Loose Monetary Policy and Financial Instability

Maximilian Grimm¹ Öscar Jordà² Mortiz Schularick³ Alan M. Taylor⁴

Banco de España 2023

Last updated: November 9, 2023

- 1 University of Bonn
- 2 Federal Reserve Bank of San Francisco; University of California, Davis; and CEPR
- 3 Kiel Institute; Sciences Po Paris; and CEPR
- 4 Columbia University; University of California, Davis; NBER; and CEPR

The views expressed herein do not necessarily represent those of any of the institutions in the Federal Reserve System

INTRODUCTION

Research question

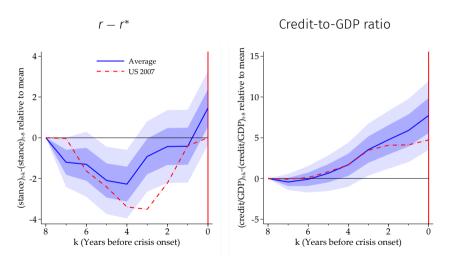
Does a persistently loose stance of monetary policy increase the risk of financial instability?

And if so, why?

Loose stance of monetary policy: $r < r^*$

Motivation

- Loose MP was blamed for the pre-2008 boom-bust... Geithner (2009), Taylor (2011)
- ...and stressed again in the 2010s as a potential source of instability Bernanke (2013), Stein (2013)
- Theory: loose MP incentivizes higher risk taking and leverage ...


 Rajan (2005); Dell'Ariccia et al. (2014); Hanson and Stein (2015); Martinez-Miera and Repullo (2017); Drechsler et al. (2018); Lian et al. (2019); Heider and Leonello (2021); Campbell and Sigalov (2022); Kekre and Lenel (2022)
- ...and increases financial crisis risk Boissay et al. (2022)

Motivation (ctd.)

- Micro-level evidence: loose MP ⇒ higher risk taking of banks...

 Maddaloni and Peydró (2011); Jiménez et al. (2014); Altunbas et al. (2014); Ioannidou et al. (2015); Hanson and Stein (2015); Paligorova and Santos (2017); Dell'Ariccia et al. (2017)
- ...and other financial market participants
 Chodorow-Reich (2014); Hau and Lai (2016); Di Maggio and Kacperczyk (2017); Choi and Kronlund (2018)
- But no empirical study analyzes the link between the stance of MP and macro-level financial stability Boyarchenko et al. (2022)

The stance & credit growth before financial crises

Notes: Shaded areas indicate 95% (light) and 68% (dark) confidence intervals.

Main findings

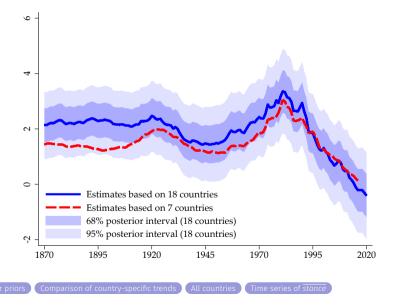
- Loose MP related to medium-term risk of financial instability
- Loose MP related to credit market overheating
- IV estimates uncover causal relationships
 - Unconditional three-year crisis probability: 10.5%
 - Stance of MP 1 pp looser \Rightarrow crisis probability \sim 10 pps higher

CALCULATING THE STANCE OF MONETARY POLICY

Data

- Macrohistory Database: https://www.macrohistory.net/database/ Jordà, Schularick and Taylor (2017)
 - Macro-financial data + banking crisis chronology
 - 18 advanced economies, 1870-2020
- Bank equity crashes & alternative crisis chronologies Baron, Verner, and Xiong (2021); Reinhart and Rogoff (2009)
- The missing element: estimates of r^*

Definition of the stance of monetary policy


■ Natural rate of interest r*: "equilibrium real rate of return in the case of fully flexible prices"

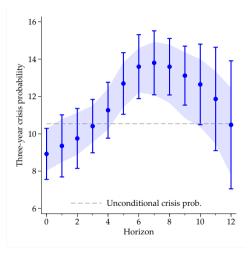
(Woodford 2003, p. 248)

- Monetary policy affects the real economy through nominal rigidities
- \Rightarrow Real rate r below r^* : MP expansionary
- Def. of the stance of MP: $\overline{\text{stance}}_{i,t} \equiv \frac{1}{5} \sum_{k=0}^{4} \left(r_{i,t-k} r_{i,t-k}^* \right)$
- **Identification** of r^* :

Extension of Del Negro, Giannone, Giannoni, Tambalotti (2019)

