Golden Fetters or Credit Boom Gone Bust? A Reassessment of Capital Flows in the Interwar Period

Lukas Diebold (Mannheim University)

CEPR and Ninth Banco de Espana Economic History Seminar

Motivation

- Long history of explaining domestic economic conditions with international finance (Hume, 1758; Fisher, 1935; Keynes, 1941; Kindleberger, 1978)
 - Traditional focus on net flows, which have proven unreliable (Obstfeld, 2010)
- Recent emphasis is on gross flows and their connection to domestic business cycles
 - Gross flows far outweigh net flows in size, but are less explored (Shin, 2012)
 - Foreign capital 'flighty' in times of crisis (Broner et al. 2013)
 - Capital flight linked to credit crunches (Caballero & Simsek 2020)
- Interwar capital flows are governed by the Gold Standard
 - Increases integration into global financial system (Bordo & Kydland 2005)
 - But restricts governments scope of action (Eichengreen, 1996)
- With newly collected data I ask the question: Can the story of the interwar business cycle be told with (gross) international capital flows?

What I do

Data

- Collect Balance of Payments (BoP) data from the League of Nations (LoN) for 33 countries
- Document trends in international financial flows in the interwar period
- BoP-Flows and business cycles
 - Link flows to business cycle, financial crises, recession severity and global capital flows around the Great Depression
 - Relate findings to previous work that has been focused on the importance of gold and net measures (imbalances)

What I find

1 Gross capital flows move with the business cycle, peaking in 1929

- Net and gold flows show no comparable dynamics
- 2 Gross inflows are linked to economic downturns and crises
 - Gross outflows and net capital flows are not
 - Holds in a battery of robustness checks (including Gold Standard proxies)
 - Gold Standard adoption increases gross capital inflows
 - After crises, inflows de- and outflows increase
- 3 High exposure to gross inflows amplifies recessions after crises
 - But: Gross outflows (foreign assets) can moderate recession severity
 - GS individually related to lower growth, but not when interacted with crises
- 4 All results hold in a modern sample of OECD economies

Why are gross foreign inflows related to adverse outcomes?

- Foreign capital increases financial fragility
 - Capital flight and run like dynamics in times of crises (Caballero & Simsek, 2020; Jorda et al., 2013)
 - Increased exposure to global uncertainty (Rey, 2013)
- Effects of (foreign-) indebtedness
 - Debt service payments reduce available income (Drehman et al., 2017)
 - Reduced available income lowers consumption (Eggertsson & Krugman, 2012)
 - Borrower bears first loss in crises (Mian & Sufi, 2015)
 - \rightarrow Cut domestic spending first, debt payments second
- Net and gross foreign inflows
 - Capital retrenchment induces contractionary biases in deficit countries (Keynes 1941), but: No net capital flight in all countries at the same time
 - Net inflows do not fully capture debt buildup (Borio, 2016)

Contribution

1 International capital flows

 Recent work argues for larger focus on gross flows (Borio & Disyatat, 2015; Shin 2012; Calderon & Kubota, 2012)

Here: Extend data coverage to 30+ countries for years 1922-1938. Support increased focus on gross flows, due to their pro-cyclicality

- 2 Capital flows and adverse economic outcomes
 - Foreign financing increases financial fragility (Calvo, 1996)
 - 'Capital flow bonanzas' precede crises (Reinhart & Rogoff, 2009)
 - Crises followed by capital flight (Broner et. al., 2013)

Here: Greater exposure to these dynamics, via gross inflows, amplifies outcomes

- 3 Interwar Period and Great Depression
 - Credit boom gone wrong (Eichengreen & Mitchener, 2003)
 - Credit growth countries linked by gross flows (Borio, 2016)
 - Net foreign debt causes contractionary bias (Keynes, 1941)
 - 'The mother of all sudden stops' (Accominotti & Eichengreen 2016)

Here: International credit boom gone bust. Adverse effects are stronger if previous exposure to gross foreign inflows was large

Data and Trends

Balance of Payments

- Gross in- and outflows for the whole sample are equal → Sample approaches a closed system of financial flows
- Gross flows show the boom-bust pattern, associated with business cycle dynamics
- Net flows, by definition, cannot fully capture that

Gold flows, Net flows and Gross flows compared

• When gross flows are largest, they are least captured by net capital-, or gold flows

- Net to gross capital ratio reaches trough in 1929/30
- Gold flows grow in relative size after major economies have left GS and current account flows have decreased

