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Introduction.

Optimal forecast of yt, h horizons ahead, based on a set of predictors
xt := (x′

1,t, . . . , x′
N,t)

′ to track economic conditions in real-time.

• Large datasets with predictors organized into N groups (each with a possibly
infinite number of elements, strong covariation, common characteristics).

• The forecasting / nowcasting model we consider is: ∀t = 1, . . . , T , ∀h ≥ 0,

yt =

N∑
j=1

φj(xj,t−h,1, xj,t−h,2, . . .)+εt, E[εt|x1,t−h−ℓ, . . . , xN,t−h−ℓ, ℓ ≥ 0] = 0,

(1)
where:

▶ j = 1, . . . ,N is the group index,

▶ φj(·) denotes a j-specific unknown function of xj,t−h taking values in R,

▶ xj,t := {xj,t,i}i≥1 for every j ∈ {1, . . . ,N},

▶ If x1,t contains the lagged values of yt , then x1,t = (yt−1, yt−2, . . .)
′.

• Unify high-dimensional and nonparametric regression settings.
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Motivating Example 1: MIDAS.

The Mixed Data Sampling (MIDAS) regression model (e.g. Ghysels et al. 2006,
2007) can be written as: ∀t = 1, . . . , T , ∀h = 0, 1/m, 2/m, . . .

yL
t =

py∑
u=1

βuLuyL
t +

N∑
j=2

Ψ(L1/m;θj)xH
j,t−h + εL

t , (2)

where Ψ(L1/m;θj) is the high-frequency lag polynomial

Ψ(L1/m;θj) =

px∑
u=0

ψ(u;θj)Lu/m. (3)

• This model can be cast in model (1) with N groups:

▶ the first group is φ1(x1,t) = θ′
1(yt−1, . . . , yt−py )

′ with θ1 := (β1, . . . , βpy )
′,

▶ the remaining N − 1 groups are given by each high-frequency predictor:
∀j = 2, . . . ,N,

φj(xH
j,t−h, . . . , x

H
j,t−h−px/m) = Ψ(L1/m;θj)xH

j,t−h.
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Motivating Example 1: MIDAS. (cont.)

• Possible parameterizations of the weighting function ψ(u;θj):

▶ unrestricted MIDAS (Foroni, Marcellino & Schumacher, 2015): ψ(u;θj) = θu,j;

▶ Almon lag polynomials (power polynomials): ψ(u;θj) =
∑C

i=0 θj,iui;

▶ more generally, by using orthogonal basis functions {ϕi(u)}i on R+ we obtain:

ψ(u;θj) =
∞∑
i=1

θj,iϕi(u). (4)

Hence,

φj(xj,t−h) = Ψ(L1/m;θj)xH
j,t−h

=

px∑
u=0

∞∑
i=1

θj,iϕi(u)xH
j,t−h−u/m =

∞∑
i=1

θj,iΦ
′
i xj,t−h,

where Φi := (ϕi(0), ϕi(1), . . . , ϕi(px))′.

• Related literature: Babii et al. (2022, JBES, Grouped Lasso estimator),
Mogliani & Simoni (2021, JoE – without sparsity within groups).
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Additional motivating examples encompassed in model (1).

1). Nonlinear predictive model for yt : ∀t = 1, . . . , T ,

yt =

N∑
j=1

φj(xj,t−h) + εt, E[εt|xj,t−h−ℓ, j = 1, . . . ,N, ℓ ≥ 0] = 0,

where φj(·) is an unknown function of one covariate. For a set of approximating
functions {ϕj1, ϕj2, . . .},

φj(xj,t−h) =

∞∑
i=1

ϕji(xj,t−h)θj,i, j ∈ {1, . . . ,N}.

2). Data-poor environment with many lags per each predictor and for yt.

3). Grouped predictors in a data-rich environment where each group of covariates
xj,t contains ≤ g elements. By assuming a linear model: ∀t = 1, . . . , T ,

yt =
N∑

j=1

x′
j,t−hθj + εt, E[εt|x1,t−h−ℓ, . . . , xN,t−h−ℓ, ℓ ≥ 0] = 0 (5)

and φj(xj,t−h) = x′
j,t−hθj.
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Contributions.

1) Propose a Bayesian approach to deal with / exploit the sparse group structure:

• we construct a hierarchical prior that:

▶ induces a bi-level sparsity: some groups and some predictors inside a group can be
irrelevant for forecasting the target variable, conditional on the remaining predictors;

▶ treats the coefficients of each block independently but, after marginalization,
imposes a correlation among the coefficients in each block

• appealing because:
▶ it allows assessment of the uncertainty;

▶ it has a build-in prediction with optimal properties;

▶ easy to introduce stochastic volatility (to robustify the forecasting accuracy in
volatile periods exhibiting large fluctuations)

2) Establish frequentist asymptotic properties.

3) Gibbs sampler with a one step of Metropolis-Hasting.

4) Monte Carlo exercise to study finite sample properties.

5) Empirical application: nowcast of US GDP with grouped predictors.
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The Model.

By assuming εt ∼i.i.d. N (0, σ2) then the sampling model is: ∀h ≥ 0

yt|xt−h, φ, σ
2 ∼ N

 N∑
j=1

φj(xj,t−h), σ
2

 ,

where:

• xt := (x′
1,t, . . . , x′

N,t)
′ is a vector of potentially infinite dimension,

• X := (x−h+1, . . . , xT−h)
′ is a matrix with T rows,

• φ := (φ1, . . . , φN)
′, φ ∈ H, Hilbert space.
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The Model. (cont.)

To reduce the dimension of the model, we assume there exist

• a vector zj,t−h := (zj,t−h,1, . . . , zj,t−h,g)
′ of transformations of xj,t−h

• and parameters {θj,i}g
i=1

such that for every j ∈ {1, . . . ,N}, the function φj(xj,t−h) is well approximated by

φj(xj,t−h) ≈
g∑

i=1

zj,t−h,iθj,i = z′t−hθ,

where g ≥ 1 is a truncation parameter.

We introduce:
• for every j = 1, . . . ,N, define θj := (θj,1, . . . , θj,g)

′ ∈ Rg,

• θ := (θ′
1, . . . ,θ

′
N)

′ ∈ Θ ⊂ RNg,

• zt := (z
′
1,t, . . . , z

′
N,t)

′ is a (gN × 1) vector,

• and Z := (z1−h, . . . , zT−h)
′ is a (T × gN) matrix.
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The Model. (cont.)