World trends of the real interest rate

STATISTICAL DESIGN


Econometric model

$$B_{i,t+h} = \alpha_i^h + \beta^h \times \overline{\text{stance}}_{i,t} + \sum_{k=1}^s \delta_k^h b_{i,t-k} + \Gamma^h X_{i,t} + u_{i,t+h}$$

- $B_{i,t}$ = 1 if JST financial crisis in t, t + 1, or t + 2; 0 else
- $\mathbf{b}_{i,t} = 1$: if crisis in year t, 0 else
- \blacksquare $X_{i,t}$: local and global control variables \bigcirc
- Following figures: estimates of $\{-100\beta^h\}_{h=0}^{12}$
 - 95% CIs based on Dricoll-Kraay (1998) SEs with $ceiling(1.5 \times h)$ lags
 - Verification with bootstrap-based CIs Bootstrap procedure

RESULTS

Loose monetary policy predicts financial crises

Notes: The shaded area denotes 95% bootstrap CIs.

Robustness & Extensions

- The role of the horizon
- Crisis windows
- ► The (insignificant) role of the hegemon
- Ending the sample in 2006
- Financial and normal recessions
- Adding time fixed effects
- Alternative financial stability indicators
- Why focusing on the stance of MP?
- Logistic model
- r* based on the Holston, Laubach Williams (2017) approach

INSPECTING THE MECHANISM

Credit market overheating

- Why does excessively loose MP trigger financial instability?
- Important short-term predictors of financial crises:
 - credit booms
 Schularick and Taylor (2012); Jordà, Schularick and Taylor (2016)
 - house price booms Jordà, Schularick and Taylor (2015)
 - and their interaction (*red-zones*)

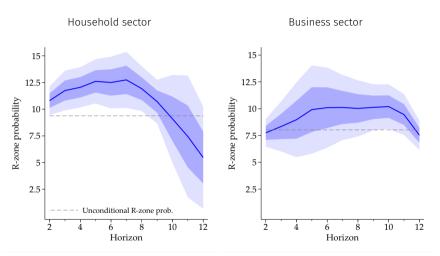
 Jordà, Schularick and Taylor (2015b), Greenwood et al. (2022)
- We go one step back and ask:

Does a loose stance of monetary policy trigger these dynamics?

Predicting Red-zones

Greenwood et al. (2022)

- Same model but modifying the binary outcome variable $B_{i,t}$
- Entering an R-zone in year t:


```
High-Debt-Growth<sub>i,t</sub> = \mathbf{1}\{\Delta_3 (Debt/GDP)_{i,t} > 80^{th} percentile\}
High-Price-Growth<sub>i,t</sub> = \mathbf{1}\{\Delta_3 (\log Price_{i,t}) > 66.7^{th} percentile\}
R-zone<sub>i,t</sub> = High-Debt-Growth<sub>i,t</sub> × High-Price-Growth<sub>i,t</sub>
```

- Household-sector R-zone: household credit and real house prices
- Business-sector R-zone: business credit and real stock prices
- Next slide: for post-WWII period as in Greenwood et al. (2022)

Predicting Red-zones

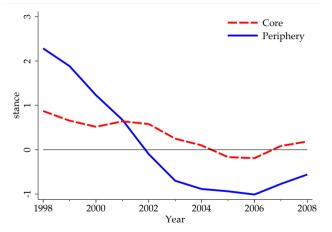
Results

Notes: Shaded areas indicate 95% (light) and 68% (dark) confidence intervals.

Predicting Red-zones

Robustness & Extensions

- Results based on full sample
- Housing finance
- High-Debt-Growth
- High-Price-Growth
- Adding decade fixed effects
- Money growth and inflation
- Logistic model

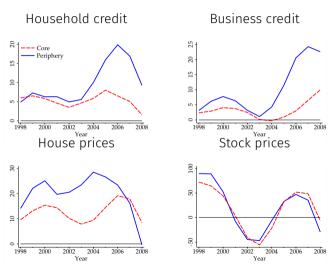

CAUSALITY: THE TRILEMMA IV

Trilemma IV

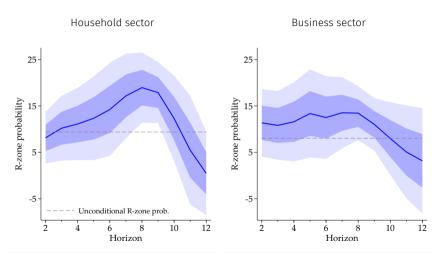
- Idea: series of expansionary shocks ⇒ looser stance of MP
 - → Instrument stance with past MP shocks
- Building on the trilemma of international finance Obstfeld and Taylor (2004); Jordà, Schularick, and Taylor (2020)
- Absence of international arbitrage ⇒ pegging country has to adjust its policy rates in tandem with the base country
- Identification assumption: base country's interest rate decisions do not take economic conditions of the pegging country into account


