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Introduction
Optimal forecast of y,, & horizons ahead, based on a set of predictors
X := (X}, ...,Xy,) to track economic conditions in real-time.

® L arge datasets with predictors organized into V groups (each with a possibly
infinite number of elements, strong covariation, common characteristics).

® The forecasting / nowcasting model we consider is: Vi = 1,...,7T,Vh > 0,

N
Yr = § ‘Pj(xj,tfh,lﬂcj,tfh,b .. -)+5t7 E[&‘Xl,tfhfb coy XN t—h—2£, L> O] =0,
Jj=1

¢y

where:
> j=1,...,Nis the group index,
> j(-) denotes a j-specific unknown function of x; ,_ taking values in R,
> X = {xj,,i}i>1 foreveryj € {1,...,N},

> If x; , contains the lagged values of y;, then Xi , = (yi—1,y—2,...)".

® Unify high-dimensional and nonparametric regression settings.
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Motivating Example 1: MIDAS.

The Mixed Data Sampling (MIDAS) regression model (e.g. Ghysels et al. 2006,
2007) can be written as: Ve = 1,...,T,Vh =0,1/m,2/m, ...

Py N
yzL = Z /3uLMY1L + Z \IJ(LI/’"; Gj)xf,_h + g,L, )
=2

u=1
where W(L'/": 6;) is the high-frequency lag polynomial

Px
WL 6,) = (u; 6,)L"". 3)

u=0

® This model can be cast in model (1) with N groups:

> the first group is @1 (x1,1) = O (Vi—1, - - -, Yi—p,)’ With @1 := (B1,..., Bp,)’,

> the remaining N — 1 groups are given by each high-frequency predictor:
Vi=2,...,N,

‘pj()‘ﬁt—w cee 7x£1t—h—px/m) = ‘I/(Ll/m§ 01')"";,1:711'
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Motivating Example 1: MIDAS. (cont.)

® Possible parameterizations of the weighting function ¥ (u; 6;):

> unrestricted MIDAS (Foroni, Marcellino & Schumacher, 2015): 1 (u; 6;) = 0, j;
> Almon lag polynomials (power polynomials): ¥ (u; ;) = E,C:o 0;,iu';
> more generally, by using orthogonal basis functions {¢;(u)}; on R4 we obtain:
oo
(5 0) =D 0j,ihiu). ©)
i=1
Hence,

@i (Xju—n) = WL/ 0,

Px o0 oo
=D D 0 WXy = D P,
i=1

u=0 i=1
where (ID,' = ((]5,'(0), gi)i(l), ey ¢i(px))/.
® Related literature: Babii et al. (2022, JBES, Grouped Lasso estimator),
Mogliani & Simoni (2021, JoE — without sparsity within groups).

Mogliani and Simoni ~ 4/36



2).

Additional motivating examples encompassed in model (1).

. Nonlinear predictive model fory, : Ve =1,..., T

Z@j(-xj,tfh) + Eiy E[5t|xj,t7hfé7 j = 17 LR 7N7 £ 2 0] - 07

where ;(+) is an unknown function of one covariate. For a set of approximating
functions {¢j1, P2, - . - }»

xjt h Zd)jl Xj,t— h ],l, j€ {1,,N}

Data-poor environment with many lags per each predictor and for y,.

. Grouped predictors in a data-rich environment where each group of covariates

X;,, contains < g elements. By assuming a linear model: Vi =1,...,T,
N
V= Z X]/-,,,hej + &, E[Et|X17,,h,g, e XN —h—t, {> 0] =0 ()

and ¢;(Xj,—1) = X} ,_;0;.
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Contributions.

1) Propose a Bayesian approach to deal with / exploit the sparse group structure:

® we construct a hierarchical prior that:
> induces a bi-level sparsity: some groups and some predictors inside a group can be

irrelevant for forecasting the target variable, conditional on the remaining predictors;

> treats the coefficients of each block independently but, after marginalization,
imposes a correlation among the coefficients in each block

® appealing because:
> it allows assessment of the uncertainty;

> it has a build-in prediction with optimal properties;

> easy to introduce stochastic volatility (to robustify the forecasting accuracy in
volatile periods exhibiting large fluctuations)

2) Establish frequentist asymptotic properties.
3) Gibbs sampler with a one step of Metropolis-Hasting.
4) Monte Carlo exercise to study finite sample properties.

5) Empirical application: nowcast of US GDP with grouped predictors.
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Outline:

@ The Model and the Prior
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The Model.

By assuming &, ~"*4- A/(0, o%) then the sampling model is: Vi > 0

N
W% .0t~ N i (x-n), 07 |

=1

® x,:= (X|,,...,Xy,) is a vector of potentially infinite dimension,
® X := (X_pti,...,Xr—;)" is a matrix with T rows,

® v:=(p1,...,0n)s ¢ € H, Hilbert space.
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The Model. (cont.)

To reduce the dimension of the model, we assume there exist
, .
® avector zj,—p := (Zj,—h1,- - -Z,i—hyg) Of transformations of x; ;_

e and parameters {6;,;};_,

such that for every j € {1,..., N}, the function ;(x;,—5) is well approximated by

thh § Zjt— ht]l_zr he
where g > 1 is a truncation parameter.

We introduce:
e foreveryj=1,...,N,define §; :== (0;1,...,0;,)" € RS,
°0:=(0),...,0y) €O CRY%,
® 7 = (zlly,, . 721/\“), isa (gN x 1) vector,
® andZ := (zi—n,...,Zr—p) is a (T x gN) matrix.
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The Model. (cont.)

