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Motivation

▶ In the Eurosystem expert group Macro@Risk, we worked on a toolbox for predicting
risks for GDP growth and inflation

▶ Main focus: density forecasts of quarter-on-quarter GDP growth and year-on-year
inflation

▶ Forecast strategy: "direct forecasts" to avoid having to predict the predictors
▶ Direct forecasts via quantile regressions for quarterly data:

Yt+h(q) = τh(q) + βh(q)Yt + γh(q)Xt + ut+h(q), (1)

▶ Grid of quantiles q = 0.01, ..., 0.99 to obtain a density forecast for t + h

▶ Advantage of "direct forecasts": additional predictors Xt do not need to be predicted

▶ Each forecast horizon h is a separate regression

▶ Separate regression for each predictor Xt : real variables, financial variables, energy price
variables etc.

▶ Final density forecasts typically based on a forecast combination of best performing
models
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Motivation

Figure: Quarter-on-Quarter growth forecasts
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Motivation

▶ Then, a "new requirement was added" to the toolbox:
▶ The toolbox should produce quarter-on-quarter AND annual-average density forecasts
▶ The predictions should be consistent across qoq and annual-average

▶ How do we construct density forecasts for linear transformations of the
quarter-on-quarters growth rates?
▶ Density forecast of quarter-on-quarter growth rate Yt+h|t comes from quantile

regressions...

▶ ... but annual-average growth rate Zt+4|t =
1
4 (Yt+1|t + ...+ Yt+4|t) ∼ ??

▶ Specific issue here due to the direct forecasting scheme: we do not know the
cross-horizon dependence between Yt+i|t and Yt+j|t , i ̸= j , i , j = 1, ..., h

▶ This led to the following questions:

▶ Specific question in the expert group: how do we compute annual-average density
forecasts out of quarter-on-quarter density forecasts?

▶ Translates to general question: how do we transform existing density forecasts coming
from a direct forecasting scheme into new predictive objects that are functions of several
horizons?

▶ No compelling answer yet in the literature
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Motivation - General set-up

The economist has a forecasting model that produces h-step-ahead direct density
forecasts.
▶ (Conditional) Phillips curves for inflation
▶ Macro-at-Risk models such as quantile regressions
▶ Estimates are carried out at a given frequency/transformation of the data, and density

forecast are produced accordingly (e.g. quarterly frequency/QoQ growth rates).

▶ The economist is then asked to transform the density forecasts (typical in institutions,
where aggregated/transformed figures are usually provided.).

⇒ periodic transformation: the frequency does not change (e.g. QoQ to YoY).
⇒ frequency transformation: the frequency does change (e.g. QoQ to AA).

▶ But direct forecasting schemes imply that the individual predictions do not embed
information on cross-horizon dependence...

▶ ...and this dependence is needed if the forecaster has to construct predictive objects
that are functions of several horizons, such as YoY or AA growth rates.
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A simple analytical illustration

▶ A simple mean-zero AR(1)
Yt+1 = ρYt + εt+1

is used to produce h-step-ahead direct density forecasts:

p(Yt+h|t ; ρ, σε) ∼ N(ρhYt , σ
2
ε,h)

▶ Note that forecast errors et+h|t have auto-covariance and auto-correlation functions:

Cov(et+h|t , et+h−k|t) = σε,hk

Corr(et+h|t , et+h−k|t) = ρε,hk

for h > k > 0.
▶ .. because et+1|t = ϵt+1, et+2|t = ρϵt+1 + ϵt+2,...
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A simple analytical illustration

▶ Consider now a linear transformation of the forecast sequence {Yt+j|t}hj=1, such as the
sum over h horizons:

Zt+h|t = Yt+1|t + · · ·+ Yt+h|t

▶ The “ideal” forecaster has predictive distribution p(Zt+h|t ; ρ, σε):

p(Zt+h|t ; ρ, σε) ∼ N

(
h−1∑
j=0

ρj+1Yt , σ
2
Z ,h + 2σZ ,ij

)

▶ 2σZ ,ij captures cross-horizon dependence

▶ The “simple” forecaster, who ignores the cross-horizon dependence of the forecasts
(i.e. the correlation structure of the forecast errors), has predictive distribution
f (Zt+h|t ; ρ, σε):

f
(
Zt+h|t ; ρ, σε

)
∼ N

(
h−1∑
j=0

ρj+1Yt , σ
2
Z ,h

)
.