More on Trends Cumulative Flows since 1924

International Investment Positions

- Over time, BoP flows accumulate into international investment positions (IIP), not considering revaluations of existing stocks
- Balances, gross in- and outflows accumulate into NIIP, GILP (gross international liability position) and GIAP respectively:

$$\Sigma_{t=0}^{n} Credit_{t} = \Delta_{n} GILP_{t+n} - \Sigma_{t=0}^{n} R_{L,t}$$

Where:

• $\Delta_n GILP_{t+n}$ is the change in gross international liabilities • $\sum_{t=0}^{n} Credit_t$, are capital inflows (credit) over *n* periods • $\sum_{t=0}^{n} R_{L,t}$ is the revaluation of existing liabilities

Capital flows, Business Cycles and Financial Fragility

Capital Flows and Business Cycle Dynamics

- How are BoP flows linked to the business cycle?
- Run local projections (Jorda, 2005) of the following form:

$$\Delta_h y_{i,t+h} = \alpha_{i,h} + \sum_{j=0}^2 \beta_{C,j}^h Credit_{i,t-j} + \sum_{j=0}^2 \beta_{C,j}^h Debit_{i,t-j} + \gamma^X X_{i,t} + u_{i,t+h},$$

Capital Flows and Crises

- Narrative: Credit booms before crises are foreign financed (Kindleberger, 1978)
- Capital flows before crises are large, but prone to runs and sudden stops (Reinhart & Rogoff, 2009; Broner et al. 2013; Accominotti & Eichengreen, 2016)
- Gross inflows predict crises (Probit Model), afterwards: decreased inflows and increased outflows (LP)
- But are crises more severe when subject to these dynamics?
 - Contractionary bias in deficit countries (Keynes, 1941)
 - Countries with large credit growth prior to Great Depression have more severe recessions (Borio et al. 2016)
 - Countries with foreign credit booms have more severe recessions Scatter LP

Crises, gross inflow exposure and recession severity

Gross Exposure Dummy (GED) defines inflow exposure as large, when:

$$GED_{i,t} = \begin{cases} 1, & \text{if } Credit_{i,t-1} > \widetilde{Credit_{i,t-1}} \land Credit_{i,t-2} > \widetilde{Credit_{i,t-2}} \\ 0, & \text{Otherwise}, \end{cases}$$

Interacted with a crisis dummy, this identifies:

Interaction setting, controlling for baseline variables Table

Accumulated foreign assets moderate recessions (Caballero & Simsek 2020) Table

Channels: The Gold Standard and Foreign Capital Supply

Capital Flows and the Gold Standard

- GS increases integration into global financial system via reducing currency risk, and committing to the free flow of capital
- Run local projection of capital flows on a Gold Standard indicator

If large gross capital inflows are harmful, how to react?

- GS limits governments scope of action (Eichengreen, 1996)
- GS does not allow for capital flow management

Capital Flows, the Gold Standard and Business Cycles

Interact not being on GS (capital account openness (Quinn, 2003)) with inflows

					$\Delta_2 Y_{i,t+2}$				
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)
$\Sigma_{j=0}^2 Credit_{i,t-j}$	-0.04*** (0.01)	-0.04*** (0.02)	-0.04*** (0.01)	-0.06*** (0.02)	-0.06*** (0.02)	-0.06*** (0.02)	-0.06*** (0.02)	-0.06*** (0.02)	-0.06*** (0.02)
$\Sigma_{j=0}^2 \mathit{Credit}_{i,t-j} imes \mathit{No} \mathit{Gold}_{i,t o t-2}$	0.03** (0.01)	0.03** (0.01)	0.03** (0.01)						
$\Sigma_{j=0}^2 \mathit{Credit}_{i,t-j} imes \mathit{Closed} (<100)_{i,t o t-2}$				0.04** (0.02)	0.04** (0.02)	0.04** (0.02)			
$\Sigma_{j=0}^2 \mathit{Credit}_{i,t-j} imes \mathit{Closed} (<67)_{i,t ightarrow t-2}$							0.05** (0.02)	0.05** (0.02)	0.05** (0.02)
R ² Country fixed effects Lagged Growth Net Capital Inflows Gross Outflows	0.269 ✓ ✓	0.271	0.269 ✓ ✓	0.408 ✓ ✓	0.409	0.408	0.386 ✓ ✓	0.386	0.386
Observations	361	361	361	235	235	235	235	235	235

Option for capital flow management insulates from the effects of gross inflows

- Results for not being on GS and capital account openness are similar
- Leaving GS: \rightarrow capital controls, monetary policy underutilized (M & W, 2015)