Examples:
©® MIDAS:
Px
I m
Gi(Xjun) = WL 0,)f", h—ZZQ,ﬂﬁ W)X} fm
u=0 i=1

8 8
!
~ E 0;,iPiXj—n = E 0;,i%j.1—nis
i=1 i=1

where (D,' = (¢,(O), (23,(1), ey d)i(PX))/’ jt—hyi = CI),{X/',I_/,, and
Zion = (X, Prs - X D)

® Grouped predictors: z;; = X;,;, no approximation.

©® Nonlinear predictive models: we approximate ;(x;,—;) as

!
©j (X,0—n) E Bji (X,—1)0j.i j,r7h9j~

Mogliani and Simoni

10/ 36



The Model. (cont.)

Let (o, 03) be the true value of (i, o) that generates the data.

N

2 2
yt‘xt—hy $o,00 ~ N Z WO,/(Xj,t—h)’ oolr
Jj=1

The approximation bias in the mean is

Bo,(g) := E[yi|{X—n}=1,...7] — Zi_1,60

and Bo(g) := (Bo,1(g),---,Bo,r(g)) is a T-vector.

® In this paper we adopt a Bayesian approach and specify a convenient prior that
is degenerate at zero for the quantity B;(g).
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The Model. (cont.)

Sparsity structure:

We assume bi-level sparsity:

Bi-level sparsity is the feature of the model that guarantees 3 an approximation
N
i _ /
2,100 = Z z;; 1,00,
—

to Zjvzl ©0.j(Xji—n) in (1) with a small number of active groups and of non-zero
coefficients for each active group such that the approximation bias Bo ;(g) is small
relative to the estimation error.
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Sparse Group Selection with spike-and-slab prior

We specify a prior that induces exact sparsity both at the group level and within
groups.

® This prior puts all its mass on the approximation z;_,0 conditional on z,_.

® Forevery groupj = 1,...,N, 0; = V_/l/zbj, b;:= (bj1,...,bjg),
le/2 := diag(vji,...,v) andv; > 0fori=1,...,g.

® We treat the truncation parameter g as deterministic and, under Assumption 6.1,
it might depend on s

® The double spike-and-slab prior is inspired from Xu & Ghosh (2015).
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Sparse Group Selection with spike-and-slab prior (cont.)

Prior distributions inducing bi-level sparsity (hard spike-and-slab): Vj = 1,...,N

Bta/(g)|xt*h7gN607 Vt: 17"'7T7 (6)
bylg, mo " (1= m0)N; (0, L) + modu(by), )
viilm, 7 " (1= m)NT(0,77) + w160 (v, i=1,....,8, (8

where Nt (0, 77) denotes a truncated N (0, 77) distribution truncated below at 0.
Prior on the hyperparameters and model variance:

ind. 1
7~ T (5,/\1./) ;

™y ~ Beta(Co,do),
Ty ~ Beta(cl,dl),
o® ~ IT(a,b).
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Outline:

©® Monte Carlo experiments
Example 1: DGP with grouped predictors
Example 2: DGP with mixed-frequency data
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Outline:

©® Monte Carlo experiments
Example 1: DGP with grouped predictors
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Outline:

© Monte Carlo experiments

Example 2: DGP with mixed-frequency data
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Design of the experiments
We consider the MIDAS model:

N pe=11

yr=0.5403y, + Z Z ) (i; 5) xf,_‘-ﬁ + ek
j=1 i=0
xjf,lt = 093‘%— st ?ﬁr

. i+1\%! ( i+ 1 )“’2‘ T'(6) + 6,)
.9)) = - 9
v (5:6) (ml) per1)  Teore) "

(& )~uan((5) (% = )]

e 7 =200

e N = {50,100}

° & ={5,10}

® ¥, =S5RS., with S diagonal matrix with elements o. and R a Toeplitz

correlation matrix with off-diagonal elements p‘ej 'l for all N
® o = 0.5 and o. fixed such that NSR = 0.2.
® p. =05
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0.6

0.5

Weighting function 1) (i; (7]

DGP 1: Beta(5,15,0)
v — — -DGP 2 Beta(1,10,0)
| ='DGP 3: Beta(1,4,0} |
L DGP 4: Beta(1,1,0)
)
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MIDAS lag polynomials

We estimate the model by approximating the true weighting function through a set of
polynomials:
® ¢ (i;0) = 6;; = linear lag polynomials (Unrestricted MIDAS)
® 9 (i;0) = 375_, bp,i” = algebraic power lag polynomials (Almon, w and w/o
end-point restrictions; Mogliani & Simoni, 2021)
® 1 (i50) =375, 0,9y (i) = &p(i) orthogonal lag polynomials:
> Legendre
> Bernstein
> Chebyshev first-kind (T)

We set g = 5 (=3 for restricted Almon). Orthogonal polynomials are normalized and
shifted over the interval [0,1].