Examples:

1 MIDAS:

φj(xj,t−h) = Ψ(L1/m;θj)xH
j,t−h =

px∑
u=0

∞∑
i=1

θj,iϕi(u)xH
j,t−h−u/m

≈
g∑

i=1

θj,iΦ
′
i xj,t−h =

g∑
i=1

θj,izj,t−h,i,

where Φi := (ϕi(0), ϕi(1), . . . , ϕi(px))
′, zj,t−h,i := Φ′

i xj,t−h, and

zj,t−h := (x′
j,t−hΦ1, . . . , x′

j,t−hΦg)
′.

2 Grouped predictors: zj,t = xj,t, no approximation.

3 Nonlinear predictive models: we approximate φj(xj,t−h) as

φj(xj,t−h) ≈
g∑

i=1

ϕji(xj,t−h)θj,i =: z′j,t−hθj.
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The Model. (cont.)

Let (φ0, σ
2
0) be the true value of (φ, σ2) that generates the data.

yt|xt−h, φ0, σ
2
0 ∼ N

 N∑
j=1

φ0,j(xj,t−h), σ
2
0IT

 .

The approximation bias in the mean is

B0,t(g) := E[yt|{xt−h}t=1,...,T ]− z′t−hθ0

=

N∑
j=1

(
φ0,j(xj,t−h)− z′j,t−hθ0,j

)
, ∀t = 1, . . . , T

and B0(g) := (B0,1(g), . . . ,B0,T(g))′ is a T-vector.

• In this paper we adopt a Bayesian approach and specify a convenient prior that
is degenerate at zero for the quantity Bt(g).
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The Model. (cont.)

Sparsity structure:

We assume bi-level sparsity:

Bi-level sparsity is the feature of the model that guarantees ∃ an approximation

z′t−hθ0 ≡
N∑

j=1

z′j,t−hθ0,j

to
∑N

j=1 φ0,j(xj,t−h) in (1) with a small number of active groups and of non-zero
coefficients for each active group such that the approximation bias B0,t(g) is small

relative to the estimation error.
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Sparse Group Selection with spike-and-slab prior

We specify a prior that induces exact sparsity both at the group level and within
groups.

• This prior puts all its mass on the approximation z′t−hθ conditional on zt−h.

• For every group j = 1, . . . ,N, θj = V1/2
j bj, bj := (bj,1, . . . , bj,g)

′,

V1/2
j := diag(vj1, . . . , vjg) and vji ≥ 0 for i = 1, . . . , g.

• We treat the truncation parameter g as deterministic and, under Assumption 6.1,
it might depend on s0

• The double spike-and-slab prior is inspired from Xu & Ghosh (2015).
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Sparse Group Selection with spike-and-slab prior (cont.)

Prior distributions inducing bi-level sparsity (hard spike-and-slab): ∀j = 1, . . . ,N

Bt,j(g)|xt−h, g ∼ δ0, ∀t = 1, . . . , T, (6)

bj|g, π0
ind.∼ (1 − π0)Ng(0, Ig) + π0δ0(bj), (7)

vji|π1, τj
ind.∼ (1 − π1)N+(0, τ 2

j ) + π1δ0(vji), i = 1, . . . , g, (8)

where N+(0, τ 2
j ) denotes a truncated N (0, τ 2

j ) distribution truncated below at 0.

Prior on the hyperparameters and model variance:

τj
ind.∼ Γ

(
1
2
, λ1,j

)
,

π0 ∼ Beta(c0, d0),

π1 ∼ Beta(c1, d1),

σ2 ∼ IΓ(a, b).
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Design of the experiments

We consider the MIDAS model:

yL
t = 0.5 + 0.3yL

t−1 +
N∑

j=1

px=11∑
i=0

ψ
(

i; θ̃
)

xH
j,t− i/3 + εL

t

xH
j,t = 0.9xH

j,t−1/3 + ϵH
j,t

ψ (i;θj) =

(
i + 1

px + 1

)θ1−1(
1 − i + 1

px + 1

)θ2−1
Γ(θ1 + θ2)

Γ(θ1)Γ(θ2)
+ θ3(

εL
t

ϵH
t

)
∼ i.i.d. N

[(
0
0

)
,

(
σ2 0
0 Σϵ

)]
• T = 200
• N = {50, 100}
• sgr

0 = {5, 10}
• Σϵ = SϵRϵSϵ, with Sϵ diagonal matrix with elements σϵ and Rϵ a Toeplitz

correlation matrix with off-diagonal elements ρ|j−j′|
ϵ for all j ̸= j′

• σ = 0.5 and σϵ fixed such that NSR = 0.2.
• ρϵ = 0.5
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Weighting function ψ
(

i; θ̃
)
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MIDAS lag polynomials

We estimate the model by approximating the true weighting function through a set of
polynomials:

• ψ (i;θ) = θi,j ⇒ linear lag polynomials (Unrestricted MIDAS)
• ψ (i;θ) =

∑g
p=1 θp,jip ⇒ algebraic power lag polynomials (Almon, w and w/o

end-point restrictions; Mogliani & Simoni, 2021)
• ψ (i;θ) =

∑g
p=1 θp,jϕp(i)⇒ ϕp(i) orthogonal lag polynomials:

▶ Legendre
▶ Bernstein
▶ Chebyshev first-kind (T)

We set g = 5 (=3 for restricted Almon). Orthogonal polynomials are normalized and
shifted over the interval [0,1].

We iterate the Gibbs sampler for 50000 sweeps (+10000 burn-in) and we perform
100 MC simulations.
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Monte Carlo simulations: selection and predictive accuracy

DGP 1 DGP 2 DGP 3 DGP 4
fast-decaying bell-shaped slow-decaying flat

N sgr
0 Polynomial TPR CRPS TPR CRPS TPR CRPS TPR CRPS

50 5

Unrestricted 99.8 0.71 99.8 0.67 98.8 0.74 45.8 0.93
Almon 65.4 0.82 38.3 0.92 48.3 0.90 85.4 0.81

Restr. Almon 98.0 0.70 83.6 0.71 96.2 0.71 93.3 0.81
Legendre 60.3 0.86 92.0 0.72 60.9 0.86 81.1 0.81
Bernstein 98.2 0.73 99.7 0.66 98.4 0.73 57.4 0.89

Chebychev U 60.3 0.86 95.3 0.71 62.9 0.86 81.9 0.81

100 5

Unrestricted 99.6 0.70 99.7 0.68 95.9 0.75 30.5 0.96
Almon 44.4 0.89 23.7 0.97 31.3 0.95 65.2 0.85

