Heterogeneous Effects of Monetary Policy across Income and Race: the Labour Mobility Channel

Ester Faia
Goethe University and CEPR

Ekaterina Shabalina
Reserve Bank of Australia
David Wiczer
Atlanta Fed \& IZA

December 2023

The views expressed here are the authors' and do not necessarily reflect those of the Federal Reserve Bank of Atlanta, the Federal Reserve System or the Reserve Bank of Australia.

Research Question

- Heterogeneous impact of monetary policy on wage inequality through heterogenous job flows responses
- Growing literature on monetary transmission to wealth inequality: focus on consumption-saving channel with exogenous income process
- Introduce meaningful wage inequality across occupational islands combined with participation and occupational decisions

Our Paper

- Empirical Evidence: Estimate job flows and wage growth elasticities to monetary shocks along income and demographic distribution
- Theory General equilibrium model with uninsurable risk, participation/occupational decisions to study monetary transmission and match evidence

Uninsurable risk: conditionality of the flows on income

- Occupational choice is introduced through period-by-period dynamic discrete choice optimization: transition probabilities depend on occupational value functions

Empirical Evidence

- Construct a pseudo panel of wages (Mincer) and job flows (separations and findings)
- Estimate impact of high-frequency identified monetary policy shocks Gorodnichenko and Weber 2016 and Bauer and Swanson 2023
- Measure elasticities through panel local projection estimations
- Along the distribution of income and demographics (interacting variable

Key Mechanism: Model

The link between wealth and idiosyncratic risk, through value functions, and transition probabilities:

$$
\begin{equation*}
\theta_{j}\left(o \mid e_{t}, a_{t-1}, b_{t-1}\right)=\frac{\exp \left(\tilde{V}_{j}^{o}\left(e_{t}, a_{t-1}, b_{t-1}\right)\right)}{\sum_{o} \exp \left(\tilde{V}_{j}^{o}\left(e_{t}, a_{t-1}, b_{t-1}\right)\right)} \tag{1}
\end{equation*}
$$

On the reverse, transitions affect wage inequality and in turn precautionary saving decisions

Expanding the equilibrium concept: fixed point between consumption-saving and occupational decision (mean-field games)

Results

- Evidence: separations rise for bottom earners; findings for top earners: wages rise for bottom earners (selection channel)
- Separations rise for black, women and old only conditional on being low income (Chetty and Friedman on role of race)
- The selection channel in the Model: with monetary tightening labour demand declines more in low-wage occupations; in turn bottom earners exit the labour force and reduce transition
- Labour shortage increases wages of bottom earners or minorities
- Reallocation as cost push shock: use model to study monetary trade-offs

Related Literature

- Empirical role of MP for inequality: Coibion et al. 2017, Doepke and Schneider 2006, Amberg et al. 2021, Broer, Kramer, and Mitman 2021
- Merge uninsurable risk with labour market flows: Krusell, Mukoyama, and Şahin 2010
- Occupational decisions with discrete choice models: Rust 1987, Keane and Wolpin 1997
- Link to role of skill for inequality (Dolado, Motyovszki, and Pappa 2021), but we focus on occupational task (Autor, Levy, and Murnane 2003)
- Methodologically: extend sequence-space Jacobian method (see Auclert et al. 2019)

Empirical Analysis

- High-frequency identified monetary policy shocks and construction of pseudo panel
- Local projections with quantile regression to estimate the impact of shocks on job flows and wage growth (monthly) across income percentiles using CPS data
- Econometric specification:

$$
\begin{equation*}
y_{i, t+j}=\beta_{i}+\Gamma_{i, j} x_{i, t}^{\prime} \Delta m_{t} I_{t}+\Theta Z_{i, t}+\epsilon_{i, t+j} \tag{2}
\end{equation*}
$$

Estimated coefficient of separations across ventiles

Separations; Gorodnichenko and Weber Separations; Bauer and Swanson 2023 2016 shocks shocks
Figure: Semi-elasticity of separation rates (transitions from employment to non-employment) for each ventile of the earning distribution. The figure plots the coefficients for each income ventile and its 95% confidence intervals.

Estimated coefficient of findings across ventiles

Findings; Gorodnichenko and Weber 2016 Findings; Bauer and Swanson 2023 shocks shocks

Figure: Semi-elasticity of finding rates (transitions from non-employment to employment) for each ventile of the earning distribution. The figure plots the coefficients for each income ventile and its 95% confidence intervals.