The role of foreign capital supply

- BoP cannot discriminate between global capital supply and domestic demand
- Borrowing against fundamentals unlikely to have adverse aggregate effects
- The Global Financial Cycle (GFC)
 - Global capital supply often unrelated to domestic conditions of individual countries (Rey, 2013; Miranda-Agrippino & Rey, 2020)
 - Disentangle demand and supply by using principal component analysis to construct a measure of the GFC (Aldasoro et al. 2020)

The Global Financial Cycle

Principal component of the outflows of all other countries (Aldasoro et al. 2020)

$$GFC_{-i,t} = PC_1(\Sigma_{i \notin j} Debit_{j,t}),$$

• where j is the set of countries excluding country i, First Stage

Not fully exogenous, but presumably goes some in isolating global supply

	$\Delta_2 Y_{i,t+2}$				$\Delta_3 Y_{i,t+3}$			$\Delta_4 Y_{i,t+4}$		
	OLS (1)	Reduced (2)	/V (3)	OLS (4)	Reduced (5)	/V (6)	OLS (7)	Reduced (8)	/V (9)	
$\Sigma_{j=0}^2 Credit_{i,t-j}$	-0.04*** (0.01)		-0.13*** (0.03)	-0.06*** (0.02)		-0.17*** (0.04)	-0.06*** (0.02)		-0.17*** (0.04)	
$\Sigma_{j=0}^2 GFC_{-i,t-j}$		-0.05*** (0.01)			-0.07*** (0.01)			-0.07*** (0.01)		
Country fixed effects	√	✓	√	\checkmark	√	√	\checkmark	\checkmark	\checkmark	
Lagged Growth	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	
Net Capital Inflows	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	
Kleibergen-Paap Weak ID			25.40			24.59			24.37	
Observations	321	321	321	294	294	294	266	266	266	

Coefficients larger than baseline indicate baseline bias towards 0

Other findings and work in progress

Other Findings:

1 Results are not limited to GDP and Crises as outcomes variables

Gross inflows also predict lower returns on equity Table

2 Not being on GS shields countries from the GFC Table

3 All results hold in a modern sample of OECD economies

Baseline Recession Severity

Work in Progress: Construct shift-share-IV

- Newly collected data on the bilateral portfolio investment positions of the United States in other countries (the share)
- **2** Changes in the Federal Reserve discount rate (the shift)
- 3 Use their interaction as an instrument for capital inflows

Conclusions

- I document the development in Balance of Payments flows for over 30+ economies for the years 1922 to 1938
- Gross capital inflows are the decisive link from international capital flows to adverse economic outcomes
- They are robustly linked to:
 - **1** Business cycle downturns
 - 2 Increasing recession severity
- The Gold Standard enables these dynamics by increasing financial integration and decreasing the scope of action to respond to surging capital flows
 - Not being on GS or closed capital accounts provide some protection
- Results hold using an alternative IV-specification and in an external sample of advanced economies

Appendix: Data and Trends

- Balance of Payments statistics (BoP) from the League of Nations
 - First attempt at homogeneous accounting across countries

GERMANY

101

SUMMARY TABLE.

		Reichsmarks (000,000's)	
		Goods, services and gold Capital items	
		Mer- chandize and di- wervices Gold Total Long- term Lerm Able Total i	All
1924 1925 1926 1927 1928 1929 1930	Balance Balance Balance Balance Balance Balance	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	
1931	Credit Debit Balance	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	6,757
1932	Credit Debit Balance	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	8,106 8,106
1933	Credit Debit Balance	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	7,612

Current credit = Outflow of goods, Inflow of Money

Capital credit = Outflow of financial assets, Inflow of Money

Capital Account to GDP

Capital Account

Complimentary Data

- Reliable historical GDP estimates for a large panel of Countries notoriously difficult to obtain
 - 1 Maddison style GDP estimates (Bolt and van Zanden 2020)
 - 2 Economic Activity Indicators (Albers 2018)
 - **3** Log growth rates (Baron et al. 2021)
 - \rightarrow Growth variables are expressed in log differences and reported separately and combined
- Crisis Data
 - 1 Baron, Verner, Xiong crises chronology (BVX Crises)
 - 2 Reinhart and Rogoff chronology (RR Crises)

 \rightarrow Predominance of Great Depression in interwar era means that the two chronologies differ mainly in country coverage and classification of country specific starting years

Cumulative Net- Gold and Capital Inflows

Gold flows reflect findings in literature (see e.g. Irwin 2012)

- Undervalued currencies (Franc) attract gold inflows, overvalued currencies fail to do so (Pound)
- \blacksquare UK, US devalue currencies \rightarrow gold inflows increase
- US, UK, France supply (net-) capital particularly to Germany
 - Flows reverse during Great Depression
 - No obvious link from net flows to economic performance Back