We iterate the Gibbs sampler for 50000 sweeps (+10000 burn-in) and we perform
100 MC simulations.
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Monte Carlo simulations: selection and predictive accuracy

DGP 1 DGP 2 DGP 3 DGP 4
fast-decaying bell-shaped slow-decaying flat

N sg Polynomial TPR  CRPS | TPR CRPS | TPR CRPS | TPR  CRPS
Unrestricted 99.8 0.71 99.8 0.67 98.8 0.74 45.8 0.93

Almon 65.4 0.82 383 0.92 48.3 0.90 85.4 0.81

50 5 Restr. Almon | 98.0 0.70 83.6 0.71 96.2 0.71 93.3 0.81
Legendre 60.3 0.86 92.0 0.72 60.9 0.86 81.1 0.81

Bernstein 98.2 0.73 99.7 0.66 98.4 0.73 57.4 0.89

ChebychevU | 60.3 0.86 95.3 0.71 62.9 0.86 81.9 0.81

Unrestricted 99.6 0.70 99.7 0.68 95.9 0.75 30.5 0.96

Almon 444 0.89 23.7 0.97 31.3 0.95 65.2 0.85

100 5 Restr. Almon | 95.9 0.69 83.4 0.71 94.3 0.71 80.7 0.83
Legendre 40.7 0.92 71.9 0.78 422 0.91 57.1 0.88

Bernstein 91.6 0.74 98.8 0.66 96.4 0.73 37.2 0.94

ChebychevU | 41.7 0.91 80.1 0.76 43.1 0.91 58.8 0.87

Unrestricted 12.6 0.99 15.1 0.98 11.7 0.99 10.2 1.00

Almon 9.5 1.00 9.2 1.00 9.2 1.00 9.5 1.00

100 10 Restr. Almon 51.7 0.86 36.5 0.91 393 0.91 12.7 0.99
Legendre 10.8 0.99 11.2 0.99 10.6 0.99 9.5 1.00

Bernstein 11.8 0.99 17.3 0.98 12.5 0.99 10.2 1.00

Chebychev U 10.8 0.99 11.6 0.99 10.7 0.99 9.5 1.00

Table: TPR and CRPS denote respectively the true positive rate and the continuously ranked probability
score, the latter in relative terms with respect to the AR(1) benchmark.
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Outline:

@ Empirical application
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Empirical application: nowcasting US GDP in a mixed-frequency framework.

Nowcasting exercise of US GDP in the following mixed-frequency framework:
N P
y=a+ ,Byt—l + Z Z ¢(u7 Bj)xj,rfhfu/m + &1,
j=2 u=0

where
® y, = 4001log(Y,/Y,—1) = annualized quarterly growth rate of GDP,

® x,= vector of N = 122 macroeconomic series sampled at monthly frequency
and extracted from the FRED-MD database (McCracken & Ng, 2016).

® The data sample starts in 1980Q1, while the pseudo out-of-sample analysis
spans 2013Q1 to 2022Q4.

® Rolling window of T' = 132 quarterly observations, and s-step-ahead posterior
predictive densities for y- |x,_p, 7 > T are generated from:

FOrelxe—n,y, X) = /fo(yle, o’ xr—n) (e, 0’|y, X)dpda®.  (9)
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Empirical application: nowcasting US GDP in a mixed-frequency framework.
(cont.)

® 3 nowcasting horizons: A = 0, 1/3,2/3 and two lag polynomials: restricted
Almon and the orthonormal Bernstein polynomials.

® We allow for time-varying volatility with heavy tails and occasional outliers in
the regression errors (to account for the Great Moderation, the Great Recession,
and the Covid crisis).

‘We consider two modelling strategies to exploit our bi-level sparsity prior approach:

® First, we estimate the forecasting model on the whole set of 122 indicators. The
total number of parameters is either 244 (restricted Almon) or 732 (Bernstein).

® Alternative strategy: estimating the model on separate groups of indicators,
where the groups are set according to partition of indicators defined in
McCracken & Ng (2016).

> We have a total number of 8 groups (output and income; labour market; housing;
consumption, orders, and inventories; money and credit; interest and exchange rates;
prices; stock market), each one including between 5 and 31 indicators.
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Empirical application: nowcasting US GDP in a mixed-frequency framework.
(cont.)

Summing up, we estimate a large set of alternative specifications, according to:
® the 2 lag polynomials (Almon and Bernstein),

® the 5 volatility process (homoskedastic, SV, SV with Student-¢ shocks, SV with
outliers, SV with Student-7 shocks and outliers),

® and the 2 partition strategies (whole dataset vs 8 groups).

To process this large amounts of results, we combine the set of obtained individual
density forecasts.
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Empirical application: nowcasting US GDP - RESULTS.

[ BSGS-SS [ BSGL
[ h=0 h=1/3  h=2/3 [ h=0 h=1/3 h=2/3
Panel A. RMSFE

Groups - Almon 0.77 0.75 0.74 0.82 0.72 0.75
Groups - Bernstein 0.70 0.62 0.81 0.84 0.74 0.74
Groups - all 0.67 0.71 0.77 091 0.72 0.74
Whole dataset - Almon 0.93 0.82 0.71 0.97 0.75 0.83
Whole dataset - Bernstein 0.69 0.96 0.87 3.00 1.00 0.87
Whole dataset - all 0.69 0.96 0.75 1.20 0.88 0.88
Panel B. LogS
Groups - Almon 10.04 6.16 8.56 9.28 572 6.67
Groups - Bernstein 9.83 12.92 3.63 7.07 2.12 6.65
Groups - all 10.05 10.98 6.25 9.02 10.56 7.56
Whole dataset - Almon 9.56 5.18 8.05 4.22 9.81 6.55
Whole dataset - Bernstein 11.33 6.34 5.95 5.96 -15.46 6.20
Whole dataset - all 12.84 4.03 6.77 734  -12.46 6.27
Panel C. CRPS
Groups - Almon 0.79 0.77 0.75 0.81 0.72 0.78
Groups - Bernstein 0.75 0.67 0.85 0.85 0.77 0.77
Groups - all 0.74 0.71 0.79 0.85 0.72 0.76
Whole dataset - Almon 0.92 0.82 0.74 4.23 3.75 3.86
Whole dataset - Bernstein 0.73 0.92 0.86 6.29 4.34 445
Whole dataset - all 0.72 0.93 0.76 0.98 0.80 0.86

Table: BSGS-SS denotes the proposed bi-level sparsity prior. BSGL denotes the Bayesian Sparse Group
Lasso prior (Xu & Ghosh, 2015). RMSFE, LogS, and CRPS denote respectively the root mean squared
forecast error, the log-score, and the continuously ranked probability score, in relative terms with respect to
the AR(1) benchmark.
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Outline:

@® Theoretical Properties
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The Theoretical framework.