Construction of the instrument

The stance in the pre-2008 eurozone


Notes: The Figure shows the unweighted average of <u>stance</u> for the <u>core</u> (Belgium, Denmark, France, Germany, Netherlands) and <u>periphery</u> (Ireland, Italy, Portugal, Spain) of the eurozone.

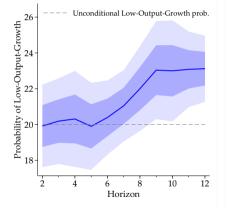
Crisis risk: IV estimates



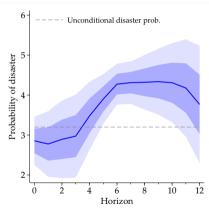
Notes: We re-estimate our baseline model by 2SLS with the same controls as before. The points show IV estimates of $\{10.5-100\beta^h\}_{h=0}^{12}$ overlines indicate 95% CIs of $\{-100\beta^h\}_{h=0}^{12}$ based on country-based cluster-robust SEs.

R-zones: pre-2008 dynamics in the eurozone

R-zones: post-WWII IV estimates


GROWTH-RISK TRADEOFF

Framework


- Loose financial conditions may not be a bad thing per se
- But: short-run boost comes at negative medium-term effects Mian, Sufi, Verner (2017); Adrian et al. (2019, 2022)
- Low-Output-Growth_{i,t} = $1{\Delta_3 (\log Y_{i,t})} < 20^{th}$ percentile}
- Barro and Ursúa (2008) economic disasters: peak-to-trough falls in real GDP p.c. of at least 10%
- New dependent variable: Low-Output-Growth or economic disasters

Results

Barro and Ursúa (2008) disasters

Response of mean growth to a loose stance

CONCLUSION

- First evidence that the stance of MP has implications for the stability of the financial system
- Loose MP has a positive effect on the likelihood of financial crises
- Evidence for credit market overheating as an intermediating channel
- Potential short-run gains vs. adverse medium-term consequences

ADDITIONAL SLIDES

Del Negro et al. (2019)

Notation

- $R_{i,t}$, $R_{i,t}^L$, $\pi_{i,t}$: observed ST nominal rate, LT nominal rate, and inflation for country i
- $lackbr{r}_t^w$, $\overline{\pi}_t^w$, \overline{ts}_t^w : world trends in ST real rate, π , and term spread
- lacktriangleright $\overline{r}_t^i, \overline{\pi}_t^i, \overline{ts}_t^i$: idiosyncratic trends of these variables for country i
- $ightharpoonup ilde{R}_{i,t}, ilde{R}_{i,t}^L, ilde{\pi}_{i,t}$: stationary components of these variables

Del Negro et al. (2019)

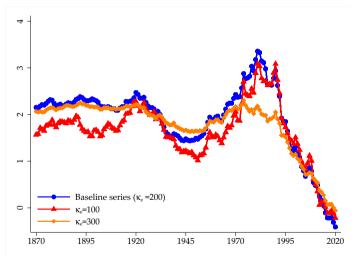
State equation

$$\begin{cases} \overline{y}_t &= \overline{y}_{t-1} + e_t \\ \widetilde{y}_t &= \phi \widetilde{y}_{t-1} + \epsilon_t, \end{cases} \quad \text{with} \begin{bmatrix} e_t \\ \epsilon_t \end{bmatrix} \sim \mathcal{N} \left(\begin{pmatrix} \mathbf{0} \\ \mathbf{0} \end{pmatrix}, \begin{pmatrix} \Sigma_e & \mathbf{0} \\ \mathbf{0} & \Sigma_\epsilon \end{pmatrix} \right)$$

► Back (measurement equation)

