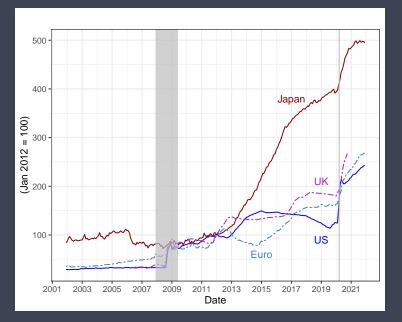
BS Policy Above the ELB by A. Vissing-Jorgensen

Bank of Spain, 2023

by S. Bigio on November 23, 2023

> Large Balance Sheets



> Motivation

 $\ast\,$ What is the optimal size of CB balance sheets?

> Motivation

* What is the optimal size of CB balance sheets?

- * Classic answer: Friedman rule
 - \ast very large balance sheet
 - * satiate banks with reserves
 - \ast use IOR to control policy

> Motivation

* What is the optimal size of CB balance sheets?

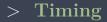
- * Classic answer: Friedman rule
 - \ast very large balance sheet
 - * satiate banks with reserves
 - \ast use IOR to control policy
- * V-J paper
 - * estimate reserve/bond demand elasticities
 - \ast recommend optimal balance sheet size

> Discussion

- * variant of model
- * comment: QE needs seigniorage/fiscal support
- * comment: interference with traditional channel
- * comment: objective function unclear with two assets, costs
- * comments on the empirics:
 - * tighter estimation

Model Discussion

- * Bank Block Frictionless
- * Exogenous Liquidity Demand
- * Endogenous Liquidity Demand
- * Bonds



* two-period: t = 0, 1

> Timing

- * two-period: t = 0, 1
- * focus on static t = 0 effects
 - * inflation expectations are anchored
 - * set to meet target

> Notation

- * *i* nominal rates (between t = 0 and t = 1)
- * R real rates:

> Notation

- * *i* nominal rates (between t = 0 and t = 1)
- * R real rates:

$$R^{\mathsf{x}} = \frac{1+i^{\mathsf{x}}}{1+\pi}$$

- * Quantities:
 - * lower-case: real
 - * upper case: nominal

> Non Banking: Asset Demand System

* foundations

- \ast loan demand: working capital loans
- * deposit supply: DIA + quasi-linear good

> Non Banking: Asset Demand System

* foundations

- \ast loan demand: working capital loans
- * deposit supply: DIA + quasi-linear good

Demand System
Deposit supply:

$$d = (R_{t+1}^{d})^{e^{\theta}}$$
Loan demand:

$$\ell = \Theta (R_{t+1}^{\ell})^{e^{\theta}}$$

> Central Bank

* Standard Instrument (fixed):

$$i^m \to R^m \equiv \frac{1+i^m}{1+\pi}$$

- * Central Bank Balance sheet
 - * private sector loans (Euro)
 - * bonds (US)
 - * reserves
- * Income statement
 - * T^h transfers to households
 - * discount-window loans
 - * purchase loans with M

Model Discussion

- * Bank Block Frictionless
- * Exogenous Liquidity Demand
- * Endogenous Liquidity Demand
- * Bonds

> Bank's Problem | No Frictions

* Euro model

* Bank maximizes:

$$\max_{\{\ell,m,d\}\geq 0} \underbrace{\mathcal{R}^{\ell}\ell + \mathcal{R}^{m}m - \mathcal{R}^{d}d}_{\{\text{Portfolio Returns}\}}$$

budget:

$$\ell + m = d$$

> Bank's Problem w|o Frictions

* No frictions | no arbitrage

Return Parity

 $R^{\ell}=R^{m}=R^{d}.$

Model Discussion

- * Bank Block Frictionless
- * Exogenous Liquidity Demand
- * Endogenous Liquidity Demand
- * Bonds

Bank's Problem | Settlement Frictions

Portfolio Return:

 $\underbrace{R^{\ell}\ell}_{} + \underbrace{R^{m}m - R^{d}d}_{} + \underbrace{\mathbb{E}\left[\chi(s|\theta)\right]}_{}$