® (9,03, 80) denotes the true value of (¢, o%, 8) that generates the data.

® E,[-] denotes the expectation taken with respect to the true data distribution
conditional on (X, o, o7).

® Our asymptotic analysis is for 7 — oo. We allow N, s5', so and ¢ — oo with T,

6o is (so, s§ )-sparse, where

o 5 =S| <N, Sy :={je{l,...,N};||00,]l> > 0} is the group support
and s is the number of active groups.

o If S5 # @, for every j € S5’ let So,; be the set of the indices of the nonzero
elements in 9.

® So, So := Ujesg" So,j is the support of 6.

® Number of active coefficients: 5o := Zjesgr |So,j] < Ngand [So;| < g.
0
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The Theoretical framework. (cont.)

Rate of contraction of the posterior distribution:
¢~ max \/ 55 log(N) \/ s0 log(T) \/ s0 log(s¢'g)
o T T T

Define ||Z||, := max{||Z;||lop; 1 <j < N}, where Z; is the (T x g)-submatrix of Z
made of all the rows and the columns corresponding to the indices in the j-th group.
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Posterior consistency.

Theorem 1

Suppose Assumptions 6.1, 6.2, 6.3 and 6.4 hold. Let € — 0. Then, for a sufficiently
large M > 0:

2

N
sup Eo |11 | o; Z ( (T> (X)) < MTé|y, X — 0.
(0,03)€Fo (50,55 L) j=1 )

(10)
Remarks:

® In the grouped predictors example:

2

Z ( M (x 4)0(()3) (X)) = [|X(6 — 60)]]3.

2
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Posterior consistency. (cont.)

® Similarly, in the MIDAS example:

N
Z( ™ (x wg?(x)) = 20> - 65°)|13

2

with > = {61, 05, ...}/, an infinite dimensional vector, z;° is defined
similarly and Z*° = (272, ...,z7,)" is a matrix with 7 rows and an infinite
number of columns.
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Grouped predictors & MIDAS: Parameter recovery.

We now look at parameter recovery of our procedure (i.e. consistency of the marginal
posterior of @ — coefficients of the approximation of ).

Definition 1 (Smallest scaled sparse singular value.)

For every s, r > 0, the smallest scaled sparse singular value of dimension (s, r) is
defined as

~ , 70|3 .
o(s,r) ::mf{%,ogsg Ssandogsegr}. an

® The double sparse eigenvalue condition requires that for every s,r > 0, 3 a
constant £ > 0 such that ¢(s, ) > . Under this assumption:

2 2 2
120> = < | Z])5 [|61]2-

® We use the notation ¢ := 25(M0}g’ + 58, MiSo + s0) for two positive constants
M 0 and M 1.
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Grouped predictors & MIDAS: Parameter recovery. (cont.)

Theorem 2
Suppose Assumptions 6.1, 6.2, 6.3 and 6.4 hold. Let ¢ — 0. Then, for every constant
M3 > 2M + G /8 where M is as in Theorem 3 we have:

v, X)} — 0. (12)

If there exists two constants kg, k; > 0 such that g(s, r) > ke and ||Z), < | /eNT
w.p.a. 1, then

MsTé?
BollZ||3

sup Eo
(20,03 EFo (50,55 L)

I <0 € 0;6 — 63 >

M3€2
ReRz

sp Ko {n (e € ;[0 — 6ol >

(20,03)€Fo (50,55 5 o)

y, X)} —~0. (13
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Conclusions

Optimal forecast of y,, h horizons ahead, based on a set of grouped-predictors to
track economic conditions in real-time.

We propose a Bayesian approach (assessment of the uncertainty, introduce
stochastic volatility).

We exploit the group structure and the sparsity, and construct a prior that
induces bi-level sparsity.

Demonstrate good asymptotic properties for this prior.

Good performance to nowcast US GDP growth.
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Modify the model as follows:

N

o= > @@t X, ) ¢”?er, Ele|xi i, ..
=1

o = i+ (o1 — ) + U u ~ N(0,8)

with

® 11, being between —1 and 1 (for stationarity);

® oo NN(ul,fz/(l - H%)ﬁ

Stochastic Volatility.

® & ~N(0,1) or&|m ~ N(0,7) with 7; ~ Inv-Gamma (%, ¥) (which gives

exp{a,/2}€t|0z ~ 1y (07 eXp{Uf}))'

Mogliani and Simoni
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Stochastic Volatility. (cont.)

Solve the intractability of the SV’s likelihood function by treating the latent
volatilities as unknown parameters (augmentation).