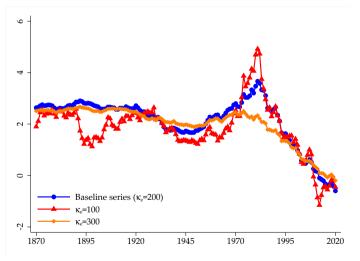
Adjustment of priors

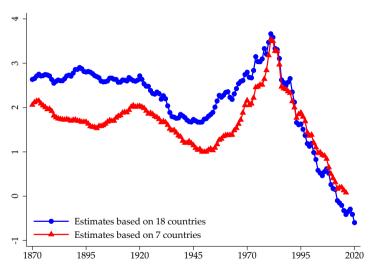
■ State Equation:


$$\begin{cases} \overline{y}_{t} &= \overline{y}_{t-1} + e_{t} \\ \widetilde{y}_{t} &= \phi \widetilde{y}_{t-1} + \epsilon_{t} \end{cases} \text{ with } \begin{bmatrix} e_{t} \\ \epsilon_{t} \end{bmatrix} \sim \mathcal{N} \left(\begin{pmatrix} \mathbf{0} \\ \mathbf{0} \end{pmatrix}, \begin{pmatrix} \Sigma_{e} & \mathbf{0} \\ \mathbf{0} & \Sigma_{\epsilon} \end{pmatrix} \right)$$

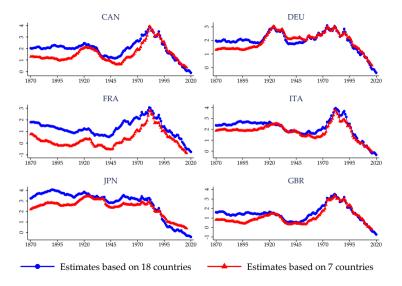
- Prior for Σ_e : Inverse-Wishart distribution
 - $\kappa_e = 100$ 200 degrees of freedom
 - lacksquare Set the diagonal elements of Σ_e to have a mode equal to
 - 0.01 0.007 for interest rate trends
 - 0.02 0.014 for inflation trends

Comparison with looser and tighter priors

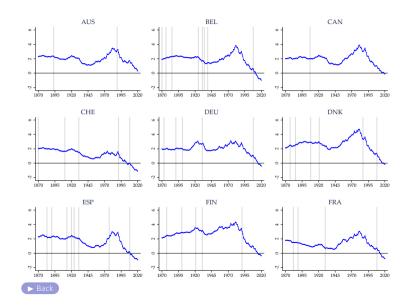

Comparison of world trends


Comparison with looser and tighter priors (ctd.)

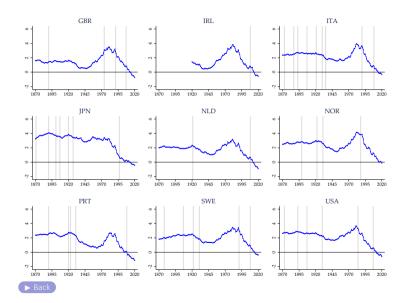
Comparison of US trends

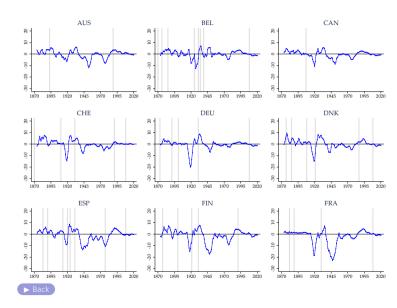


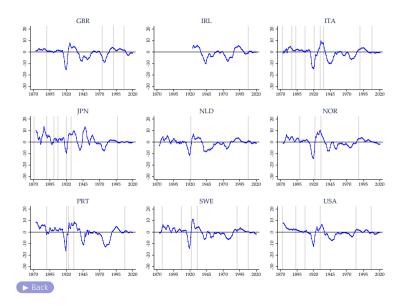
Comparison of r^* for the US



Comparison of r^* for the other 6 countries




*r** over time

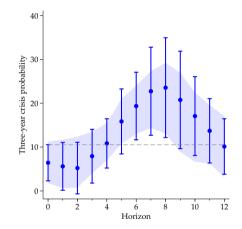

*r** over time (ctd.)

stance over time

stance over time (ctd.)