Estimated coefficient of wages across ventiles

Wage Growth; Gorodnichenko and Weber Wage Growth; Bauer and Swanson 2023 2016 shocks shocks
Figure: Semi-elasticity of earnings changes for each ventile of past earnings. Empirical estimates of the impact coefficient of the exogenous monetary policy shock interacted with income ventiles.

Estimated coefficient of wages across ventiles, contractionary shocks

Wage Growth; Gorodnichenko and We- Wage Growth; Bauer and Swanson 2023 ber 2016 shocks shocks

Figure: Semi-elasticity of earnings changes for each ventile of past earnings. Empirical estimates of the impact coefficient of the exogenous monetary policy shock interacted with income ventiles.

Job Flow Across Demographics

- Separations of women, black and older workers go up by more but only conditional on being below median
- Separations respond significantly more for bottom earners and routinary workers also in response to aggregate and sectoral technology shocks

Model Elements

- Households heterogeneous in income shocks, wealth, and skills
- Two-stage decision, fixed point equilibrium:
(1) First stage: occupational choice by comparing value functions: delivers endogenous transition probabilities
(2) Second stage: within occupation consumption-saving decision
- Production sector with nested production function employing shares of all occupation. Monopolistic firms with nominal rigidities
- Monetary policy: operational rules. Fiscal policy: balanced budget

Model: Households

Labor income

$$
\begin{equation*}
\xi_{j, t}^{o}=\left(1-\tau_{t}\right) e_{t} w_{t}^{o} \gamma_{j}^{o} n_{t} \tag{3}
\end{equation*}
$$

Sequence of decisions

$$
\begin{align*}
& V_{j}\left(e_{t}, a_{t-1}, b_{t-1}, \phi_{t}\right)=\max _{o_{t}, c_{t}, a_{t}, b_{t}} u\left(c_{t}, n_{t}^{o}\right)+\phi_{t}^{o}+\beta E_{\phi} E_{e} V_{j}\left(e_{t+1}, a_{t}, b_{t}, \phi_{t+1}\right) \\
& \text { s.t. } \quad c_{t}+a_{t}+b_{t}=\xi_{j, t}^{o}+\left(1+r_{t}^{a}\right) a_{t-1}+\left(1+r_{t}^{b}\right) b_{t-1}-\Phi\left(a_{t}, a_{t-1}\right) \\
& a_{t} \geq 0, \quad b_{t} \geq \underline{b} \tag{4}
\end{align*}
$$

Model: Split of the Households' Problem

Occupation decision

$$
\begin{equation*}
o=\max _{[1, \ldots \ldots, O, O+1]}\left[\tilde{V}_{j}^{o}+\phi_{t}^{o}\right] \tag{5}
\end{equation*}
$$

with optimal probabilities

$$
\begin{equation*}
\theta_{j}\left(o \mid e_{t}, a_{t-1}, b_{t-1}\right)=\frac{\exp \left(\tilde{V}_{j}^{o}\left(e_{t}, a_{t-1}, b_{t-1}\right)\right)}{\sum_{o} \exp \left(\tilde{V}_{j}^{o}\left(e_{t}, a_{t-1}, b_{t-1}\right)\right)} \tag{6}
\end{equation*}
$$

Model: Firm's Problem

- Monopolistic competitive with quadratic adjustment cost on prices and capital
- Output aggregation and production: $y_{t}=z_{t} k_{t-1}^{\nu} L_{t}^{1-\nu}$.

Aggregation of labor across occupations: $L_{t}=\left(\sum_{o=1}^{O} \alpha_{o} l_{o, t}^{\sigma}\right)^{\frac{1}{\sigma}}$.