Restr. Almon 95.9 0.69 83.4 0.71 94.3 0.71 80.7 0.83
Legendre 40.7 0.92 71.9 0.78 42.2 0.91 57.1 0.88
Bernstein 91.6 0.74 98.8 0.66 96.4 0.73 37.2 0.94

Chebychev U 41.7 0.91 80.1 0.76 43.1 0.91 58.8 0.87

100 10

Unrestricted 12.6 0.99 15.1 0.98 11.7 0.99 10.2 1.00
Almon 9.5 1.00 9.2 1.00 9.2 1.00 9.5 1.00

Restr. Almon 51.7 0.86 36.5 0.91 39.3 0.91 12.7 0.99
Legendre 10.8 0.99 11.2 0.99 10.6 0.99 9.5 1.00
Bernstein 11.8 0.99 17.3 0.98 12.5 0.99 10.2 1.00

Chebychev U 10.8 0.99 11.6 0.99 10.7 0.99 9.5 1.00

Table: TPR and CRPS denote respectively the true positive rate and the continuously ranked probability
score, the latter in relative terms with respect to the AR(1) benchmark.

Extension: Stochastic Volatility
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Empirical application: nowcasting US GDP in a mixed-frequency framework.

Nowcasting exercise of US GDP in the following mixed-frequency framework:

yt = α+ βyt−1 +

N∑
j=2

px∑
u=0

ψ(u;θj)xj,t−h−u/m + εt,

where
• yt = 400 log(Yt/Yt−1) = annualized quarterly growth rate of GDP,

• xt= vector of N = 122 macroeconomic series sampled at monthly frequency
and extracted from the FRED-MD database (McCracken & Ng, 2016).

• The data sample starts in 1980Q1, while the pseudo out-of-sample analysis
spans 2013Q1 to 2022Q4.

• Rolling window of T = 132 quarterly observations, and h-step-ahead posterior
predictive densities for yτ |xτ−h, τ > T are generated from:

f (yτ |xτ−h, y,X) =

∫
f0(yτ |φ, σ2, xτ−h)Π(φ, σ2|y,X)dφdσ2. (9)
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Empirical application: nowcasting US GDP in a mixed-frequency framework.
(cont.)

• 3 nowcasting horizons: h = 0, 1/3, 2/3 and two lag polynomials: restricted
Almon and the orthonormal Bernstein polynomials.

• We allow for time-varying volatility with heavy tails and occasional outliers in
the regression errors (to account for the Great Moderation, the Great Recession,
and the Covid crisis).

We consider two modelling strategies to exploit our bi-level sparsity prior approach:

1 First, we estimate the forecasting model on the whole set of 122 indicators. The
total number of parameters is either 244 (restricted Almon) or 732 (Bernstein).

2 Alternative strategy: estimating the model on separate groups of indicators,
where the groups are set according to partition of indicators defined in
McCracken & Ng (2016).

▶ We have a total number of 8 groups (output and income; labour market; housing;
consumption, orders, and inventories; money and credit; interest and exchange rates;
prices; stock market), each one including between 5 and 31 indicators.
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Empirical application: nowcasting US GDP in a mixed-frequency framework.
(cont.)

Summing up, we estimate a large set of alternative specifications, according to:

• the 2 lag polynomials (Almon and Bernstein),

• the 5 volatility process (homoskedastic, SV, SV with Student-t shocks, SV with
outliers, SV with Student-t shocks and outliers),

• and the 2 partition strategies (whole dataset vs 8 groups).

To process this large amounts of results, we combine the set of obtained individual
density forecasts.
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Empirical application: nowcasting US GDP - RESULTS.

BSGS-SS BSGL
h=0 h=1/3 h=2/3 h=0 h=1/3 h=2/3

Panel A. RMSFE
Groups - Almon 0.77 0.75 0.74 0.82 0.72 0.75
Groups - Bernstein 0.70 0.62 0.81 0.84 0.74 0.74
Groups - all 0.67 0.71 0.77 0.91 0.72 0.74
Whole dataset - Almon 0.93 0.82 0.71 0.97 0.75 0.83
Whole dataset - Bernstein 0.69 0.96 0.87 3.00 1.00 0.87
Whole dataset - all 0.69 0.96 0.75 1.20 0.88 0.88

Panel B. LogS
Groups - Almon 10.04 6.16 8.56 9.28 5.72 6.67
Groups - Bernstein 9.83 12.92 3.63 7.07 2.12 6.65
Groups - all 10.05 10.98 6.25 9.02 10.56 7.56
Whole dataset - Almon 9.56 5.18 8.05 4.22 9.81 6.55
Whole dataset - Bernstein 11.33 6.34 5.95 5.96 -15.46 6.20
Whole dataset - all 12.84 4.03 6.77 7.34 -12.46 6.27

Panel C. CRPS
Groups - Almon 0.79 0.77 0.75 0.81 0.72 0.78
Groups - Bernstein 0.75 0.67 0.85 0.85 0.77 0.77
Groups - all 0.74 0.71 0.79 0.85 0.72 0.76
Whole dataset - Almon 0.92 0.82 0.74 4.23 3.75 3.86
Whole dataset - Bernstein 0.73 0.92 0.86 6.29 4.34 4.45
Whole dataset - all 0.72 0.93 0.76 0.98 0.80 0.86

Table: BSGS-SS denotes the proposed bi-level sparsity prior. BSGL denotes the Bayesian Sparse Group
Lasso prior (Xu & Ghosh, 2015). RMSFE, LogS, and CRPS denote respectively the root mean squared
forecast error, the log-score, and the continuously ranked probability score, in relative terms with respect to
the AR(1) benchmark.
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The Theoretical framework.

• (φ0, σ
2
0 ,θ0) denotes the true value of (φ, σ2,θ) that generates the data.

• E0[·] denotes the expectation taken with respect to the true data distribution
conditional on (X, φ0, σ

2
0).

• Our asymptotic analysis is for T → ∞. We allow N, sgr
0 , s0 and g → ∞ with T .

θ0 is (s0, sgr
0 )-sparse, where

• sgr
0 := |Sgr

0 | ≪ N, Sgr
0 := {j ∈ {1, . . . ,N}; ∥θ0,j∥2 > 0} is the group support

and sgr
0 is the number of active groups.

• If Sgr
0 ̸= ∅, for every j ∈ Sgr

0 let S0,j be the set of the indices of the nonzero
elements in θ0,j.

• So, S0 :=
⋃

j∈Sgr
0

S0,j is the support of θ.