Control variables

- Annual changes from year t 5 to t of log real GDP p.c., log consumer prices, log ER vis-à-vis USD, investment-to-GDP ratio, credit-to-GDP ratio
- $r_t^* \& R_t^L R_t$
- Global controls: debt-to-GDP ratio, bank capital & non-core funding ratios
 - Unweighted averages across countries
 - Parametrically economical way to control for cross-country factors
- Alternative: time fixed effects
 - Similar results



Bootstrap procedure

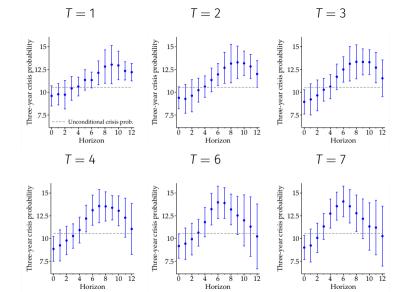
- Two-stage estimation procedure
 - (1) Estimate r^* to create \overline{stance}
 - (2) Use stance as a regressor in the local projections
- Take first-stage uncertainty into account by extending panel moving blocks bootstrap method
 - Gonçalves (2011)
 - Resample contiguous rows of data
 - Block length of 3 years, 1,000 bootstrap samples
 - Extension: creating rows by combining data and a random draw from the 50,000 posterior draws of r*

The lowest quintile of stance predicts crises

Notes: $\overline{stance}_{i,t}$ is replaced by $\mathbf{1}\{\overline{stance}_{i,t} < 20^{th}percentile\}$. Positive estimates indicate a **positive** relation between this dummy and crisis risk.

The role of the horizon

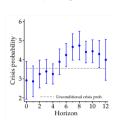
■ Recall:

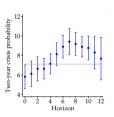

$$B_{i,t+h} = \alpha_i^h + \beta^h \times \overline{stance}_{i,t} + \sum_{k=1}^5 \delta_k^h b_{i,t-k} + \Gamma^h X_{i,t} + u_{i,t+h}$$

■ Modify the window over which we average $(r_{i,t-k} - r_{i,t-k}^*)$:

$$\overline{\text{stance}}_{i,t} \equiv \frac{1}{T} \sum_{k=0}^{T-1} \left(r_{i,t-k} - r_{i,t-k}^* \right)$$

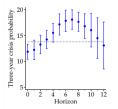
■ Following slide: estimates of $\{-100\beta^h\}_{h=0}^{12}$ for different T

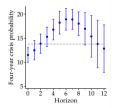




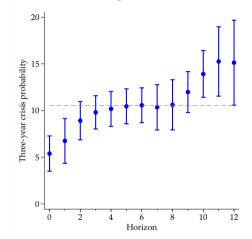
Modifying the crisis window

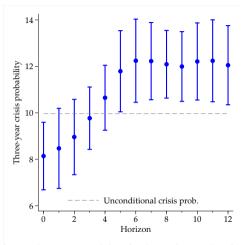
$$F = 0$$



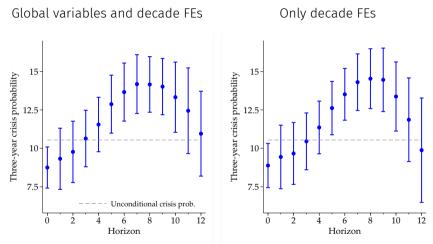


$$F = 3$$

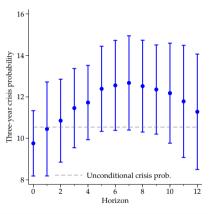

$$F = 4$$


The (insignificant) role of the hegemon

Notes: We estimate the same model as in the main part but replace the independent variable of interest $\overline{stance}_{i,t}$ by $\overline{stance}_{USA,t}$ for all countries.

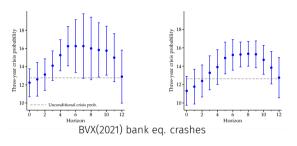

Ending the sample in 2006

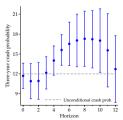
Notes: We estimate the same model as in the main part but ignore the post-2006 period.


Decade FFs

Notes: We estimate the same model as in the main part but add decade FEs (left panel) or replace the global variables with decade FEs (right panel).

Year FEs

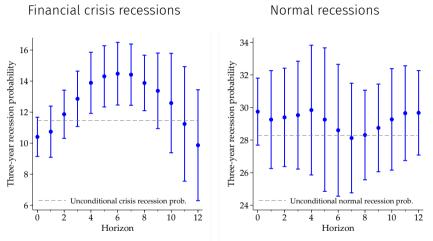

Notes: We estimate the same model as in the main part but replace the global variables with year FEs.