Trends in Balance of Payments flows

Back

Appendix: Business Cycle

Baseline Results, Cumulative Flows

	$\Delta_2 Y_{i,t+2}$				$\Delta_3 Y_{i,t+3}$			$\Delta_4 Y_{i,t+4}$		
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	
$\Sigma_{j=0}^2$ Balance _{i,t-j}	-0.02*** (0.01)	0.01 (0.01)		-0.03*** (0.01)	0.01 (0.01)		-0.03*** (0.01)	0.01 (0.01)		
$\Sigma_{j=0}^2 \mathit{Credit}_{i,t-j}$		-0.04*** (0.01)	-0.03*** (0.01)		-0.06*** (0.02)	-0.05*** (0.01)		-0.06*** (0.02)	-0.05*** (0.01)	
$\Sigma_{j=0}^2 Debit_{i,t-j}$			-0.00 (0.01)			-0.00 (0.01)			-0.00 (0.01)	
R^2 Country fixed effects Lagged Growth p-value, $\beta_{Credit} = \beta_{Balance}$ p-value, $\beta_{Credit} = \beta_{Debit}$ Observations	0.112 ✓ ✓ 361	0.225 ✓ ✓ 0.01 361	0.220 0.00 361	0.201	0.332 ✓ ✓ 0.00 334	0.329 ✓ ✓ 0.00 334	0.412	0.500 ✓ 0.00 303	0.498 0.00 303	

Capital Account Flows and output growth

	Δ_2 Maddison _{i,t+2}				$\Delta_2 EAI_{i,t+2}$			$\Delta_2 Y_{i,t+2}$		
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	
$\Sigma_{j=0}^2 Balance_{i,t-j}$	-0.02*** (0.01)	0.01 (0.01)		-0.03*** (0.01)	0.00 (0.01)		-0.02*** (0.01)	0.01 (0.01)		
$\Sigma_{j=0}^2 Credit_{i,t-j}$		-0.04*** (0.01)	-0.04*** (0.01)		-0.05*** (0.02)	-0.06*** (0.02)		-0.04*** (0.01)	-0.04*** (0.01)	
$\Sigma_{j=0}^2 Debit_{i,t-j}$			0.00 (0.01)			0.01 (0.01)			0.00 (0.01)	
R^2 Country fixed effects Lagged Growth Lagged Balances p-value, $\beta_{Credit} = \beta_{Balance}$ p-value, $\beta_{Credit} = \beta_{Debit}$	0.114	0.239 ✓ ✓ 0.00	0.234	0.314	0.423 ✓ ✓ 0.06	0.426	0.112 ✓ ✓	0.225 ✓ ✓ 0.01	0.222	

Gross Capital inflows predict growth slowdowns over the following 3 Years

5 Year BoP sums and growth over varying horizons

	$\Delta_2 Y_{i,t+2}$			$\Delta_3 Y_{i,t+3}$			$\Delta_4 Y_{i,t+4}$		
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)
$\Sigma_{j=0}^4$ Balance _{i,t-j}	-0.02*** (0.01)	0.00 (0.01)		-0.03*** (0.01)	-0.00 (0.01)		-0.03*** (0.01)	-0.01 (0.01)	
$\Sigma_{j=0}^4$ Credit _{i,t-j}		-0.04*** (0.01)	-0.04*** (0.01)		-0.05*** (0.01)	-0.05*** (0.01)		-0.03** (0.01)	-0.04*** (0.01)
$\Sigma_{j=0}^4 Debit_{i,t-j}$			0.00 (0.01)			0.00 (0.01)			0.00 (0.01)
R^2 Country fixed effects Lagged Growth p-value, $\beta_{Credit} = \beta_{Balance}$ p-value, $\beta_{Credit} = \beta_{Debit}$	0.203 ✓ ✓	0.280 0.02 202	0.280 ✓ ✓ 0.00 292	0.367 ✓ ✓	0.433 0.03 264	0.433 ✓ ✓ 0.00 264	0.617 ✓ ✓	0.639 ✓ 0.18 225	0.639 ✓ ✓ 0.00 235