> Bank's Problem | Settlement Frictions

* Portfolio Return:

* Balance at central bank:

 $s = m - \delta d$

or

s = m

* χ : liquidity risk

$> \chi$ encodes interbank market

* χ capture settlement costs:

$$\chi(s) = egin{cases} \chi^- \cdot s & ext{if } s \leq 0 \ \ \chi^+ \cdot s & ext{if } s > 0 \end{cases}$$

> Consequences

* Liquidity service and risk:

$$\mathcal{R}^{\ell} = \mathcal{R}^{m} + \frac{1}{2} \underbrace{\left[\chi^{+} + \chi^{-} \right]}_{\mathcal{L}} = \mathcal{R}^{d} + \underbrace{\frac{\delta}{2} \chi^{-}}_{\mathcal{S}}$$

Liquidity Premia (convenience yield)

 $R^{\ell} > R^{d} > R^{m}$

* Exogenous spread $\mathbf{v} \equiv \mathcal{L} - \mathcal{S}$ * no QE

Model Discussion

- * Bank Block Frictionless
- * Exogenous Liquidity Demand
- * Endogenous Liquidity Demand
- * Bonds

$> \chi$ encodes interbank market

* Recall:

$$\chi(\mathbf{s}; \boldsymbol{\theta}) = egin{cases} \chi^- \cdot \mathbf{s} & ext{if } \mathbf{s} \leq 0 \ \ \chi^+ \cdot \mathbf{s} & ext{if } \mathbf{s} > 0 \end{cases}$$

$> \chi$ encodes interbank market

* Recall:

$$\chi(\mathbf{s}; \boldsymbol{\theta}) = egin{cases} \chi^- \cdot \mathbf{s} & ext{if } \mathbf{s} \leq 0 \ \ \chi^+ \cdot \mathbf{s} & ext{if } \mathbf{s} > 0 \end{cases}$$

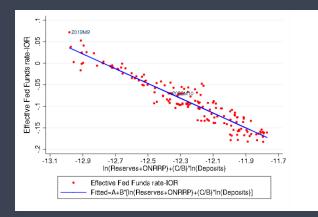
* Tightness (interbank)

$$m{ heta} = \underbrace{-rac{m/d-\delta}{m/d}}_{ ext{surplus}}$$

* $\chi(\mathbf{s}; \boldsymbol{\theta})$ related to tightness

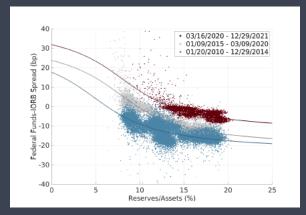
- * $\bar{R}(\theta)$ endogenous interbank rate
- * $\psi^{-}(\theta)$ discount-window access

> Data Counterparts



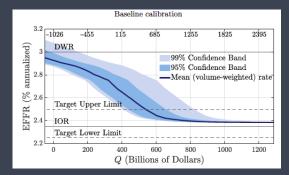
Lopez-Salido Vissing-Jorgensen (2023)

> Data Counterparts



Afonso, Gianone, LaSpada, Williams (2023

> Data Counterparts



Lagos Navarro (2023)

> Consequences

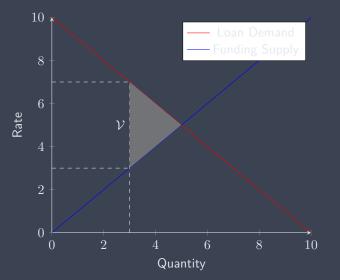
* Rates now depend on liquidity service and risk:

$$R^{\ell} = R^{m} + \frac{1}{2} \underbrace{\left[\chi^{+}\left(\theta\right) + \chi^{-}\left(\theta\right)\right]}_{\Sigma\left(M/P,d\right)} = R^{d} + \frac{\delta}{2} \underbrace{\chi^{-}\left(\theta\right)}_{\Sigma\left(M/P,d\right)}$$

Recall:

 $R^{\ell} - R^{d} = \mathcal{V}(M/P, d)$

> Non Banking: Asset Demand System



> Harberger Triangle

* Why?

$$W(\ell, d) = U(\ell) + V(d)$$

* Then:

$$\Delta \equiv \textit{W}(\ell^{\star},\textit{d}^{\star}) - \textit{W}(\ell,\textit{d}) = \int_{\mu_{0}}^{\mu^{\star}} \textit{U}'\left(\ell\left(\textit{m}
ight)
ight) + \textit{V}'\left(\textit{d}\left(\mu
ight)
ight) \textit{d}\mu$$

Equilibrium conditions:

$$U'(\ell) = R^{b} - R^{m} \quad V'(d) = R^{d} - R^{m}$$

* Then, we have:

$$\Delta \approx -\frac{1}{2} \left(\underbrace{\mathcal{L}\left(\textit{M}/\textit{P},\textit{d}\right)}_{\text{spread}} \left(\ell^{\star}-\ell\right) + \underbrace{\mathcal{S}\left(\textit{M}/\textit{P},\textit{d}\right)}_{\text{spread}} \left(\textit{d}^{\star}-\textit{d}\right) \right)$$

* Comment: supply/demand elasticities appear in optimal

> Optimal: Flooded Market

* flood interbank market

 $\mathcal{V} = 0$

> Optimal: Flooded Market

* flood interbank market

 $\mathcal{V} = 0$

Friedman Rule

Asset purchase L under satiation:

$$\uparrow M < \uparrow m(\mathcal{L}) \cdot \underbrace{P}_{\text{fixed}}$$

> Optimal Balance Sheet

* Comment: need fiscal support (seigniorage or transfers)

> Optimal Balance Sheet

* Comment: need fiscal support (seigniorage or transfers)

 $\ell = d + e^{cb} \left(P \right)$

Return conditions

$$R^{\ell} = R^{m} + \mathcal{L} (M/P, d)$$
$$R^{d} = R^{\ell} (\ell) + S (M/P, d)$$
$$d = (R^{m} + S (M/P, d))^{\epsilon^{d}} \rightarrow \bar{d} (M/P)$$

> Optimal Balance Sheet

* Comment: need fiscal support (seigniorage or transfers)

 $\ell = d + e^{cb} \left(P \right)$

Return conditions

$$R^{\ell} = R^{m} + \mathcal{L} (M/P, d)$$
$$R^{d} = R^{\ell} (\ell) + \mathcal{S} (M/P, d)$$
$$d = (R^{m} + \mathcal{S} (M/P, d))^{\epsilon^{d}} \rightarrow \bar{d} (M/P)$$

* Aggregate resource constraint:

$$\Theta \left(R^{m} + \mathcal{L} \left(m \right) \right)^{\epsilon^{b}} = \left(R^{m} + \mathcal{S} \left(m \right) \right)^{\epsilon^{d}} + e^{cb} \left(P \right)$$

> Optimal Balance Sheet

* Comment: need fiscal support (seigniorage or transfers)

 $\ell = d + e^{cb} \left(P \right)$

Return conditions

$$R^{\ell} = R^{m} + \mathcal{L} (M/P, d)$$
$$R^{d} = R^{\ell} (\ell) + \mathcal{S} (M/P, d)$$
$$d = (R^{m} + \mathcal{S} (M/P, d))^{\epsilon^{d}} \rightarrow \bar{d} (M/P)$$

* Aggregate resource constraint:

$$\Theta \left(R^{m} + \mathcal{L} \left(m \right) \right)^{\epsilon^{b}} = \left(R^{m} + \mathcal{S} \left(m \right) \right)^{\epsilon^{d}} + e^{cb} \left(P \right)$$

* Optimal balance sheet

$$\mathcal{L}\left(M/P,d\right) = \mathcal{S}\left(M/P,d\right) = 0$$

* Comment: need fiscal counterpart

> without fiscal counterpart

Neutrality I: Wallace Neutrality

Asset purchase L under satiation:

$$\uparrow M < \underbrace{m(\mathcal{L})}_{\text{fixed}} \cdot \uparrow P$$

zero-effect on spreads, all to P!