Alternative financial stability indicators

BVX (2021) financial crises

RR (2009) financial crises

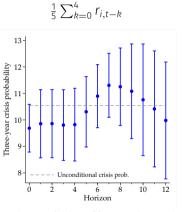


Fin. crisis recessions v. normal recessions

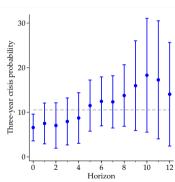
- When monetary policy is loose, the economy is doing well
 - Do we simply pick up expansions and predict recessions?
 - Do our results simply describe a textbook business cycle?
- No, because
 - we control for (local and global) business cycles
 - and cannot predict normal recessions
- Definition of normal recessions: as in Jordà, Schularick, and Taylor (2016)
 - Peaks and troughs dated according to Bry-Boschan algorithm
 - Fin. crisis recession: fin. crisis within ±2-year window of peak
 - Normal recession: no fin. crisis within ±2-year window of peak

Fin. crisis recessions v. normal recessions (ctd.)

Notes: We estimate the same model as in the main part but replace the financial crisis indicator with indicators for financial crisis recessions (left panel) or normal recessions (right panel).

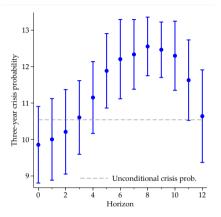

Why focusing on the stance of MP?

- History-dependent reference returns Lian et al. (2019)
- Excess liquidity, "high-pressure economy"
- Investment booms, capital overhang Boissay (2022)
- \blacksquare r^* as the return on long-term fixed interest liabilities
- Misallocation of resources
- lacktriangle Literature often confounds monetary policy with secular trends in r^*



Why focusing on the stance of MP? (ctd.)

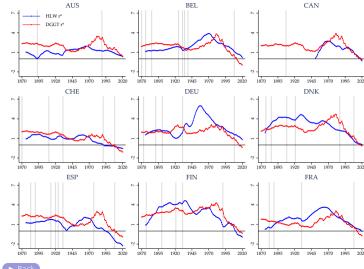
Replacing stance by ex-post real rates


$$1\{\frac{1}{5}\sum_{k=0}^{4}r_{i,t-k}<20^{th}\ pctl\}$$

Notes: The independent variables of interest is now based on ex-post real rates. The Figure shows estimates of $\{-100\beta^h\}_{h=0}^{12}$.

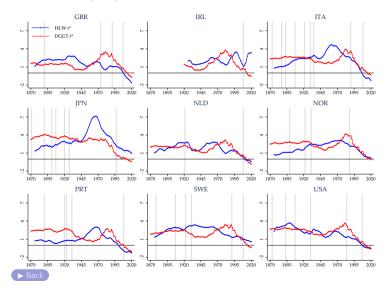
Logistic model

Notes: Point estimates refer to marginal effects of *stance* evaluated at its sample mean. Positive estimates indicate a **positive** relation between a loose stance of monetary policy and crisis risk. Bars indicate 95% CIs based on robust SEs.

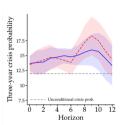

r* based on HLW (2017) approach

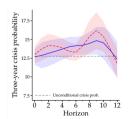
- HLW (2017): r* derived from estimation of PC and ISC
 - Country-by-country estimation
 - US, Canada, EA, UK
 - 1961Q1-2016Q3
- Extension to 18 countries, 1870-2020, necessitates adjustments
 - Estimation in one step
 - lacksquare Grid search for λ_g and λ_z
 - lacktriangle Lower bounds for λ and variances ensure reasonable variation

r^* based on HLW (2017) approach (ctd.)

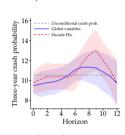

Estimated series

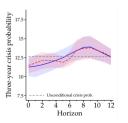
r* based on HLW (2017) approach (ctd.)


Estimated series (ctd.)


r* based on HLW (2017) approach (ctd.)

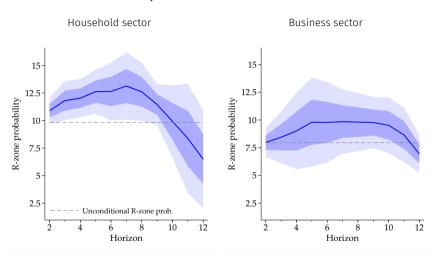
Results


BVX (2021) bank eq.