$>$ Firm FOC prices , \rightarrow Firm FOC capital

Model: Asset Returns and Policies

Return on non-liquid assets

$$
\begin{equation*}
\left(1+r_{t}^{a}\right)=\sum_{s=1}^{S}\left(\frac{v_{t}}{\mathcal{A}_{t}}\right) \frac{d_{t}+v_{t}}{v_{t-1}}+\frac{B^{g}-\mathcal{B}_{t}}{\mathcal{A}_{t}}\left(1+r_{t}\right) \tag{7}
\end{equation*}
$$

Fiscal policy

$$
\begin{equation*}
\tau_{t} \sum_{o=1}^{O} \sum_{s=1}^{S} w_{t}^{o} l_{o, t}=r_{t} B^{g}+G_{t} \tag{8}
\end{equation*}
$$

Monetary policy

$$
\begin{equation*}
i_{t}=r_{t}^{*}+\phi_{\pi} \pi_{t}+\phi_{y}\left(Y_{t}-Y_{s s}\right) \tag{9}
\end{equation*}
$$

Skill-distribution Γ matrix

Occupation clustering with Bonhomme et al. 2020 k-means clustering:

$$
\begin{equation*}
\underset{\mathbf{O}}{\arg \min } \sum_{i=1}^{k} \sum_{\mathbf{h} \in O_{i}}\left\|\mathbf{h}-\mathbf{m}_{i}\right\|^{2} \tag{10}
\end{equation*}
$$

Skill assignment through classical Euclidean distance:

$$
\begin{equation*}
\gamma_{j}^{o}=\sum_{m}^{M} \operatorname{abs}\left|h_{m}^{j}-h_{m}^{o}\right| \tag{11}
\end{equation*}
$$

Occupations:
(1) Manual trade occupations, (2) Management and supervisory occupations, (3) Machine operators, (4) Engineering occupations, (5) Healthcare and community occupations, (6) Personal services, (7) Technical-support occupations, and (8) Office and administrative support.

Analytical Results

Proposition 1. The elasticity of labor income to monetary policy shocks reads as follows:

$$
\begin{align*}
\varepsilon_{\xi_{t}^{o}, r_{t}} & =\underbrace{-\frac{\tau_{t}}{1-\tau_{t}} \varepsilon_{\tau_{t}, r_{t}}+\sigma \varepsilon_{n_{t}, r_{t}}+(1-\sigma) \frac{r_{t}}{r_{t}+\delta}}_{\text {aggregate GE effects }} \\
& +\underbrace{\sigma\left(\sum_{o^{\prime \prime}=1}^{O} \alpha_{o^{\prime \prime}}^{\frac{1}{1-\sigma}} w_{{o^{\prime \prime}, t}_{1-\sigma}^{1-\sigma}}^{\frac{-\sigma}{}} \varepsilon_{w_{o^{\prime \prime}, t}, r_{t}}\right)\left(\sum_{o^{\prime \prime}=1}^{O} \alpha_{o^{\prime \prime}}^{\frac{1}{1-\sigma}} w_{o^{\prime \prime}, t}^{\frac{-\sigma}{1-\sigma}}\right)^{-1}}_{\text {aggregate GE effects }}- \\
& -(1-\sigma) \frac{n_{t}}{l_{o, t}} \sum_{j=1}^{J} m_{j} \gamma_{j}^{o} \int e_{t} \theta_{j}^{o}\left(e_{t}, a_{t-1}, b_{t-1}\right) \cdot \varepsilon_{\theta_{j, t}^{o}, r_{t}} \cdot d D_{j}
\end{align*}
$$

occupation-specific effect

Analytical Results

Proposition 2. The elasticity of the shift probability across occupations for each household j with respect to monetary policy shocks is as follows:

$$
\begin{aligned}
\varepsilon_{\theta_{j, t}^{o}, r_{t}} & =\underbrace{r_{t} u_{c}(\frac{\partial r_{t}^{a}}{\partial r_{t}} a_{t-1}+\underbrace{\frac{\partial r_{t}^{b}}{\partial r_{t}} b_{t-1}-\left(\Phi_{1}^{\prime}+1\right) \frac{\partial a_{t}^{o, *}}{\partial r_{t}}}_{\text {labor hours effect }}-\frac{\partial b_{t}^{o, *}}{\partial r_{t}}+\frac{\partial \xi_{j, t}^{o}}{\partial r_{t}})}_{\text {income effect }}+ \\
& +\underbrace{r_{t} u_{n} \frac{\partial n_{t}}{\partial r_{t}}}_{\text {continuation value effect }}+\underbrace{\beta E_{\phi} E_{e} \frac{\partial V_{j}^{o}\left(e_{t+1}, a_{t}, b_{t}\right)}{\partial r_{t}}}_{\text {㤠 }}-
\end{aligned}
$$

$$
\begin{equation*}
\underbrace{r_{t} \frac{\sum_{o^{\prime \prime}=1}^{O+1} \exp \left(V_{j}^{o^{\prime \prime}}\left(e_{t}, a_{t-1}, b_{t-1}\right)\right) \frac{\partial V_{j}^{o^{\prime \prime}}}{\partial r_{t}}}{\sum_{o^{\prime \prime}=1}^{O+1} \exp \left(V_{j}^{o^{\prime \prime}}\left(e_{t}, a_{t-1}, b_{t-1}\right)\right)}} \tag{13}
\end{equation*}
$$

granularity effect

Monetary policy shock

Figure: Impulse Responses to a Monetary Policy Shock.