So, replace the inverse-gamma prior for o> with the above AR(1) model and
pr ~ N (p, Vi)
(12 4+ 1)/2 ~ Beta(az, b2)

¢ ~ Gamma(0.5,0.5/V¢)
v ~U0,v).
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Design of the experiments with SV

We consider the same DGP as above, but we now include SV:

N pe=11

W=0SH03 DY v (i? 5) A+ e el

j=1 i=0

o=+ pa(o—1 — ) + i, "tNN(ngz)

® 11 =2log(0.5)

® Ly = 0.90
® £ =1+0.05

We employ standard samplers for SV (Omori et al., 2007), but we consider an
interweaving-strategy between centered and non-centered parameterization (Kastner
& Fruhwirth-Schnatter, 2014).
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DGP 1 with SV

Simulation results (SV): True Positive Rate

DGP 2 with SV
100
80
60
40
20
0
N=50 N=100
s=5 s=5
T=200 T=200
DGP 3 with SV DGP 4 with SV

[ RA=Restricted Almon | A=Aimon | L=Legendre | B=Bernstein | CU=Chebyshev U | CT=Chebyshev T

Notes: True Positive Rate = True Positive/(True Positive+False Negative).
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Simulation results (SV): relative RMSFE

DGP 1 with SV DGP 2 with SV

N=50 N=100
s=5 s=5
T=200 T=200 T=200 T=200
DGP 3 with SV DGP 4 with SV

08

06

04

02

FES 0 2 2
2236 & <. 0356 & <. 0356

N=50 N=100 N=50 N=100
=5 s=5 s=5 s=5
=200 T=200 T=200 T=200

[ RA=Restricted Almon | A=Aimon | L=Legendre | B=Bernstein | CU=Chebyshev U | CT=Chebyshev T |

Notes: relative RMSFE w.r.t. AR(1)-SV, computed over 50 out-of-sample observations. Error bars denote +2SE computed through bootstrap.
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Notes: relative Log Score w.r.t. AR(1)-SV, computed over 50 out-of-sample observations. Error bars denote £2SE computed through bootstrap.
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The Model.

The next assumption restricts the size of the approximation bias By (g) and
guarantees that it is small relative to the estimation error (similar to Belloni et al.

2014).

Assumption 6.1
Let s, so be positive integers satisfying s§ < N and s§ < so < gs§". The functions

{©0,j}j=1,....n admit the following sparse approximation form: for every
j=1,...,N,
N
00 (%) = 7400+ Bosi(g), > 1{||B0,]> >0} <,
j=1
2
g 1 T N S0 5
1{[60,i| > 0} < s0, T ; ZIBO’I‘i(g) < 1677
1\ j=

j=1 i=l

For the asymptotic analysis we will let N, g, so and s§ to 7 with T.
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The Model. (cont.)

This together with the Assumption 6.1 allows the size of the approximation model to
grow with the sample size 7'
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Sparse Group Selection with spike-and-slab prior

Assumption 6.2 (Hyperparameters)

Let Amax := max{\j; j < N} and assume that
VT/(||Z, min{log(gs{"),log(T)}) < C with probability 1 for some C > 0. The
scale parameters A\ j are allowed to change with T and belong to the range:

ax {L, ﬁ} ¢ < Ay < Amax < Cmin{log(s{'g), log(T)}
1S01 " 1Z1]o
for two positive constants 1 < ¢ < C < oo and where

I1Zl]o = max{[|Z[lop; 1 <j < N},

where Z; is the (T x g)-submatrix of Z made of all the rows and the columns
corresponding to the indices in the j-th group.
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Sparse Group Selection with spike-and-slab prior (cont.)

Conditional on 7o and {v;i}{_,, the prior (6)-(7) can be better understood as a mixture
of a degenerate Gaussian process and a Dirac distribution at zero. To see this:

® denote zj,1—n,i = j,i(Xj,—n);

® let Qo : H — H be a covariance operator:

8

VheM,  (Qh)() =D viiginh)zil),

i=1
where (-, -) is the inner product in .

If H is an infinite dimensional space (or it has dimension > g), then € is not

injective and has a nontrivial null space that contains By,;(g).

Hence, (6)-(7) induce the following conditional mixture prior on the random function
@j: forevery j € {1,...,N},

@jlmo, {viitizi, & ~ (1 = m0)GP(0, Qo) + modo())- (14)

Mogliani and Simoni
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Sparse Group Selection with spike-and-slab prior (cont.)

The induced prior on {6;;,j =1,...,N,i=1,..., g} (conditional on 7o, ) is as
follows.

® §;; = 0 with probability:

H(Gj‘,,- = 0‘7‘(’07 71'1) =
I1(6;,; = 0|j — th group is active, 7o, 71)II(j — th group is active|mo, 71)
—+1I1(6;,; = 0]j—th group is not active, mo, 71 )II(j—th group is not active|mo, 7)
=m (1 —m)(1 —xf) + 1(mo + 7§ — moms),
where II(j — th group is active|mo, 1) is equal to

(b2 > 0) TL(3i € {1,.... g} > 0).
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Sparse Group Selection with spike-and-slab prior (cont.)

® Conditionally on {6;; # 0}: the Lebesgue density of 6, ; is

fo..(05i175) = Llex ! % +1) pdt = iI( (16;,il/75)
0;,:\Vj,ilTj) = R+7T77t p 3 t7'/-2 _7”?0 il Tj)s

=GIG(1;1,67 /77 ,0)2Ko (16,1 /77)

where GIG(t; a, b, p) denotes the pdf of a Generalized Inverse Gaussian
distribution with parameters a, b and p, and Ko(+) is the modified Bessel
function of the second kind. We remark that

V[ 2e7 10T (16,4 fria) VP < Kol|6,l/7) < v/ /2e 5T, m) 72
for every a > 1/4.
® fo,;(6;.|7;) is upper bounded by the density of a Gamma(1/2, 7;).
® The induced conditional prior on 6;; is:
0;,:[{group j is active}, mo, w1, 77~ (1 —m1)fa;;(6;,:|75) 4+ m160(6,:)

0;i|{ group j is not active}, mo, 1,75~  do(6;,i)- (15)
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Example 1: Design of the experiments

‘We consider the linear model with grouped predictors:

N g
Yi=02403y 14> > Gubpit+a

j=1 p=1

%t = 0.9z—1p + €1p

(2)=men(e) (5 =)

® 3. = SRS block-diagonal matrix,
> Scisa (Ng x Ng) diagonal matrix with elements o,

> R is a block-diagonal Toeplitz correlation matrix with N blocks — each of size
(g x g) — and featuring diagonal elements equal to one and off-diagonal elements

/
pj‘.,p;p | for allp # p'.

