\right\}$,
where $\xi:=\left(T \epsilon^{2}\right)^{2} \log \left(s_{0}^{g r} g\right)$.
Lemma 2 (Testing)
(i) There exists a constant C_{2} such that for T large:

$$
\begin{equation*}
\Pi\left(\left(\Theta\left(\widetilde{s}_{0}^{g r}, \widetilde{s}_{0}\right) \times \mathbb{R}_{+}\right) \backslash \mathcal{F}_{T}\left(C_{2}\right)\right) \lesssim \exp \left\{-T \epsilon^{2} C_{2}\right\}\left(2+\frac{b}{a-1}\right) \tag{19}
\end{equation*}
$$

and (ii) there exists a test ϕ_{T} such that

$$
\begin{equation*}
\mathbf{E}_{0} \phi_{T} \leq e^{-M_{2} T \epsilon^{2} / 2}, \quad \sup _{f^{g} \in \mathcal{F}_{T}\left(C_{2}\right) ; d\left(f_{0}, f^{g}\right)>M_{1} T \epsilon^{2}} \mathbf{E}_{f g}\left(1-\phi_{T}\right) \leq e^{-M_{2} T \epsilon^{2}} \tag{20}
\end{equation*}
$$

for some M_{0} that does not depend on $\left(\boldsymbol{\theta}_{0}, \sigma_{0}^{2}\right)$ and where: $d\left(f_{0}, f\right):=-\frac{1}{T} \log \int \sqrt{f_{0} f}$ (Rényi divergence of order $\frac{1}{2}$).

Grouped predictors \& MIDAS: Parameter recovery.

We now look at parameter recovery of our procedure, that is, consistency of the marginal posterior of $\boldsymbol{\theta}$ (coefficients of the approximation of φ).

Definition 2 (Smallest scaled sparse singular value.)
For every $s, r>0$, the smallest scaled sparse singular value of dimension (s, r) is defined as

$$
\begin{equation*}
\widetilde{\phi}(s, r):=\inf \left\{\frac{\|\mathbf{Z} \boldsymbol{\theta}\|_{2}^{2}}{\|\mathbf{Z}\|_{o}^{2}\|\boldsymbol{\theta}\|_{2}^{2}}, 0 \leq s_{\boldsymbol{\theta}}^{g r} \leq s \text { and } 0 \leq s_{\boldsymbol{\theta}} \leq r\right\} \tag{21}
\end{equation*}
$$

- The double sparse eigenvalue condition requires that for every $s, r>0, \exists \mathrm{a}$ constant $\kappa>0$ such that $\widetilde{\phi}(s, r)>\kappa$. Under this assumption:

$$
\|\mathbf{Z} \boldsymbol{\theta}\|_{2}^{2} \geq \kappa\|\mathbf{Z}\|_{o}^{2}\|\boldsymbol{\theta}\|_{2}^{2} .
$$

- This is the same assumption as in Li et al. (2022). In addition, they assume the columns of \mathbf{Z} are normalized: $\sum_{t=1}^{T} z_{j, t-h, i}^{2}=\sqrt{T}$.

Grouped predictors \& MIDAS: Parameter recovery. (cont.)

- We use the notation $\widetilde{\phi}_{0}:=\widetilde{\phi}\left(M_{0} \widetilde{s}_{0}^{g r}+s_{0}^{g r}, M_{1} \widetilde{s}_{0}+s_{0}\right)$ for two positive constants M_{0} and M_{1}.

Theorem 4
Suppose Assumptions 6.1, 6.2, 6.3 and 6.4 hold. Let $\epsilon \rightarrow 0$. Then, for every constant $M_{3} \geq 2 M+\bar{\sigma}^{2} / 8$ where M is as in Theorem 3 we have:

$$
\begin{equation*}
\sup _{\left(\varphi_{0}, \sigma_{0}^{2}\right) \in \mathcal{F}_{0}\left(s_{0}, s_{0}^{g_{0}^{r}} ; \mathbf{Z}\right)} \mathbf{E}_{0}\left[\Pi\left(\boldsymbol{\theta} \in \Theta ; \left.\left\|\boldsymbol{\theta}-\boldsymbol{\theta}_{0}\right\|_{2}^{2} \geq \frac{M_{3} T \epsilon^{2}}{\widetilde{\phi}_{0}\|\mathbf{Z}\|_{o}^{2}} \right\rvert\, y, \mathbf{X}\right)\right] \rightarrow 0 \tag{22}
\end{equation*}
$$

If there exists two constants $\kappa_{\ell}, \kappa_{z}>0$ such that $\widetilde{\phi}(s, r)>\kappa_{\ell}$ and $\|\mathbf{Z}\|_{o} \leq \sqrt{\kappa_{z}} \sqrt{T}$ w.p.a. 1, then

$$
\begin{equation*}
\sup _{\left(\varphi_{0}, \sigma_{0}^{2}\right) \in \mathcal{F}_{0}\left(s_{0}, s_{0}^{r} ; \mathbf{Z}\right)} \mathbf{E}_{0}\left[\Pi\left(\boldsymbol{\theta} \in \Theta ; \left.\left\|\boldsymbol{\theta}-\boldsymbol{\theta}_{0}\right\|_{2}^{2} \geq \frac{M_{3} \epsilon^{2}}{\kappa \ell \kappa_{z}} \right\rvert\, y, \mathbf{X}\right)\right] \rightarrow 0 \tag{23}
\end{equation*}
$$

Grouped predictors \& MIDAS: Parameter recovery. (cont.)