Time Series Regression, by Country

Sample split, State dependency, Linearity

					$\Delta_2 Y_{i,t+2}$				
	Time	e Split	Count	ry Split	State De	pendence	Current	Account	Linearity
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)
$\Sigma_{j=0}^2$ Credit _{i,t-j}	-0.05*** (0.02)	-0.05*** (0.01)	-0.07*** (0.02)	-0.03*** (0.01)	-0.04*** (0.01)	-0.03*** (0.01)	-0.01* (0.01)	-0.02* (0.01)	
$\Sigma_{j=0}^2 Balance_{i,t-j}$	0.01 (0.01)	0.01 (0.01)	0.03* (0.02)	0.00 (0.00)	0.01 (0.01)	0.00 (0.01)			0.01 (0.01)
$\Sigma_{j=0}^2$ Current Credit _{i,t-j}							-0.02 (0.02)	-0.01 (0.02)	
$\Sigma_{j=0}^2$ Current Debit _{i,t-j}							-0.02 (0.02)	-0.02 (0.02)	
$\Sigma_{j=0}^2 \mathit{Credit}_{i,t-j} imes 1 (> 0)$									-0.04* (0.02)
$\Sigma_{j=0}^2 \mathit{Credit}_{i,t-j} imes 1 (< 0)$									-0.04*** (0.01)
R ² Country fixed effects Lagged Growth	0.226	0.293	0.438 √ √	0.177	0.173	0.134	0.325 ✓ ✓	0.327	0.226 ✓ ✓
Sample Countries Current Account	pre 1929	post 1929	Core	Non-Core	Positive	Negative		1	
Observations	125	235	73	288	176	183	340	340	361

Capital flows, the gold standard and output growth

If capital inflows capture gold purchases by foreigners, the described link would proxy for a GS mechanism

					$\Delta_2 Y_{i,t+2}$				
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)
$\overline{\Sigma_{j=0}^2 \textit{Credit}_{i,t-j}}$	-0.04*** (0.01)	-0.04** (0.02)	-0.02** (0.01)	-0.06 ^{***} (0.02)	-0.03** (0.01)	-0.05*** (0.02)		-0.04*** (0.01)	-0.03** (0.01)
$\Sigma_{j=0}^2 Balance_{i,t-j}$	0.01 (0.01)	0.01 (0.01)	0.01 (0.01)	0.02** (0.01)	0.00 (0.01)	0.02** (0.01)		0.01 (0.01)	0.01 (0.01)
$\Sigma_{j=0}^2$ Gold Balance _{i,t-j}	0.01 (0.00)	0.00 (0.00)	0.01 (0.01)	0.01 (0.01)	0.01 (0.01)	-0.01 (0.01)	-0.02* (0.01)	0.01 (0.01)	0.01* (0.01)
Gold Standard _{i,t}								-0.03* (0.02)	-0.03 (0.02)
R ² Country fixed effects Lagged Growth Sample Goldstandard	0.236 ✓ ✓	0.192	0.183	0.305 ✓ ✓ Yes	0.149 ✓ ✓ No	0.213 ✓ ✓ pre 1933 Yes	0.043 v pre 1933 Yes	0.258	0.286
Lagged GoldStandard Observations	327	193	132	146	179	125	125	327	√ 327

Gross Capital inflows are robust to gold standard variables

Gold Standard mechanism is visible for a subset of countries Back

Appendix: Crises

Capital flows and financial crises

		BVX Crisis _{i,t}										
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)				
$\Sigma_{j=0}^2$ Balance _{i,t-j}	0.02 (0.01)	-0.01 (0.02)			0.04 (0.02)	-0.02 (0.03)						
$\Sigma_{j=0}^2 \mathit{Credit}_{i,t-j}$		0.05*** (0.02)	0.04** (0.01)	0.04*** (0.01)		0.08** (0.04)	0.07*** (0.02)	0.07*** (0.02)				
$\Sigma_{j=0}^2 Debit_{i,t-j}$			0.02 (0.01)				0.03 (0.03)					
AUC s.e. Lagged Growth Country fixed effects	0.69 0.06 ✓	0.73 0.05 √	0.74 0.05 √	0.73 0.05 √	0.77 0.05 √	0.80 0.04 ✓	0.80 0.04 ✓	0.80 0.04 ✓				

Gross foreign credit predicts crises RR Robustness Table

- Classification accuracy (AUC) concentrated in gross inflows
- Predominance of Great Depression in sample (Case Study)

Capital flows and financial crises (RR)

		RR Crisis _{i,t}										
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)				
$\Sigma_{j=0}^2 Balance_{i,t-j}$	0.01 (0.02)	-0.04* (0.02)			0.04 (0.03)	-0.02 (0.04)						
$\Sigma_{j=0}^2 \mathit{Credit}_{i,t-j}$		0.08*** (0.02)	0.04** (0.02)	0.05** (0.02)		0.09*** (0.03)	0.07** (0.03)	0.08*** (0.03)				
$\Sigma_{j=0}^2 Debit_{i,t-j}$			0.04** (0.02)				0.03 (0.02)					
AUC s.e. Lagged Growth Country fixed effects Observations	0.74 0.04 √ 301	0.77 0.05 √ 301	0.77 0.05 √ 301	0.77 0.04 ✓ 301	0.76 0.05 192	0.79 0.05 √ √ 192	0.79 0.05 ~ 192	0.79 0.04 ~ 192				

What happens after crises?