® S5 and So,; randomly set.
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Example 1: Design of the experiments (cont.)

|6,.5] = 0.5, for each j € S§ and p € Sy, and 0 otherwise.

The sign of 6, is a fixed realization of random draws with replacement from

{_17 1}'
o = 0.50 and o, fixed such that NSR = 0.2.

* pi.c = 0.50.
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Ex. 1: Results

Table: Monte Carlo simulations: estimation and selection accuracy

Ng [ N ] g [sf [ MSEp, VARy BIAS] TPRy TPR; MCCy MCC,
5 20 1 0.01 0.00 0.00 99.7 99.8 1.00 1.00
10| 10 | 1 0.00 0.00 0.00 99.7 99.7 1.00 1.00
100 | 10 | 10 | 5 0.04 0.04 0.00 99.5 99.4 0.99 0.99
20 | 5 5 0.03 0.03 0.00 99.8 99.7 1.00 0.99
20| 5 | 10 | 1.90 0.74 1.17 41.6 39.6 0.49 0.54
5 160 1 0.01 0.01 0.00 995 99.8 1.00 1.00
10|30 | 1 0.01 0.00 0.00 99.7  100.0 1.00 1.00
300 | 10 | 30 | 5 0.05 0.05 0.00 98.8 98.8 0.99 0.99
20 (15| 5 0.06 0.06 0.00 97.9 98.0 0.98 0.98
20 | 15 | 10 | 254 0.32 222 18.3 16.9 0.29 0.37

Table: T = 200, s9,; = 1,59 = 55 . MSE, VAR, and BIAS? denote the Mean Squared Error, the Variance,

and the Squared Bias, respectively. TPR and MCC denote the True Positive Rate and the Matthews

Correlation Coefficient, respectively, computed at the groups level (subscript N) and at the variables level

(subscript g).

® Selection deteriorates only with 55" and/or sy 1 while T fixed (consistently with

the theoretical rate).

® BSGS-SS largely outperforms the Sparse Group Lasso.

Mogliani and Simoni

15/ 34



Ex. 1: Results - robustness

Table: Monte Carlo simulations: modified DGP

— e = 0.5
pj.e =0.75 pf”lel_fuoliB "R full NSR = 0.5
€ €, ~ Skew-N'

Ne [ N | g [0 [ TPRy PR, | TPRy __ TPR, | TPRw __ TPR, | TPRy _TPR,
520 [ | [ 998 98 | 1000 1000 | 1000 1000 | 975 982
1010 | 1 | %98 1000 | 9.8 1000 | 993 997 | 975 983

100 | 10| 10| 5 | 995 987 | 986 972 | 992 987 | 709 672
20| 5 | 5| 98 991 | 949 924 | 958 937 | 740 730
20| 5 | 10| 489 402 | 518 423 | sS40 418 | 174 163
5 T60 | 1T [ 97 97 | 97 997 | 97 98 | 973 983
10 30| 1 | 97 98 | 995 997 | 995 997 | 950 973

30 | 103 | 5 | 92 967 | 985 976 | 981 968 | 538 503
20| 15| 5 | 988 981 | 987 982 | 980 967 | 510 498
20| 15| 10| 290 174 | 246 186 | 256 192 | 130 116

Table: See Table 15. The Skew-\ is parameterized as in Azzalini & Capitanio (2014), with skew parameter
setat —5.

® Results overall robust to changes in some key calibration parameters.
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Ex. 1: Results - out-of-sample

Table: Monte Carlo simulations: predictive accuracy

BSGS-SS BSGL
Ng | N g [ sg_ [ RMSFE LogS CRPS | RMSFE LogS CRPS
5120 1 0.71 0.35 0.71 0.77 0.27 0.77
10 | 10 1 0.71 0.35 0.71 0.75 0.29 0.75
100 | 10 | 10 | 5 0.73 0.32 0.73 0.94 0.06 0.95
20 | 5 5 0.72 0.34 0.72 0.86 0.15 0.87
20 | 5 10 0.95 0.05 0.95 0.98 0.01 0.99
5 | 60 1 0.71 0.34 0.71 0.87 0.14 0.88

10 | 30 1 0.71 0.35 0.71 0.82 0.20 0.83
300 | 10 | 30 | 5 0.74 0.31 0.74 1.11 -0.11 1.12
20 | 15 5 0.73 0.32 0.73 1.03 -0.03 1.04
20 | 15 | 10 1.02 -0.03 1.03 1.07 -0.07 1.08

Table: See Table 15. RMSFE, LogS, and CRPS denote respectively the root mean squared forecast error, the
log-score, and the continuously ranked probability score, in relative terms with respect to the AR(1)
benchmark.
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The Theoretical framework.

We adopt a frequentist point of view: (o, og) denotes the true value of (¢, o%)
that generates the data.

E[-] denotes the expectation taken with respect to the true data distribution
Nr (Z;\]zl go(()?, O’%IT), conditional on (X, o, o7).