Occupations

Figure: Impulse Responses to the Monetary Policy Shock, Occupations.

Model-based Regression: Wages

Regression without top/bottom dummies	Coefficient	T-stat
Intercept	$-0.007^{* * *}$	-237.95
Monetary policy shock	$-0.001^{* * *}$	-3.59
Regression with top/bottom dummies	Coefficient	T-stat
Dummy Bottom 50%	$-0.010^{* * *}$	-10.54
Dummy Top 50%	$-0.003^{* * *}$	6.23
Monetary policy shock * dummy Bottom 50%	$0.012^{* * *}$	4.23
Monetary policy shock * dummy Top 50%	$-0.014^{* * *}$	-8.10

Model-based Regression: Wage Gini and Separations

Regression Wage Gini		
	Coefficient	T-stat
Monetary policy shock	0.1861	1.42
Lag of monetary policy shock	$-2.3596^{* * *}$	-19.73
Lag of dlog(Gini)	$0.9871^{* * *}$	21.39
Second lag of dlog(Gini)	$-0.1980^{* * *}$	-4.23
Regression Separation Rates		
	Coefficient	T-stat
Bottom decile	0.0199	1.56
Top decile	-0.00002	-1.17
Below the median	$0.0592^{* * *}$	5.92
Above the median	$-0.00002^{* * *}$	-4.59

The Role of Job Specialization

Fiqure: Impulse Resnonses to the Monetarv Policv Shock under Different

Role of Job Specialization: Occupations

Figure: Impulse Responses to the Monetary Policy Shock under Different Substitutability of Labor.

The Role of Skill-Transferability

The Role of Skill-Transferability: Occupations

Figure: Impulse Responses to the Monetary Policy Shock under the Baseline and a Lower Variance of the Skill Distribution.

Monetary Policy Trade-offs

Monetary policy trade-offs

Figure: Monetary Policy Frontier depending on Inequality. The figure shows the inflation/output trade-offs for different distributions of skills. Y-axis shows the ratio of the standard deviation of inflation to the standard deviation of output. X -axis shows standard deviations of the Γ matrix. The baseline x -value is 0.11 .

Conclusions

- Role of monetary policy for reallocation and wage inequality
- Monetary policy hits disproportionally more bottom earners
- Extend the Aiyagari 1994-Bewley 1980 to include dynamic participation and occupational choice (see Rust 1987)
- Model: monetary policy is channeled primarily through low-mobility of bottom earners
- Monetary policy is more effective in unequal societies.

Portfolio Adjustment Cost

$$
\begin{equation*}
\Phi\left(a_{t}, a_{t-1}\right)=\frac{\chi_{1}}{\chi_{2}}\left|\frac{a_{t}-\left(1-r_{t}^{a}\right) a_{t-1}}{\left(1+r_{t}^{a}\right) a_{t-1}+\chi_{0}}\right|^{\chi_{2}}\left[\left(1+r_{t}^{a}\right) a_{t-1}+\chi_{0}\right] \tag{14}
\end{equation*}
$$

Occupational Value Function

$$
\begin{align*}
V_{j}^{o}\left(e_{t},\right. & \left.a_{t-1}, b_{t-1}\right)=\max _{c_{t}, a_{t}, b_{t}} u\left(c_{t}, n_{t}\right)+\beta E_{\phi} E_{e} V_{j}\left(e_{t+1}, a_{t}, b_{t}, \phi_{t+1}\right) \\
\text { s.t. } & c_{t}+a_{t}+b_{t}=\xi_{j, t}^{o}+\left(1+r_{t}^{a}\right) a_{t-1}+\left(1+r_{t}^{b}\right) b_{t-1}-\Phi\left(a_{t}, a_{t-1}\right) \\
& a_{t} \geq 0, \quad b_{t} \geq \underline{b} \tag{15}
\end{align*}
$$