• Number of active coefficients: s0 :=
∑

j∈Sgr
0
|S0,j| ≪ Ng and |S0,j| ≪ g.
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The Theoretical framework. (cont.)

Rate of contraction of the posterior distribution:

ϵ := max

{√
sgr

0 log(N)

T
,

√
s0 log(T)

T
,

√
s0 log(sgr

0 g)
T

}

Define ∥Z∥o := max{∥Zj∥op; 1 ≤ j ≤ N}, where Zj is the (T × g)-submatrix of Z
made of all the rows and the columns corresponding to the indices in the j-th group.
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Posterior consistency.

Theorem 1
Suppose Assumptions 6.1, 6.2, 6.3 and 6.4 hold. Let ϵ→ 0. Then, for a sufficiently
large M > 0:

sup
(φ0,σ

2
0)∈F0(s0,s

gr
0 ;Z)

E0

Π
φ;

∥∥∥∥∥∥
N∑

j=1

(
φ

(T)
j (X)− φ

(T)
0,j (X)

)∥∥∥∥∥∥
2

2

≤ MTϵ2

∣∣∣∣∣∣ y,X
→ 0.

(10)

Remarks:

• In the grouped predictors example:∥∥∥∥∥∥
N∑

j=1

(
φ

(T)
j (X)− φ

(T)
0,j (X)

)∥∥∥∥∥∥
2

2

= ∥X(θ − θ0)∥2
2.
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Posterior consistency. (cont.)

• Similarly, in the MIDAS example:∥∥∥∥∥∥
N∑

j=1

(
φ

(T)
j (X)− φ

(T)
0,j (X)

)∥∥∥∥∥∥
2

2

= ∥Z∞(θ∞ − θ∞
0 )∥2

2

with θ∞ = {θj1, θj2, . . .}N
j=1 an infinite dimensional vector, z∞t is defined

similarly and Z∞ = (z∞1−h, . . . , z∞T−h)
′ is a matrix with T rows and an infinite

number of columns.
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Grouped predictors & MIDAS: Parameter recovery.

We now look at parameter recovery of our procedure (i.e. consistency of the marginal
posterior of θ – coefficients of the approximation of φ).

Definition 1 (Smallest scaled sparse singular value.)
For every s, r > 0, the smallest scaled sparse singular value of dimension (s, r) is
defined as

ϕ̃(s, r) := inf

{
∥Zθ∥2

2

∥Z∥2
o∥θ∥2

2
, 0 ≤ sgr

θ ≤ s and 0 ≤ sθ ≤ r
}
. (11)

• The double sparse eigenvalue condition requires that for every s, r > 0, ∃ a
constant κ > 0 such that ϕ̃(s, r) > κ. Under this assumption:

∥Zθ∥2
2 ≥ κ ∥Z∥2

o ∥θ∥2
2.

• We use the notation ϕ̃0 := ϕ̃(M0s̃gr
0 + sgr

0 ,M1s̃0 + s0) for two positive constants
M0 and M1.
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Grouped predictors & MIDAS: Parameter recovery. (cont.)

Theorem 2
Suppose Assumptions 6.1, 6.2, 6.3 and 6.4 hold. Let ϵ→ 0. Then, for every constant
M3 ≥ 2M + σ2/8 where M is as in Theorem 3 we have:

sup
(φ0,σ

2
0)∈F0(s0,s

gr
0 ;Z)

E0

[
Π

(
θ ∈ Θ; ∥θ − θ0∥2

2 ≥ M3Tϵ2

ϕ̃0∥Z∥2
o

∣∣∣∣∣ y,X
)]

→ 0. (12)

If there exists two constants κℓ, κz > 0 such that ϕ̃(s, r) > κℓ and ∥Z∥o ≤ √
κz
√

T
w.p.a. 1, then

sup
(φ0,σ

2
0)∈F0(s0,s

gr
0 ;Z)

E0

[
Π

(
θ ∈ Θ; ∥θ − θ0∥2

2 ≥ M3ϵ
2

κℓκz

∣∣∣∣ y,X)]→ 0. (13)
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Conclusions

• Optimal forecast of yt, h horizons ahead, based on a set of grouped-predictors to
track economic conditions in real-time.

• We propose a Bayesian approach (assessment of the uncertainty, introduce
stochastic volatility).

• We exploit the group structure and the sparsity, and construct a prior that
induces bi-level sparsity.

• Demonstrate good asymptotic properties for this prior.

• Good performance to nowcast US GDP growth.
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Stochastic Volatility.

Modify the model as follows:

yt =
N∑

j=1

φj(xj,t−h,1, xj,t−h,2, . . .) + eσt/2εt, E[εt|x1,t−h−ℓ, . . . , xN,t−h−ℓ, ℓ ≥ 0] = 0,

σt = µ1 + µ2(σt−1 − µ1) + ut, ut ∼ N (0, ξ2)

with

• µ2 being between −1 and 1 (for stationarity);

• σ0 ∼ N (µ1, ξ
2/(1 − µ2

2));

• εt ∼ N (0, 1) or εt|τt ∼ N (0, τt) with τt ∼ Inv-Gamma
(
ν
2 ,

ν
2

)
(which gives

exp{σt/2}εt|σt ∼ tν(0, exp{σt})).
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Stochastic Volatility. (cont.)

Solve the intractability of the SV’s likelihood function by treating the latent
volatilities as unknown parameters (augmentation).

So, replace the inverse-gamma prior for σ2 with the above AR(1) model and

µ1 ∼ N (µ1,V1)

(µ2 + 1)/2 ∼ Beta(a2, b2)

ξ2 ∼ Gamma(0.5, 0.5/Vξ)

ν ∼ U(0, ν).
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Design of the experiments with SV

We consider the same DGP as above, but we now include SV:

yL
t = 0.5 + 0.3yL

t−1 +

N∑
j=1

px=11∑
i=0

ψ
(

i; θ̃
)

xH
j,t− i/3 + eσt/2εL

t

σt = µ1 + µ2(σt−1 − µ1) + ut, ut ∼ N (0, ξ2)

• µ1 = 2 log(0.5)
• µ2 = 0.90
• ξ =

√
0.05

We employ standard samplers for SV (Omori et al., 2007), but we consider an
interweaving-strategy between centered and non-centered parameterization (Kastner
& Fruhwirth-Schnatter, 2014).
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Simulation results (SV): True Positive Rate

Notes: True Positive Rate = True Positive/(True Positive+False Negative).
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Simulation results (SV): relative RMSFE

Notes: relative RMSFE w.r.t. AR(1)-SV, computed over 50 out-of-sample observations. Error bars denote ±2SE computed through bootstrap.
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Simulation results (SV): relative Log Score

Notes: relative Log Score w.r.t. AR(1)-SV, computed over 50 out-of-sample observations. Error bars denote ±2SE computed through bootstrap.
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The Model.