6, = true value of the approximation.

Our asymptotic analysis is for 7 — co. We allow N, 5§, so and g — oo with 7.
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The Theoretical framework. (cont.)

Rate of contraction of the posterior distribution:

¢~ max {\/sﬁr log(N) 7 \/so log(T) 7 \/so log(s8'g) }
T T T

which is equal to

8" gr
¢ = max {\/s0 log(N) 7 \/so log(s§'g) }
T T

if log(T) < max{s log(N), solog(s'g)}.

If in addition, log(N) < log(N) — log(s§') and log(s§ g) =< log(s§ &) — log(so) then

€ corresponds to the minimax rate for recovering ¢

max { \/ 50 10g(TN /s) \/ 50 10g(sT§’g/ s0) } :

given in Cai et al. (2022) and in Li et al. (2022).
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The Theoretical framework. (cont.)

0,1 log(g)

® If N=1,thensy = 1,50 = |So,1] and € := T

rate for recovery of sparse
vectors over £-balls
e If only 1 element per group (# of groups = f of parameters), then g = 1, 5o = s
sg" log(N)
T

and € :=

rate for recovery of sparse
vectors over £(-balls

® The required sample size to achieve € — 0:

T > Cmax {s5 log(N), solog(si'g)} .

> 55" log(N) corresponds to the complexity of capturing 5§ non-zero groups,

() 10g(sg'g) corresponds to the complexity of estimating s non-zero elements of 6 in
s known groups (estimation over £o-balls).
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The Theoretical framework. (cont.)

Assumption 6.3
For positive and bounded constants o*, @7, ¢, and ce, suppose that:

(1) O<Q2§U§§52<oo;
(i) max{log(N),log(T)} < si'g;

(i) max;e g maxies,; [0o,j.i| < log(sg'g)-

Define ||Z||o := max{||Z;||lop; 1 <j < N}, where Z; is the (T x g)-submatrix of Z
made of all the rows and the columns corresponding to the indices in the j-th group.
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The Theoretical framework. (cont.)

Assumption 6.4 (Hyperparameters of the prior for (7o, 7))

3 constants ko, k1 > 0 such that the hyper-parameters co, do, c1,di of the Beta priors
Sfor mo and m, satisfy:

L dgti—1
(i) (L(‘)J+}’\J ) < Ko [N”“(N Y forevery o (<N)) <uy < s§ and

vje{l,...,N}CN,

L dii—1 @)
(ii) (L11+16g = < 1[<Ng)“, (Ng —my; Jor every log(Ng) < uy < soand
vie{l,...,g} €N

® Assumptions (6.4) (i) and (ii) demand: co, ¢; 1 together with N, s§ and g and
control their rate.

* To satlsfy the assumption, if dy = cst. and d; = cst. then, ¢y 2> N* and
c1 2 (s¢g)", for uo, u in the range of values given in the assumption and up to
a constant.

® In practice, in finite samples one can choose the constants ~o and «; very small
as long as they are fixed and do not increase with 7.

Mogliani and Simoni 22/ 34



The Theoretical framework. (cont.)
For positive integers sf , so satisfying s3” < N and s§ < so < gs3', we define

F (50,505 2) =

2
{«o,(#); IB@IE < %556 < 57, 50 < 50, [10]lcc < log(s§s). and o € [gz,aﬂ} :

where for every vector @ € © C R":

e there is an associated group structure - by using the inverse of the Vec(+)
operator we obtain a (g X N) matrix Y (6) whose j-th column is equal to
(Og—1)115-- -, 0g)" € RS

® the columns of this matrix are the groups in 6;

® 59 C {1,2,...,N} is the set of indices of the active groups in @ (the non-zero
columns of Y(0)).
® So C{l1,2,...,Ng} the set of nonzero elements in 6.

e For given positive integers s§ , so satisfying s < N and s§" < 5o < gs} , all
vectors @ € © such that S5 < s¢" and |Sg| < so are said to be (so, 57 )-sparse.
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Posterior consistency.

Theorem 3

Suppose Assumptions 6.1, 6.2, 6.3 and 6.4 hold. Let € — 0. Then, for a sufficiently
large M > 0:

2

N
sup Eo |11 | o; Z ( (T> (X)) < MTé|y, X — 0.
(0,03 EFo (50,58 3 2L) j=1 )

(16)
Remarks:

® In the grouped predictors example:

2

Z ( M (x 4)0(()3) (X)) = [|X(6 — 60)]]3.

2
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Posterior consistency. (cont.)

® Similarly, in the MIDAS example:
2

S ("X - X)|| =z 0> - 6313

i=1
J 2

with 8> = {61, 65, ...}/_, an infinite dimensional vector, z;° is defined
similarly and Z>° = (25°,,...,2z7>,)’ is a matrix with T rows and an infinite
number of columns.
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Posterior consistency. (cont.)

Sketch of the proof: posterior consistency for the Rényi divergence of order %,

d(fo.f) ~=—*log/f,

where fy = N7 (Z;V . WOJ ,UOIT) andf = NT(Z;V . cpj(T), o’Ir).
[1]. fo belongs to the Kullback-Leibler support of the prior distribution.

Let f* be the Lebesgue density of N7(Z6, o°Ir).
We show that, for large T

I ((8,0%); K(foof) < T€,V(fo, ) < ) > =% (17

for a constant C; = C (b, Cea, ¢, C, ) > 0 and where, for two probability densities
f1 andfz,
K(i.f) = [ flog(h /5

and

V(fifo) = / fi(log(fi/fs) — K(fu, f2))°-
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Posterior consistency. (cont.)