BVX (2021) fin crises

JST fin crises

RR (2009) fin crises

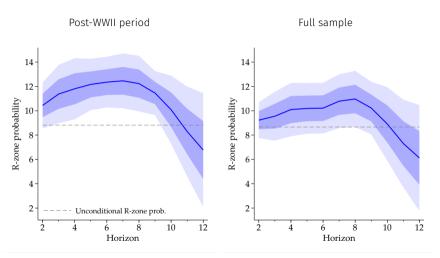


Relevant percentiles

Post-1949 sub-sample	Full sample
6.23	6.12
4.73	4.69
12.84	11.33
22.82	22.22
	6.23 4.73 12.84

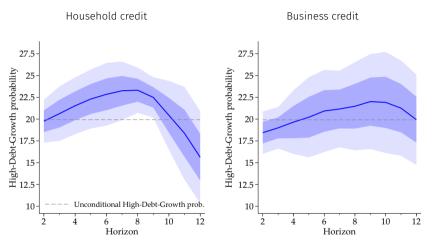
Results based on full sample

Notes: We re-estimate the same model as in the main part for the full-sample period.

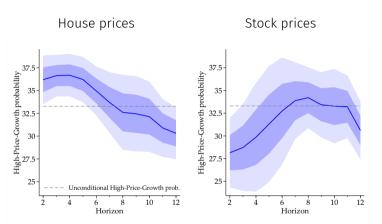


Housing finance

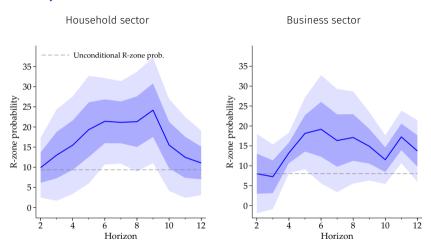
- Constraint: pre-WWII data availability for hh. and bus. credit
- ightharpoonup ~ 400 additional observations for mortgage credit in full sample
- Important role of mortgage sector for financial stability Jordà, Schularick, and Taylor (2015)
- ⇒ Housing-finance R-zone: mortgage credit and real house prices


Housing finance (ctd.)

Notes: We estimate the same model as in the main part but for housing-finance R-zones.

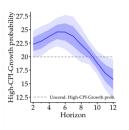

High-Debt-Growth

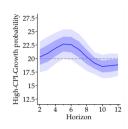
Notes: We estimate the same model as in the main part with the binary outcome variable defined as $High\text{-}Debt\text{-}Growth_{i,t} = 1\{\Delta_3 (Debt/GDP)_{i,t} > 80^{th}percentile\}$. Debt is either household debt or business debt.

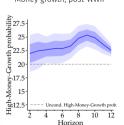

High-Price-Growth

Notes: We estimate the same model as in the main part with the binary outcome variable defined as High-Price-Growth_{i,t} = 1{ Δ_3 (log Price_{i,t}) > 66.7th percentile}. Price refers to either house prices or stock prices.

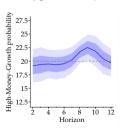
Very loose MP predicts R-zones



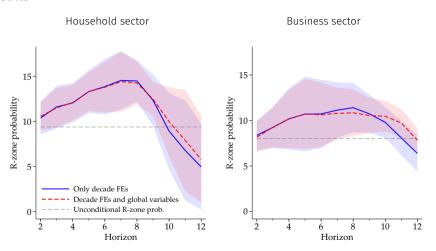

Notes: $\overline{stance}_{i,t}$ is replaced by $1\{\overline{stance}_{i,t} < 20^{th}percentile\}$. Positive estimates indicate a **positive** relation between this dummy and the likelihood of entering an R-zone.


Money growth and inflation, post-WWII

Inflation, full sample



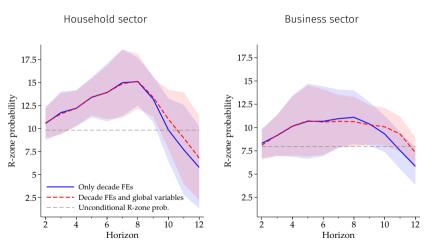
Money growth, post-WWII



Money growth, full sample

Adding decade fixed effects

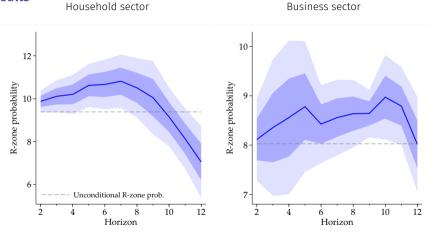
Post-WWII results



Notes: We add decade FEs to the model of the main part, either in place of global variables (blue) or in addition to global variables (red).

Adding decade fixed effects (ctd.)

Full-sample results

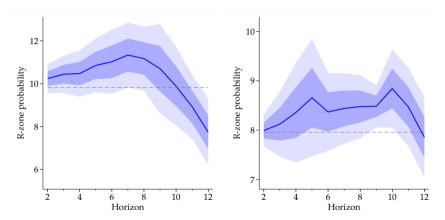


Notes: We add decade FEs to the model of the main part, either in place of global variables (blue) or in addition to global variables (red).