Model: Firm's Problem

Output aggregation and production: $y_{t}=z_{t} k_{t-1}^{\nu} L_{t}^{1-\nu}$.
Aggregation of labor across occupations: $L_{t}=\left(\sum_{o=1}^{O} \alpha_{o} l_{o, t}^{\sigma}\right)^{\frac{1}{\sigma}}$.
$J_{t}\left(k_{t-1}\right)=\max _{p_{t}, k_{t}, I_{t}, l_{o, t}}\left\{\frac{p_{t}}{p_{t}} y_{t}-\sum_{o=1}^{O} w_{t}^{o} l_{o, t}-I_{t}-\frac{1}{2 \varkappa \varepsilon_{I}}\left(\frac{k_{t}-k_{t-1}}{k_{t-1}}\right)^{2} k_{t-1}\right.$
$\left.-\frac{\eta}{2 \kappa} \ln \left(1+\pi_{t}\right)^{2} Y_{t}+\frac{J_{t+1}\left(k_{t}\right)}{1+r_{t+1}}\right\}$
$p_{t}=\left(\frac{Y_{t}}{y_{t}}\right)^{\frac{1}{\eta}} p_{t}$
$y_{t}=z_{t} k_{t-1}^{\nu} L_{t}^{1-\nu}$

Model: Firms' First order conditions

Labor demand

$$
\begin{equation*}
l_{o, t}=\left(\frac{p_{t}(1-\nu) \alpha_{o}}{\mu_{p} p_{t} w_{t}^{o}}\right)^{\frac{1}{1-\sigma}}\left(z_{t} k_{t-1}^{\nu}\right)^{\frac{\sigma}{(1-\nu)(1-\sigma)}} y_{t}^{\frac{\sigma-1+\nu}{(1-\nu)(\sigma-1)}}, \tag{20}
\end{equation*}
$$

Phillips curve

$$
\begin{equation*}
\log \left(1+\pi_{t}\right)=\kappa\left(\frac{p_{t}}{p_{t}}\right)^{-\eta}\left(m c_{t}-\frac{1}{\mu_{p}} \frac{p_{t}}{p_{t}}\right)+\frac{Y_{t+1}}{Y_{t}} \log \left(1+\pi_{t+1}\right) \frac{1}{1+r_{t+1}} \tag{21}
\end{equation*}
$$

Model: Firms' First order conditions

Demand for capital

$$
\begin{aligned}
\left(1+r_{t+1}\right) q_{t} & =\nu z_{t+1}\left(\frac{L_{t+1}}{k_{t}}\right)^{1-\nu} m c_{t+1}- \\
& -\left[\frac{k_{t+1}}{k_{t}}-(1-\delta)+\frac{1}{2 \varkappa \varepsilon_{I}}\left(\frac{k_{t+1}-k_{t}}{k_{t}}\right)^{2}\right]+\frac{k_{t+1}}{k_{t}} q_{t+1}
\end{aligned}
$$

The shadow price of capital

$$
\begin{equation*}
q_{t}=1+\frac{1}{\varkappa \varepsilon_{I}}\left(\frac{k_{t}-k_{t-1}}{k_{t-1}}\right) \tag{23}
\end{equation*}
$$

Model: Households' aggregates

The choice of hours worked

$$
\begin{equation*}
\varphi n_{t}^{\rho}=\sum_{o=1}^{O} \sum_{j=1}^{J} m_{j} \int u_{c}\left(e_{t}, a_{t-1}, b_{t-1}, o_{t}\right) \theta_{j}\left(o \mid e_{t}, a_{t-1}, b_{t-1}\right) \frac{\partial \xi_{j, t}^{o}}{\partial n_{t}^{o}} d D_{j} \tag{24}
\end{equation*}
$$

Effective hours supplied

$$
\begin{equation*}
L_{t}^{o, S u p p l y}=n_{t}^{o} \zeta_{t}^{o} \sum_{j=1}^{J} m_{j} \gamma_{j}^{o} \int e_{t} \theta_{j}\left(o \mid e_{t}, a_{t-1}, b_{t-1}\right) d D_{j}\left(e_{t}, a_{t-1}, b_{t-1}\right) \tag{25}
\end{equation*}
$$

Assets and Consumption

$$
\mathcal{A}_{t}\left(r_{i}^{a}, r_{i}^{b}, \tau_{i}, N_{i}\right)=\sum_{j=1}^{J} m_{j} \sum_{o=1}^{O+1}\left(\int a_{j}^{o}\left(e_{t}, a_{t-1}, b_{t-1}\right) \theta_{j}\left(o \mid e_{t}, a_{t-1}, b_{t-1}\right) d D_{j}\right)
$$

Distribution Graphs

Figure: The figure shows the distribution of total wealth, liquid/non-liquid assets or wages. X-axis represents wealth/wage values and Y-axis represents probability densities.