The next assumption restricts the size of the approximation bias B0,t(g) and
guarantees that it is small relative to the estimation error (similar to Belloni et al.
2014).

Assumption 6.1
Let sgr

0 , s0 be positive integers satisfying sgr
0 ≤ N and sgr

0 ≤ s0 ≤ gsgr
0 . The functions

{φ0,j}j=1,...,N admit the following sparse approximation form: for every
j = 1, . . . ,N,

φ0,j(xj,t−h) = z′j,t−hθ0,j + B0,t,j(g),
N∑

j=1

1{∥θ0,j∥2 > 0} ≤ sgr
0 ,

N∑
j=1

g∑
i=1

1{|θ0,ji| > 0} ≤ s0,
1
T

T∑
t=1

 N∑
j=1

B0,t,j(g)

2

≤ s0

16T
σ2

0 .

For the asymptotic analysis we will let N, g, s0 and sgr
0 to ↗ with T .
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The Model. (cont.)

This together with the Assumption 6.1 allows the size of the approximation model to
grow with the sample size T .

Mogliani and Simoni 8/ 34



Sparse Group Selection with spike-and-slab prior

Assumption 6.2 (Hyperparameters)
Let λmax := max{λ1,j; j ≤ N} and assume that√

T/(∥Z∥o min{log(gsgr
0 ), log(T)}) < C with probability 1 for some C > 0. The

scale parameters λ1,j are allowed to change with T and belong to the range:

max

{
1

|S0,j|
,

√
T

∥Z∥o

}
c ≤ λ1,j ≤ λmax ≤ C min{log(sgr

0 g), log(T)}

for two positive constants 1 < c < C <∞ and where

∥Z∥o := max{∥Zj∥op; 1 ≤ j ≤ N},

where Zj is the (T × g)-submatrix of Z made of all the rows and the columns
corresponding to the indices in the j-th group.
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Sparse Group Selection with spike-and-slab prior (cont.)

Conditional on π0 and {vji}g
i=1, the prior (6)-(7) can be better understood as a mixture

of a degenerate Gaussian process and a Dirac distribution at zero. To see this:

• denote zj,t−h,i := zj,i(xj,t−h);

• let Ω0,j : H → H be a covariance operator:

∀h ∈ H, (Ω0,jh)(·) :=
g∑

i=1

v2
j,i⟨zj,i, h⟩zj,i(·),

where ⟨·, ·⟩ is the inner product in H.

If H is an infinite dimensional space (or it has dimension > g), then Ω0,j is not
injective and has a nontrivial null space that contains Bt,j(g).

Hence, (6)-(7) induce the following conditional mixture prior on the random function
φj: for every j ∈ {1, . . . ,N},

φj|π0, {vj,i}g
i=1, g ∼ (1 − π0)GP(0,Ω0,j) + π0δ0(φj). (14)
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Sparse Group Selection with spike-and-slab prior (cont.)

The induced prior on {θj,i, j = 1, . . . ,N, i = 1, . . . , g} (conditional on π0, π1) is as
follows.

• θj,i = 0 with probability:

Π(θj,i = 0|π0, π1) =

Π(θj,i = 0|j − th group is active, π0, π1)Π(j − th group is active|π0, π1)

+Π(θj,i = 0|j−th group is not active, π0, π1)Π(j−th group is not active|π0, π1)

= π1(1 − π0)(1 − πg
1) + 1(π0 + πg

1 − π0π
g
1),

where Π(j − th group is active|π0, π1) is equal to

Π(∥bj∥2 > 0) Π (∃i ∈ {1, . . . , g}; vji > 0) .
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Sparse Group Selection with spike-and-slab prior (cont.)

• Conditionally on {θj,i ̸= 0}: the Lebesgue density of θj,i is

fθj,i(θj,i|τj) =

∫
R+

1
πτj

1
t
exp

{
−1

2

(
θ2

j,i

tτ 2
j
+ t

)}
︸ ︷︷ ︸
=GIG(t;1,θ2

j,i/τ
2
j ,0)2K0(|θj,i|/τj)

dt =
2
πτj

K0(|θj,i|/τj),

where GIG(t; a, b, p) denotes the pdf of a Generalized Inverse Gaussian
distribution with parameters a, b and p, and K0(·) is the modified Bessel
function of the second kind. We remark that√
π/2e−|θj,i|/τj(|θj,i|/τj+a)−1/2 < K0(|θj,i|/τj) <

√
π/2e−|θj,i|/τj(|θj,i|/τj)

−1/2

for every a ≥ 1/4.

• fθj,i(θj,i|τj) is upper bounded by the density of a Gamma(1/2, τj).

• The induced conditional prior on θj,i is:

θj,i|{group j is active}, π0, π1, τj ∼ (1 − π1)fθj,i(θj,i|τj) + π1δ0(θj,i)

θji|{group j is not active}, π0, π1, τj ∼ δ0(θj,i). (15)
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Example 1: Design of the experiments

We consider the linear model with grouped predictors:

yt = 0.2 + 0.3yt−1 +

N∑
j=1

g∑
p=1

zj,t,pθp,j + εt

zj,t,p = 0.9zj,t−1,p + ϵj,t,p(
εt

ϵt

)
∼ i.i.d. N

[(
0
0

)
,

(
σ2 0
0 Σϵ

)]
,

• Σϵ = SϵRϵSϵ block-diagonal matrix,

▶ Sϵ is a (Ng × Ng) diagonal matrix with elements σϵ,

▶ Rε is a block-diagonal Toeplitz correlation matrix with N blocks – each of size
(g × g) – and featuring diagonal elements equal to one and off-diagonal elements

ρ
|p−p′|
j,ϵ for all p ̸= p′.

• Sgr
0 and S0,j randomly set.
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Example 1: Design of the experiments (cont.)

• |θp,j| = 0.5, for each j ∈ Sgr
0 and p ∈ S0,j, and 0 otherwise.

• The sign of θp,j is a fixed realization of random draws with replacement from
{−1, 1}.

• σ = 0.50 and σϵ fixed such that NSR = 0.2.