[2]. Let

Té Té
O, 50) ;=<0 € ©;55 < My——— and M ———
(55,%0) { € 0555 < “Tog ™) and sp < Hog(:Tg) }

for two positive constants Moy, M.

Lemma 1 (Dimensionality)

Let us consider the prior in (7) and (8) with co, c1, do, di satisfying Assumption (6.4)
(i) - (ii). Let Ci, Mo, My > 0 be some constants such that

Ci < min {uo(Mo — 1), u1 (M — 1)} — 3 that do not depend on (8o, 73). Then, it
holds that:

Té Té
sup E0H<0;S‘ZEM07€,S9 ZMl%‘y,Z>
60€0y,03€ (02,52 log(N) log(sq 8)

—Té? (72C1+min{u0(M071),u1 (M, 71)}73) 1
<e TR
CiTe
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Posterior consistency. (cont.)

The support of the posterior can overshoot the true dimension s, so since

Té o Solog(T) solog(sy g)
= d
log(N) max{“‘“’ log(N) ' log(N) "
Té ax{sgrlog(N) s0log(T) }
log (s 8) log(s§') " log(s5'e) " J
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Posterior consistency. (cont.)

[3]. Define the sieves:

C+1

2
¢, ! < o2 < oCaTe
c

Fr(Cr) == {(9702) € O(57,50) x Ry; max (6], <
ISj<N
(18)

where £ := (Te?)* log(si'g).

Lemma 2 (Testing)
(i) There exists a constant C such that for T large:

(G, 30) x R\Fr(C2)) < exp {—TEZCZ} (2 T %) . (19

and (ii) there exists a test ¢r such that

2 2
Eopr < e M27¢°/2, sup Ex(1 —¢r) < e ™™ (20)
FEEFT(Cr)sd(foof8)>M; T€?

for some My that does not depend on (0, %) and where: d(fy,f) 1= —17 log [ Vfof
(Rényi divergence of order % ).
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Grouped predictors & MIDAS: Parameter recovery.

We now look at parameter recovery of our procedure, that is, consistency of the
marginal posterior of @ (coefficients of the approximation of ).

Definition 2 (Smallest scaled sparse singular value.)

For every s,r > 0, the smallest scaled sparse singular value of dimension (s, r) is
defined as

~ ) 70|3 .
o(s,r) ::mf{%,ogsé gsandOgsegr}. 20

® The double sparse eigenvalue condition requires that for every s,r > 0, 3 a
constant x > 0 such that ¢(s, ) > . Under this assumption:

2 2 2
120> = | Z])5 [|61]2-

® This is the same assumption as in Li et al. (2022). In addition, they assume the
columns of Z are normalized: ZLI Z i =VT.
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Grouped predictors & MIDAS: Parameter recovery. (cont.)

® We use the notation 50 = g(Mo}f;' + 53", M130 + so) for two positive constants
My and M;.

Theorem 4
Suppose Assumptions 6.1, 6.2, 6.3 and 6.4 hold. Let ¢ — 0. Then, for every constant
Mz > 2M + 52/8 where M is as in Theorem 3 we have:

v, X)} —0. (22

If there exists two constants kg, k. > 0 such that ¢(s,r) > k¢ and ||Z||, < \/mN/T
w.p.a. 1, then

M;Té?
Bl Z||3

sup Eo
(20,03)EFo (50,55 s o)

I <9 € ©;]|0 — 6|3 >

M3e2
Kekz

sup Eg [n (e € 0:(0 — 63 >
(20,03 EFo (50,55 L)

yX):| 0.  (23)
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Grouped predictors & MIDAS: Parameter recovery. (cont.)

Let us consider the assumption ||Z||, < \/mz/T, where
I1Z]lo := max{||Z[lop; 1 <j < N}.

® MIDAS: by using the inequality || - |lop < || - ||F

T
1
1Zllop < VT T > %X 2P,

=1 op

where &' := (®4,...,®P,)is p. X g and recall

= '
Xj,i—h = ( jut—hy ot j,t—h—px/m)
* Grouped predictors: ||Zill,, = || 7 > X/,/—hxf,rth(,,,-

® Nonlinear predictive models:

r{ Gn(xe—n)

1Zillop = || : (B3 (K= -+« s Big (Xj,0-1))

=\ i)

O,(VT).
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Out-of-sample.

h steps-ahead forecasts are obtained from the posterior predictive density for
Velxr—p, T > T:

FOr iy, X) = /fo(yTl% o xr—n)1(p, o’ [y, X)dpdo™ (24)
where

® Draws from the predictive distribution (24) can be obtained directly from the
Gibbs sampler.

® Point and density forecasts are evaluated through standard metrics, such as the
root mean squared forecast error (RMSFE), the log-score (LogS), and the
continuously ranked probability score (CRPS), averaged over Toos = 50
out-of-sample observations.
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Out-of-sample. (cont.)

Evaluate it by using the mean KL-divergence:

‘fr /xKL(ﬁ) y"'|x7' /1750070-0 y7—|7— h|y7 ))

log ﬁ) yflxﬂ' h7§0070’0)>f0(y-;-|x7——h,@O,U(z))dyp(dx‘rfh)-
y7’|x7‘ hyYs )
Theorem 5

Suppose Assumptions 6.1, 6.2, 6.3 and 6.4 hold. Let ¢ — 0. Then,

Sup E~\'7-7hE0KL(fO(yT |x"'*h790050—(%)7f(y7|x7'*h7y7 X)) - 0 (25)
(0,03)EFo (50,55 Z)
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