Income and Asset Distributions, Model's steady state and Data.

Table: Data on income, liquid and non-liquid assets are from the Survey of Consumer Finance, averages over 1989-2019.
StatisticsDataModelWealth distributionMean Liquid Assets/GDP0.260.26
Median Illiquid/GDP 2.92 3.80
Gini coefficients
Income 0.52 0.39
Liquid assets 0.98 0.71
Illiquid assets 0.81 0.50
Income/Liquid Assets, by Occupation
Managers and Professionals 1.80 1.48
Technical, Sales and Services 2.74 2.74 3.92 3.92

Income and Asset Distributions, Model's steady state and Data.

Table: Data on income, liquid and non-liquid assets are from the Survey of Consumer Finance, averages over 1989-2019.

Statistics	Data	Model
Shares of liquid assets per income percentile		
less than 20th percent.	0.05	0.04
20th-40th percent.	0.10	0.13
40th-60th percent.	0.08	0.12
60th-80th percent.	0.13	0.21
80th-100th percent.	0.63	0.39
Shares of illiquid assets per income percentile		
less than 20th percent.	0.07	0.06
20th-40th percent.	0.09	0.07
40th-60th percent.	0.11	0.15
60th-80th percent.	0.15	0.29
80th-100th percent.	0.57	0.28

Calibration: Other Parameters

Table: Parameter Values, Description and Source

Parameter

Skills and Occupations
O
J
m_{j}
Γ
Final Composite Good
S
P_{t}

Production Function
σ_{s}
ν_{s}
w^{o}
δ
I

Description

Number of occupations
Number of skill types
Distribution of skill types
Skill transferability matrix
Number of sectors
Aggregate Price

Elasticity of substitution between occupations
Capital share
steady state wage per efficiency unit in occupa-
tion o
Capital depreciation
Capital adj. parameter

Value and source

8, clustered by k-means
8, clustered from O^{*} NET
$1 / J$ (uniform across J)
See Section ??
1 (2 in ??)
Normalized to 1 in the steady state.
0.2 (baseline)
0.4, KLEMS, Section ??

OES-BLS, see Section ??
0.02, Straub

4, Straub

Calibration: Other Parameters

Table: Parameter Values, Description and Source

Parameter Households	Description
β	Time discount factor
χ_{0}	Portfolio adj. cost pivot
χ_{1}	Portfolio adj. cost scale
χ_{2}	Portfolio adj. cost curvature
σ	EIS
ρ	Inverse Frisch elasticity
ρ_{z}	Autocorrelation of earnings
σ_{z}	Cross-sectional std of log earnings
h_{t}	Flow value of non-employment
φ	Dis-utility parameter

Value and source
0.979 , see Section ??
0.25 , Straub
6.19 (target $\mathcal{B}_{h}=1.04 Y$, Straub)
2, Straub
0.5 Straub

1 Straub
0.966 , Straub
0.92, Straub
47% of average income, see Section ?? Straub
1.71 (target $n=1$)

Calibration: Other Parameters

Table: Parameter Values, Description and Source

Parameter
Asset Markets

r	Real interest rate	0.0125, Straub
ψ	Liquidity premium	0.005, Straub
μ_{p}	steady state markup	1.015, Straub
Monetary and Fiscal Policy		
ϕ	Coefficient on inflation in Taylor rule	1.5, Straub
ϕ_{y}	Coefficient on output gap in Taylor rule	0, Straub
τ	Tax rate	0.401, Straub
\mathcal{B}_{g}	Bond supply	2.8, Straub
κ	Slope of the Phillips curve	0.1, Straub

Value and source

0.0125, Straub
0.005 , Straub
1.015, Straub
1.5, Straub
0, Straub
0.401, Straub
0.1, Straub