• ρj,ϵ = 0.50.
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Ex. 1: Results

Table: Monte Carlo simulations: estimation and selection accuracy

Ng N g sgr
0 MSEθ VARθ BIAS2

θ TPRN TPRg MCCN MCCg

100

5 20 1 0.01 0.00 0.00 99.7 99.8 1.00 1.00
10 10 1 0.00 0.00 0.00 99.7 99.7 1.00 1.00
10 10 5 0.04 0.04 0.00 99.5 99.4 0.99 0.99
20 5 5 0.03 0.03 0.00 99.8 99.7 1.00 0.99
20 5 10 1.90 0.74 1.17 41.6 39.6 0.49 0.54

300

5 60 1 0.01 0.01 0.00 99.5 99.8 1.00 1.00
10 30 1 0.01 0.00 0.00 99.7 100.0 1.00 1.00
10 30 5 0.05 0.05 0.00 98.8 98.8 0.99 0.99
20 15 5 0.06 0.06 0.00 97.9 98.0 0.98 0.98
20 15 10 2.54 0.32 2.22 18.3 16.9 0.29 0.37

Table: T = 200, s0,j = 1, s0 = sgr
0 . MSE, VAR, and BIAS2 denote the Mean Squared Error, the Variance,

and the Squared Bias, respectively. TPR and MCC denote the True Positive Rate and the Matthews
Correlation Coefficient, respectively, computed at the groups level (subscript N) and at the variables level
(subscript g).

• Selection deteriorates only with sgr
0 and/or s0 ↑ while T fixed (consistently with

the theoretical rate).

• BSGS-SS largely outperforms the Sparse Group Lasso.
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Ex. 1: Results - robustness

Table: Monte Carlo simulations: modified DGP

ρj,ϵ = 0.75 ρj,ϵ = 0.75
Rϵ full

ρj,ϵ = 0.75
NSR = 0.5Rϵ full

ϵt ∼ Skew-N
Ng N g sgr

0 TPRN TPRg TPRN TPRg TPRN TPRg TPRN TPRg

100

5 20 1 99.8 99.8 100.0 100.0 100.0 100.0 97.5 98.2
10 10 1 99.8 100.0 99.8 100.0 99.3 99.7 97.5 98.3
10 10 5 99.5 98.7 98.6 97.2 99.2 98.7 70.9 67.2
20 5 5 99.8 99.1 94.9 92.4 95.8 93.7 74.0 73.0
20 5 10 48.9 40.2 51.8 42.3 54.0 41.8 17.4 16.3

300

5 60 1 99.7 99.7 99.7 99.7 99.7 99.8 97.3 98.3
10 30 1 99.7 99.8 99.5 99.7 99.5 99.7 95.0 97.3
10 30 5 98.2 96.7 98.5 97.6 98.1 96.8 53.8 50.3
20 15 5 98.8 98.1 98.7 98.2 98.0 96.7 51.0 49.8
20 15 10 22.9 17.4 24.6 18.6 25.6 19.2 13.0 11.6

Table: See Table 15. The Skew-N is parameterized as in Azzalini & Capitanio (2014), with skew parameter
set at −5.

• Results overall robust to changes in some key calibration parameters.
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Ex. 1: Results - out-of-sample

Table: Monte Carlo simulations: predictive accuracy

BSGS-SS BSGL
Ng N g sgr

0 RMSFE LogS CRPS RMSFE LogS CRPS

100

5 20 1 0.71 0.35 0.71 0.77 0.27 0.77
10 10 1 0.71 0.35 0.71 0.75 0.29 0.75
10 10 5 0.73 0.32 0.73 0.94 0.06 0.95
20 5 5 0.72 0.34 0.72 0.86 0.15 0.87
20 5 10 0.95 0.05 0.95 0.98 0.01 0.99

300

5 60 1 0.71 0.34 0.71 0.87 0.14 0.88
10 30 1 0.71 0.35 0.71 0.82 0.20 0.83
10 30 5 0.74 0.31 0.74 1.11 -0.11 1.12
20 15 5 0.73 0.32 0.73 1.03 -0.03 1.04
20 15 10 1.02 -0.03 1.03 1.07 -0.07 1.08

Table: See Table 15. RMSFE, LogS, and CRPS denote respectively the root mean squared forecast error, the
log-score, and the continuously ranked probability score, in relative terms with respect to the AR(1)
benchmark.
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The Theoretical framework.

• We adopt a frequentist point of view: (φ0, σ
2
0) denotes the true value of (φ, σ2)

that generates the data.

• E0[·] denotes the expectation taken with respect to the true data distribution

NT

(∑N
j=1 φ

(T)
0,j , σ

2
0IT

)
, conditional on (X, φ0, σ

2
0).

• θ0 = true value of the approximation.

• Our asymptotic analysis is for T → ∞. We allow N, sgr
0 , s0 and g → ∞ with T .
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The Theoretical framework. (cont.)

Rate of contraction of the posterior distribution:

ϵ := max

{√
sgr

0 log(N)

T
,

√
s0 log(T)

T
,

√
s0 log(sgr

0 g)
T

}

which is equal to

ϵ := max

{√
sgr

0 log(N)

T
,

√
s0 log(sgr

0 g)
T

}

if log(T) ≤ max{sgr
0 log(N), s0 log(sgr

0 g)}.

If in addition, log(N) ≍ log(N)− log(sgr
0 ) and log(sgr

0 g) ≍ log(sgr
0 g)− log(s0) then

ϵ corresponds to the minimax rate for recovering φ

max

{√
sgr

0 log(N/sgr
0 )

T
,

√
s0 log(sgr

0 g/s0)

T

}
.

given in Cai et al. (2022) and in Li et al. (2022).
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The Theoretical framework. (cont.)

• If N = 1, then sgr
0 = 1, s0 = |S0,1| and ϵ :=

√
|S0,1| log(g)

T︸ ︷︷ ︸
rate for recovery of sparse

vectors over ℓ0-balls

.

• If only 1 element per group (♯ of groups = ♯ of parameters), then g = 1, s0 = sgr
0

and ϵ :=

√
sgr

0 log(N)

T︸ ︷︷ ︸
rate for recovery of sparse

vectors over ℓ0-balls

.

• The required sample size to achieve ϵ→ 0:

T > C max {sgr
0 log(N), s0 log(sgr

0 g)} .

▶ sgr
0 log(N) corresponds to the complexity of capturing sgr

0 non-zero groups,
▶ s0 log(s

gr
0 g) corresponds to the complexity of estimating s non-zero elements of θ in

sgr
0 known groups (estimation over ℓ0-balls).
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The Theoretical framework. (cont.)