Sudden stops (Broner et al. 2013) and capital flight (Caballero & Simsek, 2020)

Response of capital flows to a financial crises

$$\sum_{h=0}^{n} Capital_{i,t+h}^{T} = \alpha_{i,h} + \sum_{j=0}^{2} \beta_{h,j}^{Cr} Crisis_{i,t-j} + \sum_{j=0}^{2} \beta_{h,j}^{T} Capital_{i,t-j}^{T} + u_{i,t+h}$$
(1)

Statistically significant net capital outflows over all horizons

Inflows trend downward (stops), outflows trend upward (flight)

Appendix: Recession Severity

Recession severity, descriptive evidence

- Larger inflows 1927-1930 linked to deeper recession 1930-1933
- Problem: Imprecise to take 1930 as cutoff for all countries
 - Calculate 3 year growth after crisis indicator
 - When recessions > median 'treated' (Borio, et al. 2016)
 - Treated countries have larger inflows before crises

Recession aggravation via foreign liabilities, Table

				$\Delta_2 Y$	i,t+2			
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
Crisis _{i,t}	-0.06* (0.03)	-0.02 (0.02)	-0.00 (0.02)	-0.00 (0.02)	-0.06* (0.03)	-0.02 (0.02)	-0.01 (0.02)	-0.00 (0.03)
$GED_{i,t}$	-0.01 (0.01)	-0.00 (0.01)	0.02** (0.01)	0.02** (0.01)	-0.01 (0.02)	0.00 (0.02)	0.02 (0.02)	0.02 (0.02)
$\mathit{Crisis}_{i,t} imes \mathit{GED}_{i,t}$		-0.10** (0.04)	-0.10** (0.04)	-0.09** (0.04)		-0.11** (0.05)	-0.10** (0.05)	-0.09** (0.04)
$\Sigma_{j=0}^2 Credit_{i,t-j}$			-0.04*** (0.01)	-0.04*** (0.01)			-0.04*** (0.01)	-0.03*** (0.01)
$\Sigma_{j=0}^2 Balance_{i,t-j}$			0.00 (0.01)	0.01 (0.01)			0.00 (0.01)	0.01 (0.01)
Gold Standard _{i,t}				-0.03* (0.02)				-0.02 (0.02)
$\Sigma_{j=0}^2$ Gold Balance _{i,t-j}				0.01 (0.01)				0.01* (0.01)
R ² Country fixed effects Lagged Growth Lagged Crisis Crisis in Sample Observations	0.100	0.120	0.265 ✓ ✓ 340	0.291	0.150	0.185	0.303	0.324

Recession moderation via foreign assets, Table

				Δ_2)	'i,t+2			
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
Crisis _{i,t}	-0.06* (0.03)	-0.06** (0.02)	-0.02 (0.02)	-0.04 (0.03)	-0.09*** (0.03)	-0.02 (0.03)	-0.03 (0.03)	-0.08*** (0.03)
$\textit{GFA}_{i,t}$	-0.00 (0.01)	0.01 (0.01)	0.01 (0.01)	0.01 (0.01)	0.01 (0.01)	0.03*** (0.01)	0.03*** (0.01)	0.03** (0.01)
$\textit{Crisis}_{i,t} imes \textit{GFA}_{i,t}$		0.05* (0.03)	0.07** (0.03)	0.06** (0.03)	0.07** (0.03)	0.05* (0.02)	0.05* (0.03)	0.06** (0.03)
$\textit{Crisis}_{i,t} imes \textit{GED}_{i,t}$			-0.11*** (0.03)	-0.11*** (0.03)	-0.09*** (0.03)	-0.10*** (0.04)	-0.11*** (0.04)	-0.10*** (0.04)
$\textit{Crisis}_{i,t} \times \textit{Gold}_{i,t}$				0.02 (0.03)	0.00 (0.04)		0.02 (0.03)	0.00 (0.04)
$\textit{Crisis}_{i,t} imes \textit{NID}_{i,t}$					0.07* (0.04)			0.07* (0.04)
R ²	0.097	0.248	0.276	0.297	0.307	0.335	0.345	0.360
Country fixed effects	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Lagged Growth	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Lagged Crisis	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Capital Flow Controls		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Crisis in Sample						\checkmark	\checkmark	\checkmark
Observations	340	340	340	340	340	200	200	200