> Loan demand - wage/price rigidity

Price/Wage rigidity

Loan demand (firms):

 $\ell\left(\bar{R}^{\ell}, P\right)$

> Loan demand - wage/price rigidity

Price/Wage rigidity

Loan demand (firms):

 $\ell\left(\bar{R}^{\ell}, P\right)$

* comment: conflicting targets

> Iso-Fed Funds

* Iso-Fed Funds:

 $\bar{R} = R^m + \phi(m)$

* Then, we

$$0 = dR^{m} + \phi'(m) \left(\frac{dm}{m}\right)$$

> Iso-Fed Funds

* Iso-Fed Funds:

$$\bar{R} = R^m + \phi(m)$$

* Then, we

$$0 = dR^{m} + \phi'(m)\left(\frac{dm}{m}\right)$$

Comment: if target is aggregate demand
 right target: R^d

Model Discussion

- * Bank Block Frictionless
- * Exogenous Liquidity Demand
- * Endogenous Liquidity Demand
- * Bonds

> Non Banking: Asset Demand System

* Bond supply

* exogenous aggregate supply b^{agg}

> Non Banking: Asset Demand System

* Bond supply

* exogenous aggregate supply b^{agg}

Demand System Money Market Funds:

$$f = \left(R_{t+1}^{f}\right)^{e'}$$

> Shadow Bank's Prob*l*em

* Bank maximizes:

$$\max_{\{f,m\}\geq 0} \underbrace{\left(R^m - R^b\right)m - \left(R^f - R^b\right)f}_{\{\text{Expected Portfolio Returns}\}}$$

b+m=f

 $b \ge \delta f$

* We end with:

 $R^m > R^b > R^f$

> Tradeoffs

* Much richer responses:

$$b + \Theta \left(R^{m} + \mathcal{L} \left(m^{b} \right) \right)^{\epsilon^{b}} = \left(R^{m} + \mathcal{S} \left(m^{b} \right) \right)^{\epsilon^{d}} + \delta \underbrace{\left(b - b^{cb} \right)}^{f} + e^{cb} \left(P \right)$$

* Bank balance sheet

$$b^{cb} = m + e^{cb} (P)$$

* Bank reserves

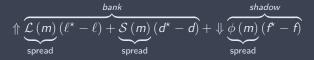
$$m^{b}=m-rac{\delta}{1-\delta}\left(b-b^{cb}
ight)$$

> Harberger Triangle Again

* Welfare now:

$$\Delta \approx -\frac{1}{2} \left(\underbrace{\mathcal{L}(m)}_{\text{spread}} \left(\ell^{\star} - \ell \right) + \underbrace{\mathcal{S}(m)}_{\text{spread}} \left(d^{\star} - d \right) + \underbrace{\phi(m)}_{\text{spread}} \left(\ell^{\star} - \ell \right) \right)$$

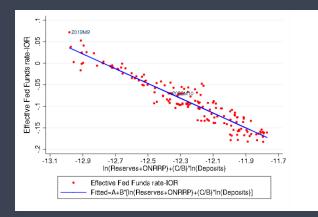
Increase in $\Uparrow m$



* Comment: here, funding demand elasticities pop up

Empirical Effort

> Data Counterparts



Lopez-Salido Vissing-Jorgensen (2023)

> Estimation Issues

* Demand equation:

 $\mathcal{L}(M,D)$

- * estimates: not H1
- * problematic for monetary model
- * Potentially polluted by demand shocks:
 - * heterogeneity
 - * demand shifters
- Use interbank spreads to capture demand

Conclusion

> Conclusion

- * Paper after right question
 - $\ast\,$ use money demand elasticities as sufficient statistics

> Conclusion

- * Paper after right question
 - $\ast~$ use money demand elasticities as sufficient statistics
- * Key issues
 - * sufficient stats not enough
 - * demand elasticities are key
 - \ast conflicting policy goals