Assumption 6.3
For positive and bounded constants σ2, σ2, cg and cθ , suppose that:

(i) 0 < σ2 ≤ σ2
0 ≤ σ2 <∞;

(ii) max{log(N), log(T)} ≤ sgr
0 g;

(iii) maxj∈Sgr
0
maxi∈S0,j |θ0,j,i| ≤ log(sgr

0 g).

Define ∥Z∥o := max{∥Zj∥op; 1 ≤ j ≤ N}, where Zj is the (T × g)-submatrix of Z
made of all the rows and the columns corresponding to the indices in the j-th group.
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The Theoretical framework. (cont.)

Assumption 6.4 (Hyperparameters of the prior for (π0, π1))
∃ constants κ0, κ1 > 0 such that the hyper-parameters c0, d0, c1, d1 of the Beta priors
for π0 and π1 satisfy:

(i) d0+j−1
(c0+N−j) ≤ κ0

j
[Nu0 (N−j+1)] for every log(2)

log(N)
< u0 < sgr

0 and
∀j ∈ {1, . . . ,N} ⊆ N,

(ii) d1+j−1
(c1+Ng−j) ≤ κ1

j
[(Ng)u1 (Ng−j+1)] for every log(2)

log(Ng) < u1 < s0 and
∀j ∈ {1, . . . , g} ⊆ N.

• Assumptions (6.4) (i) and (ii) demand: c0, c1 ↑ together with N, sgr
0 and g and

control their rate.

• To satisfy the assumption, if d0 = cst. and d1 = cst. then, c0 ≳ Nu0 and
c1 ≳ (sg

0g)u1 , for u0, u1 in the range of values given in the assumption and up to
a constant.

• In practice, in finite samples one can choose the constants κ0 and κ1 very small
as long as they are fixed and do not increase with T .
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The Theoretical framework. (cont.)

For positive integers sgr
0 , s0 satisfying sgr

0 ≤ N and sgr
0 ≤ s0 ≤ gsgr

0 , we define

F(s0, sgr
0 ;Z) :={

(φ, σ2); ∥B(g)∥2
2 ≤ s0σ

2

16
, sgr

θ ≤ sgr
0 , sθ ≤ s0, ∥θ∥∞ ≤ log(sgr

0 g), and σ2 ∈ [σ2, σ2]

}
,

where for every vector θ ∈ Θ ⊂ RNg:

• there is an associated group structure - by using the inverse of the Vec(·)
operator we obtain a (g × N) matrix Υ(θ) whose j-th column is equal to
(θg(j−1)+1, . . . , θgj)

′ ∈ Rg;

• the columns of this matrix are the groups in θ;

• Sgr
θ ⊆ {1, 2, . . . ,N} is the set of indices of the active groups in θ (the non-zero

columns of Υ(θ)).

• Sθ ⊆ {1, 2, . . . ,Ng} the set of nonzero elements in θ.

• For given positive integers sgr
0 , s0 satisfying sgr

0 ≤ N and sgr
0 ≤ s0 ≤ gsgr

0 , all
vectors θ ∈ Θ such that |Sgr

θ | ≤ sgr
0 and |Sθ| ≤ s0 are said to be (s0, sgr

0 )-sparse.
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Posterior consistency.

Theorem 3
Suppose Assumptions 6.1, 6.2, 6.3 and 6.4 hold. Let ϵ→ 0. Then, for a sufficiently
large M > 0:

sup
(φ0,σ

2
0)∈F0(s0,s

gr
0 ;Z)

E0

Π
φ;

∥∥∥∥∥∥
N∑

j=1

(
φ

(T)
j (X)− φ

(T)
0,j (X)

)∥∥∥∥∥∥
2

2

≤ MTϵ2

∣∣∣∣∣∣ y,X
→ 0.

(16)

Remarks:

• In the grouped predictors example:∥∥∥∥∥∥
N∑

j=1

(
φ

(T)
j (X)− φ

(T)
0,j (X)

)∥∥∥∥∥∥
2

2

= ∥X(θ − θ0)∥2
2.
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Posterior consistency. (cont.)

• Similarly, in the MIDAS example:∥∥∥∥∥∥
N∑

j=1

(
φ

(T)
j (X)− φ

(T)
0,j (X)

)∥∥∥∥∥∥
2

2

= ∥Z∞(θ∞ − θ∞
0 )∥2

2

with θ∞ = {θj1, θj2, . . .}N
j=1 an infinite dimensional vector, z∞t is defined

similarly and Z∞ = (z∞1−h, . . . , z∞T−h)
′ is a matrix with T rows and an infinite

number of columns.
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Posterior consistency. (cont.)

Sketch of the proof: posterior consistency for the Rényi divergence of order 1
2 ,

d(f0, f ) := − 1
T
log

∫ √
f0f ,

where f0 = NT

(∑N
j=1 φ

(T)
0,j , σ

2
0IT

)
and f = NT(

∑N
j=1 φ

(T)
j , σ2IT).

[1]. f0 belongs to the Kullback-Leibler support of the prior distribution.

Let f g be the Lebesgue density of NT(Zθ, σ2IT).
We show that, for large T:

Π
(
(θ, σ2); K(f0, f g) ≤ Tϵ2,V(f0, f g) ≤ Tϵ2

)
≥ e−C1Tϵ2

. (17)

for a constant C1 = C1(b,Ccd, c, C̄, σ2) > 0 and where, for two probability densities
f1 and f2,

K(f1, f2) :=

∫
f1 log(f1/f2)

and

V(f1, f2) :=

∫
f1(log(f1/f2)− K(f1, f2))

2.
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Posterior consistency. (cont.)

[2]. Let

Θ(̃sgr
0 , s̃0) :=

{
θ ∈ Θ; sgr

θ < M0
Tϵ2

log(N)
and sθ < M1

Tϵ2

log(sgr
0 g)

}
for two positive constants M0, M1.

Lemma 1 (Dimensionality)
Let us consider the prior in (7) and (8) with c0, c1, d0, d1 satisfying Assumption (6.4)
(i) - (ii). Let C1,M0,M1 > 0 be some constants such that
C1 < min {u0(M0 − 1), u1(M1 − 1)} − 3 that do not depend on (θ0, σ

2
0). Then, it

holds that:

sup
θ0∈Θ0,σ

2
0∈[σ2,σ2]

E0Π

(
θ; sg

θ ≥ M0
Tϵ2

log(N)
, sθ ≥ M1

Tϵ2

log(sgr
0 g)

∣∣∣∣ y,Z)

≤ e
−Tϵ2

(
−2C1+min{u0(M0−1),u1(M1−1)}−3

)
+

1
C2

1Tϵ2
.
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Posterior consistency. (cont.)