Crises and Capital Flight, Alternative Exposure Dummy

■ GED2- is defined as the first lag of the baseline credit variable ∑_{j=0}² Credit_{i,t-j} being in the top 80%

				Δ_2)	' <i>i</i> , <i>t</i> +2			
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
Crisis _{i,t}	-0.06* (0.03)	0.00 (0.02)	0.02 (0.03)	0.02 (0.03)	-0.06* (0.03)	-0.01 (0.02)	0.01 (0.03)	0.02 (0.03)
$GED2_{i,t}$	-0.03** (0.01)	-0.03* (0.01)	-0.01 (0.01)	-0.01 (0.01)	-0.04** (0.02)	-0.04* (0.02)	-0.02 (0.02)	-0.02 (0.01)
$Crisis_{i,t} imes GED2_{i,t}$		-0.07* (0.04)	-0.07* (0.04)	-0.07* (0.03)		-0.06* (0.04)	-0.06* (0.03)	-0.07** (0.03)
$\Sigma_{j=0}^2 Credit_{i,t-j}$			-0.03*** (0.01)	-0.03** (0.01)			-0.03** (0.01)	-0.03** (0.01)
$\Sigma_{j=0}^2 Balance_{i,t-j}$			0.00 (0.01)	0.01 (0.01)			0.00 (0.01)	0.01 (0.01)
Gold Standard _{i,t}				-0.04** (0.02)				-0.03* (0.02)
$\Sigma_{j=0}^2$ Gold Balance _{i,t-j}				0.01 (0.01)				0.01 (0.01)
R ² Country fixed effects Lagged Growth Lagged Crisis Crisis in Sample Observations	0.123	0.130	0.248	0.281	0.193 √ √ 200	0.201	0.291 √ √ 200	0.316

Crises, the Gold Standard and capital Flows

				$\Delta_2 Y$	i,t+2			
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
Crisis _{i,t}	-0.04 (0.04)	-0.02 (0.02)	-0.02 (0.02)	-0.02 (0.03)	-0.05 (0.04)	-0.02 (0.02)	-0.01 (0.02)	-0.02 (0.03)
Gold Standard _{i,t}	-0.04** (0.02)	-0.04** (0.02)	-0.03 (0.02)	-0.02 (0.02)	-0.03 (0.02)	-0.02 (0.02)	-0.01 (0.02)	-0.01 (0.02)
$\textit{Crisis}_{i,t} imes \textit{Gold Standard}_{i,t}$		-0.03 (0.04)	-0.02 (0.04)	0.01 (0.03)		-0.04 (0.03)	-0.04 (0.04)	0.01 (0.03)
$\Sigma_{j=0}^2$ Credit _{i,t-j}			-0.03** (0.01)	-0.03*** (0.01)			-0.02* (0.01)	-0.02** (0.01)
$\Sigma_{j=0}^2 Balance_{i,t-j}$			0.00 (0.01)	0.00 (0.01)			0.00 (0.01)	0.00 (0.01)
$Crisis_{i,t} imes GED_{i,t}$				-0.08** (0.04)				-0.08** (0.04)
R ² Country fixed effects Lagged Growth Lagged Crisis Lagged Gold Standard Crisis in Sample	0.231	0.232	0.287	0.281	0.273	0.277	0.312	0.315
Observations	340	340	340	340	200	200	200	200

Appendix: Additional Results

Capital Flows and Equity Returns

		$\Delta_2 FI - Equity_{i,t+2}$	2		$\Delta_2 NF - Equity_{i,t+2}$			
-	(1)	(2)	(3)	(4)	(5)	(6)		
$\Sigma_{i=0}^2 Balance_{i,t-i}$	-0.01	0.05*		-0.07**	0.02			
<u>j</u> _0	(0.02)	(0.03)		(0.03)	(0.03)			
$\Sigma_{i=0}^2 Credit_{i,t=i}$		-0.10**	-0.06**		-0.14**	-0.13***		
J≡0 × × × × ×		(0.04)	(0.03)		(0.06)	(0.05)		
$\Sigma_{i=0}^2 Debit_{i,t-i}$			-0.03			0.00		
<u>j=0</u>			(0.03)			(0.03)		
R ²	0.053	0.113	0.110	0.218	0.285	0.284		
Country fixed effects	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		
Lagged Returns	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		
Lagged Growth	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		
p-value, $\beta_{Credit} = \beta_{Balance}$		0.02			0.09			
p-value, $\beta_{Credit} = \beta_{Debit}$			0.41			0.00		
Observations	219	219	219	228	228	228		