Let us consider the assumption $\|\mathbf{Z}\|_{o} \leq \sqrt{\kappa_{z}} \sqrt{T}$, where $\|\mathbf{Z}\|_{o}:=\max \left\{\left\|Z_{j}\right\|_{o p} ; 1 \leq j \leq N\right\}$.

- MIDAS: by using the inequality $\|\cdot\|_{o p} \leq\|\cdot\|_{F}$

$$
\left\|\mathbf{Z}_{j}\right\|_{o p} \leq \sqrt{T}\left\|\frac{1}{T} \sum_{t=1}^{T} \mathbf{x}_{j, t-h} \mathbf{x}_{j, t-h}^{\prime}\right\|_{o p}\left\|\Phi^{\prime} \Phi\right\|_{F}
$$

where $\Phi^{\prime}:=\left(\Phi_{1}, \ldots, \Phi_{g}\right)$ is $p_{x} \times g$ and recall
$\mathbf{x}_{j, t-h}=\left(x_{j, t-h}^{H}, \ldots, x_{j, t-h-p_{x} / m}^{H}\right)^{\prime}$.

- Grouped predictors: $\left\|\mathbf{Z}_{j}\right\|_{o p}=\left\|\frac{1}{T} \sum_{t=1}^{T} \mathbf{x}_{j, t-h} \mathbf{x}_{j, t-h}^{\prime}\right\|_{o p}$.
- Nonlinear predictive models:

$$
\left\|\mathbf{Z}_{j}\right\|_{o p}=\left\|\sum_{t=1}^{T}\left(\begin{array}{c}
\phi_{j 1}\left(x_{j, t-h}\right) \\
\vdots \\
\phi_{j g}\left(x_{j, t-h}\right)
\end{array}\right)\left(\phi_{j 1}\left(x_{j, t-h}\right), \ldots, \phi_{j g}\left(x_{j, t-h}\right)\right)\right\|=\mathcal{O}_{p}(\sqrt{T})
$$

Out-of-sample.

h steps-ahead forecasts are obtained from the posterior predictive density for $y_{\tau} \mid x_{\tau-h}, \tau>T$:

$$
\begin{equation*}
f\left(y_{\tau} \mid x_{\tau-h}, y, \mathbf{X}\right)=\int f_{0}\left(y_{\tau} \mid \varphi, \sigma^{2}, x_{\tau-h}\right) \Pi\left(\varphi, \sigma^{2} \mid y, \mathbf{X}\right) d \varphi d \sigma^{2} \tag{24}
\end{equation*}
$$

where

- Draws from the predictive distribution (24) can be obtained directly from the Gibbs sampler.
- Point and density forecasts are evaluated through standard metrics, such as the root mean squared forecast error (RMSFE), the log-score (LogS), and the continuously ranked probability score (CRPS), averaged over $T_{\text {oos }}=50$ out-of-sample observations.

Out-of-sample. (cont.)

Evaluate it by using the mean KL-divergence:

$$
\begin{array}{rl}
\mathbf{E}_{x_{\tau-h}} & K L\left(f_{0}\left(y_{\tau} \mid x_{\tau-h}, \varphi_{0}, \sigma_{0}^{2}\right), f\left(y_{\tau \mid \tau-h} \mid y, \mathbf{X}\right)\right) \\
& =\iint \log \left(\frac{f_{0}\left(y_{\tau} \mid x_{\tau-h}, \varphi_{0}, \sigma_{0}^{2}\right)}{f\left(y_{\tau} \mid x_{\tau-h}, y, \mathbf{X}\right)}\right) f_{0}\left(y_{\tau} \mid x_{\tau-h}, \varphi_{0}, \sigma_{0}^{2}\right) d y P\left(d x_{\tau-h}\right)
\end{array}
$$

Theorem 5
Suppose Assumptions 6.1, 6.2, 6.3 and 6.4 hold. Let $\epsilon \rightarrow 0$. Then,

$$
\begin{equation*}
\sup \quad \mathbf{E}_{x_{\tau-h}} \mathbf{E}_{0} K L\left(f_{0}\left(y_{\tau} \mid x_{\tau-h}, \varphi_{0}, \sigma_{0}^{2}\right), f\left(y_{\tau} \mid x_{\tau-h}, y, \mathbf{X}\right)\right) \rightarrow 0 \tag{25}
\end{equation*}
$$