Logistic model

Post-WWII results

Notes: Point estimates refer to marginal effects of stance evaluated at its sample mean. Positive estimates indicate a positive relation between a loose stance of monetary policy and crisis risk. Shaded areas indicate 95% (light) and 68% (dark) CIs based on robust SEs.



Logistic model (ctd.)

Full-sample results

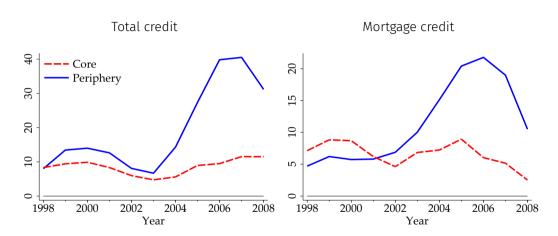
Household sector

Business sector

Notes: Point estimates refer to marginal effects of stance evaluated at its sample mean. Positive estimates indicate a positive relation between a loose stance of monetary policy and crisis risk. Shaded areas indicate 95% (light) and 68% (dark) CIs based on robust SEs.

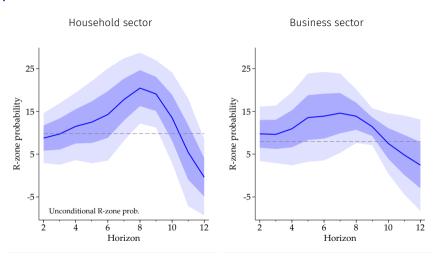
Construction of the instrument

- $\mathbf{k}_{i,t} \in [0,1]$: Quinn et al. (2011) capital mobility indicator (1 if open)
- $q_{i,t} \in \{0,1\}$: exchange rate regime indicator (1 if peg in t & t-1)
- riangle $\Delta r_{b(i,t),t}$: interest rate change in i's base country b in year t
- lacksquare $\Delta \hat{r}_{b(i,t),t}$: predicted changes in $\Delta r_{b(i,t),t}$ according to Taylor rule

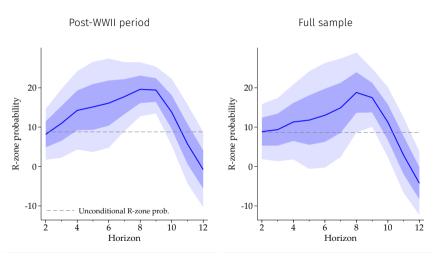


First stage

	Dep. var.: stance _{i,t}
$z_{i,t-1}$	0.063 (0.073)
$z_{i,t-2}$	0.218*** (0.054)
$z_{i,t-3}$	0.263*** (0.052)
$z_{i,t-4}$	0.326*** (0.049)
$z_{i,t-5}$	0.235*** (0.035)
$z_{i,t-6}$	0.180*** (0.042)
$z_{i,t-7}$	0.164*** (0.048)
$z_{i,t-8}$	0.155*** (0.050)
$z_{i,t-9}$	0.111** (0.045)
<i>z</i> _{i,t} _10	0.082* (0.046)
KP weak IV Observations	47.16 1297

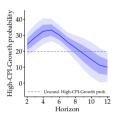


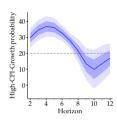
Mortgage credit


Full-sample results

Notes: We re-estimate the same model as in the main part for the full-sample period.

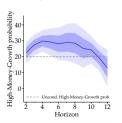
Housing finance

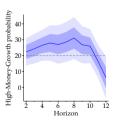

Notes: We estimate the same model as in the main part but for housing-finance R-zones.



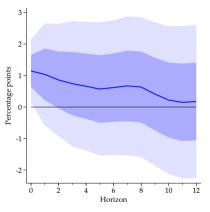
Money growth and inflation

Inflation, post-WWII


Inflation, full sample



Money growth, post-WWII


Money growth, full sample

Notes: We estimate the same model as in the main part but with the outcome variables $1\{\Delta_3(\log CPI) > 80^{th}perc\}$ (top) and

Response of mean growth to a loose stance

Notes: The Figure shows estimates of $\{-\beta^h\}_{h=0}^{12}$ and 95% (light) & 68% (dark) CIs of $y_{t+h} = \beta^h \overline{stance}_{i,t} + \alpha_i^h + \alpha_t^h + \Gamma^h X_{i,t} + u_{i,t+h}$ where y denotes log real GDP p.c.