Global Cycle first stage scatterplot

Global cycle and independent monetary policy

					$\Delta_2 Y_{i,t+2}$					
		OLS			Reduced			IV		
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	
No Gold_{i,t \rightarrow t-2}	0.03** (0.02)	0.04*** (0.02)	0.04*** (0.02)	-0.01 (0.02)	0.00 (0.02)	0.00 (0.02)	-0.06** (0.02)	-0.01 (0.02)	-0.02 (0.02)	
$\Sigma_{j=0}^2$ Credit _{i,t-j}	-0.03*** (0.01)	-0.04*** (0.02)	-0.05*** (0.02)				-0.11*** (0.02)	-0.17*** (0.03)	-0.19*** (0.03)	
$\Sigma_{j=0}^2 \mathit{Credit}_{i,t-j} imes \mathit{No} \mathit{Gold}_{i,t ightarrow t-2}$		0.04** (0.02)	0.04** (0.02)					0.16*** (0.03)	0.11*** (0.02)	
$\Sigma_{j=0}^2 \textit{GFC}_{i,t-j}$				-0.06*** (0.01)	-0.07*** (0.01)	-0.07*** (0.01)				
$\Sigma_{j=0}^2 \mathit{GFC}_{i,t-j} imes \mathit{No} \mathit{Gold}_{i,t ightarrow t-2}$					0.04*** (0.01)	0.04*** (0.01)				
Country fixed effects Lagged Growth Net Capital Inflows Kleibergen-Paap Weak ID	\checkmark	√ √	\$ \$ \$	√ √	√ √	\$ \$	√ √ 36.91	√ √ 14.34	√ √ √ 10.40	
Observations	321	321	321	321	321	321	321	321	321	

Appendix: External Validity

External Validity, Local Projection

External Validity, Business Cycle

		$\Delta_2 Y_{i,t+2}$										
		OECD	Sample		Full Sample							
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)				
Balance _{i,t}	-0.02** (0.01)		-0.01* (0.00)		-0.02*** (0.00)		-0.00 (0.00)					
$Credit_{i,t}$		-0.03*** (0.01)	-0.03*** (0.01)	-0.04*** (0.01)		-0.03*** (0.01)	-0.03*** (0.01)	-0.03*** (0.01)				
Debit _{i,t}				0.01 (0.01)				0.00 (0.00)				
R ² Country fixed effects Lagged Growth Observations	0.189 ✓ ✓ 657	0.290 ✓ ✓ 657	0.297 ✓ ✓ 657	0.292 ✓ ✓ 657	0.179 1018	0.258 1018	0.259 1018	0.258 0.258				

External Validity, Crises

		BVX Crisis _{i,t}										
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)				
$\Sigma_{j=0}^2$ Balance _{i,t-j}	0.02*** (0.01)	0.01 (0.01)			0.03*** (0.01)	0.02* (0.01)						
$\Sigma_{j=0}^2 \mathit{Credit}_{i,t-j}$		0.03*** (0.01)	0.03*** (0.01)	0.03*** (0.01)		0.03*** (0.01)	0.04*** (0.01)	0.04*** (0.01)				
$\Sigma_{j=0}^2 Debit_{i,t-j}$			0.00 (0.01)				-0.01 (0.01)					
AUC s.e. Lagged Growth Country fixed effects Observations	0.67 0.04 ✓ 1101	0.70 0.04 √ 1101	0.70 0.04 ✓ 1101	0.70 0.04 ✓ 1101	0.72 0.03 ✓ 784	0.75 0.03 ✓ 784	0.74 0.04 ✓ 784	0.74 0.04 ✓ 784				

External Validity, Recession Severity

			Δ ₂ γ	<i>i</i> , <i>t</i> +2		
-	(1)	(2)	(3)	(4)	(5)	(6)
Crisis _{i,t}	-0.06*** (0.01)	-0.03** (0.01)	-0.02 (0.01)	-0.06*** (0.02)	-0.03** (0.01)	-0.02 (0.01)
GEDi, t	-0.01* (0.01)	-0.01 (0.01)	0.02** (0.01)	-0.01 (0.01)	-0.00 (0.01)	0.02** (0.01)
$\mathit{Crisis}_{i,t} imes \mathit{GED}_{i,t}$		-0.05** (0.02)	-0.04** (0.02)		-0.06*** (0.02)	-0.05*** (0.02)
$\Sigma_{j=0}^2$ Credit _{i,t-j}			-0.03*** (0.01)			-0.02*** (0.01)
$\Sigma_{j=0}^2$ Balance $_{i,t-j}$			-0.00 (0.00)			-0.00 (0.00)
R ² Country fixed effects Lagged Growth Crisis in Sample Observations	0.178	0.183	0.282	0.233	0.243	0.323