The support of the posterior can overshoot the true dimension sgr
0 , s0 since

Tϵ2

log(N)
= max

{
sgr

0 ,
s0 log(T)
log(N)

,
s0 log(sgr

0 g)
log(N)

}
and

Tϵ2

log(sgr
0 g)

= max

{
sgr

0 log(N)

log(sgr
0 g)

,
s0 log(T)
log(sgr

0 g)
, s0

}
.
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Posterior consistency. (cont.)

[3]. Define the sieves:

FT(C2) :=

{
(θ, σ2) ∈ Θ(̃sgr

0 , s̃0)× R+; max
1≤j≤N

∥θj∥2 ≤ C2 + 1
c

ξ, T−1 ≤ σ2 ≤ eC2Tϵ2
}
,

(18)
where ξ := (Tϵ2)2 log(sgr

0 g).

Lemma 2 (Testing)
(i) There exists a constant C2 such that for T large:

Π((Θ(̃sgr
0 , s̃0)× R+)\FT(C2)) ≲ exp

{
−Tϵ2C2

}(
2 +

b
a − 1

)
, (19)

and (ii) there exists a test ϕT such that

E0ϕT ≤ e−M2Tϵ2/2, sup
f g∈FT (C2);d(f0,f g)>M1Tϵ2

Ef g(1 − ϕT) ≤ e−M2Tϵ2
(20)

for some M0 that does not depend on (θ0, σ
2
0) and where: d(f0, f ) := − 1

T log
∫ √

f0f
(Rényi divergence of order 1

2 ).
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Grouped predictors & MIDAS: Parameter recovery.

We now look at parameter recovery of our procedure, that is, consistency of the
marginal posterior of θ (coefficients of the approximation of φ).

Definition 2 (Smallest scaled sparse singular value.)
For every s, r > 0, the smallest scaled sparse singular value of dimension (s, r) is
defined as

ϕ̃(s, r) := inf

{
∥Zθ∥2

2

∥Z∥2
o∥θ∥2

2
, 0 ≤ sgr

θ ≤ s and 0 ≤ sθ ≤ r
}
. (21)

• The double sparse eigenvalue condition requires that for every s, r > 0, ∃ a
constant κ > 0 such that ϕ̃(s, r) > κ. Under this assumption:

∥Zθ∥2
2 ≥ κ ∥Z∥2

o ∥θ∥2
2.

• This is the same assumption as in Li et al. (2022). In addition, they assume the
columns of Z are normalized:

∑T
t=1 z2

j,t−h,i =
√

T .
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Grouped predictors & MIDAS: Parameter recovery. (cont.)

• We use the notation ϕ̃0 := ϕ̃(M0s̃gr
0 + sgr

0 ,M1s̃0 + s0) for two positive constants
M0 and M1.

Theorem 4
Suppose Assumptions 6.1, 6.2, 6.3 and 6.4 hold. Let ϵ→ 0. Then, for every constant
M3 ≥ 2M + σ2/8 where M is as in Theorem 3 we have:

sup
(φ0,σ

2
0)∈F0(s0,s

gr
0 ;Z)

E0

[
Π

(
θ ∈ Θ; ∥θ − θ0∥2

2 ≥ M3Tϵ2

ϕ̃0∥Z∥2
o

∣∣∣∣∣ y,X
)]

→ 0. (22)

If there exists two constants κℓ, κz > 0 such that ϕ̃(s, r) > κℓ and ∥Z∥o ≤ √
κz
√

T
w.p.a. 1, then

sup
(φ0,σ

2
0)∈F0(s0,s

gr
0 ;Z)

E0

[
Π

(
θ ∈ Θ; ∥θ − θ0∥2

2 ≥ M3ϵ
2

κℓκz

∣∣∣∣ y,X)]→ 0. (23)
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Grouped predictors & MIDAS: Parameter recovery. (cont.)

Let us consider the assumption ∥Z∥o ≤ √
κz
√

T , where
∥Z∥o := max{∥Zj∥op; 1 ≤ j ≤ N}.

• MIDAS: by using the inequality ∥ · ∥op ≤ ∥ · ∥F

∥Zj∥op ≤
√

T

∥∥∥∥∥ 1
T

T∑
t=1

xj,t−hx′
j,t−h

∥∥∥∥∥
op

∥Φ′Φ∥F,

where Φ′ := (Φ1, . . . ,Φg) is px × g and recall
xj,t−h = (xH

j,t−h, . . . , x
H
j,t−h−px/m)

′.

• Grouped predictors: ∥Zj∥op =
∥∥ 1

T

∑T
t=1 xj,t−hx′

j,t−h

∥∥
op

.

• Nonlinear predictive models:

∥Zj∥op =

∥∥∥∥∥∥∥
T∑

t=1

 ϕj1(xj,t−h)
...

ϕjg(xj,t−h)

 (ϕj1(xj,t−h), . . . , ϕjg(xj,t−h))

∥∥∥∥∥∥∥ = Op(
√

T).
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Out-of-sample.

h steps-ahead forecasts are obtained from the posterior predictive density for
yτ |xτ−h, τ > T:

f (yτ |xτ−h, y,X) =

∫
f0(yτ |φ, σ2, xτ−h)Π(φ, σ2|y,X)dφdσ2 (24)

where

• Draws from the predictive distribution (24) can be obtained directly from the
Gibbs sampler.

• Point and density forecasts are evaluated through standard metrics, such as the
root mean squared forecast error (RMSFE), the log-score (LogS), and the
continuously ranked probability score (CRPS), averaged over Toos = 50
out-of-sample observations.
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Out-of-sample. (cont.)

Evaluate it by using the mean KL-divergence:

Exτ−h KL(f0(yτ |xτ−h, φ0, σ
2
0), f (yτ |τ−h|y,X))

=

∫ ∫
log

(
f0(yτ |xτ−h, φ0, σ

2
0)

f (yτ |xτ−h, y,X)

)
f0(yτ |xτ−h, φ0, σ

2
0)dyP(dxτ−h).

Theorem 5
Suppose Assumptions 6.1, 6.2, 6.3 and 6.4 hold. Let ϵ→ 0. Then,

sup
(φ0,σ

2
0)∈F0(s0,s

gr
0 ;Z)

Exτ−h E0KL(f0(yτ |xτ−h, φ0, σ
2
0), f (yτ |xτ−h, y,X)) → 0. (25)

Extension: Stochastic Volatility
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