▶ Same point forecast but different variance. What are the implications in terms of
predictive accuracy?
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A simple analytical illustration

Figure: Transformed (sum at h = 12)
AR(1) with ρ = 0.4 and σ2 = 0.1

⇒ Simple forecaster underestimates the dispersion.
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A simple analytical illustration

Figure: Scores for transformed density forecasts: cumulative sum up to h = 12
ideal vs simple



9/30

Contribution

▶ We propose to use copulas (Sklar, 1959) to combine the individual direct h-step-ahead
predictive distributions into a joint predictive distribution.

▶ The benefit
1. The joint predictive distribution takes the cross-horizon dependence into account.

2. Allows the researcher to compute predictive objects that are functions of several horizons.

3. Implementation of the approach is simple.

▶ The cost: need a pseudo-out-of-sample of sufficient size to compute reliable estimates
of the cross-horizon dependence (PITs’ correlations).
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Overview of the main results

▶ Monte Carlo simulations show that our approach improves the predictive distributions
relative to other approximation methods.

▶ good approximations to the true underlying target-frequency density forecasts for
different DGPs

▶ robust to misspecified forecasting models and fairly small training samples

▶ In three empirical examples, we show that the proposed copula-approach leads to
improved density forecasts in the target frequency

▶ quarterly forecasts of FRED MD variables from monthly direct forecasts.

▶ annual forecasts of US CPI inflation from year-on-year direct forecasts.

▶ annual forecasts of US GDP growth from quarter-on-quarter direct forecasts



10/30

Methodology
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Statistical framework

▶ Suppose the forecaster has a set of direct h-step-ahead predictive densities for T
forecast origins, denoted by {{gt,h}Hh=1}Tt=1 and with predictive CDF {{Gt,h}Hh=1}Tt=1,
for outcome variables Yt+h, h = 1, ..,H

▶ Let then QT (yT+1, ..., yT+h|R) denote the joint predictive CDF of YT+1, ...,YT+h for
forecast origin T , conditional on the correlation matrix R and constructed using CGa.

▶ A copula is a multivariate CDF characterizing the dependence structure between
random variables ⇒ allows to combine univariate marginals and a copula to obtain a
valid multivariate distribution.

▶ Hence, QT (yT+1, ..., yT+H |R) = CGa(GT ,1(yT+1), ...,GT ,H(yT+H)|R).

▶ Then, the forecaster can obtain an estimate of QT (yT+1, ..., yT+H |R) using an
algorithm drawing from the joint predictive distribution.
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Estimation algorithm

Algorithm 1: Joint Predictive Distribution
1. Compute the realized PITs, {{PITt,h}Hh=1}T−H

t=1 , of the predictive CDFs
{{Gt,h}Hh=1}T−H

t=1 .

2. Compute the rank correlations of PITt,h across the different h to get an estimate of R̂.

3. Use R̂ in combination with CGa to obtain the joint distribution Q̂T (yT+1, .., yT+H |R̂).

Figure: Estimation timeline
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Monte Carlos
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Monte Carlo simulations - design

We simulate QoQ growth rates (quarterly frequency) using a VAR(1).[
yt
xt

]
=

[
τ1

τ2

]
+

[
θ1 θ2

0 γ

] [
yt−1

xt−1

]
+

[
ε1,t

ε2,t

]

▶ {εj,t}Tt=1 two uncorrelated sequences of iid shocks.

▶ ε2,t
iid∼ N

(
0, σ2

ε2

)
, with σε2 = 0.3.

▶ ε1,t may follow 3 different distributions:

ε1,t ∼ N (0, σ2) ε1,t ∼ Skew-N (ξ, ω2, α) ε1,t ∼ Skew-t(ξ, ω2, α, ν)

with α = −3, ν = 8, and ξ and ω2 calibrated such that mean = 0 and
variance = σ2 = 0.25.

▶ τ1 = 0.2, τ2 = 0, and θ2 = γ = 0.5.

▶ θ1 = {0.1, 0.4, 0.7} ⇒ account for different degrees of serial correlation, and hence
cross-horizon dependence in the multi-step forecasts.
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Monte Carlo simulations - design

▶ 2 types of forecasting models, each one a misspecified AR(1)-DMS horizon-specific
regression:

yt+h = τh + βhyt + ut+h linear regression when et Normal

yt+h(q) = τh(q) + βh(q)yt + ut+h(q) quantile regression otherwise

▶ We set :

Tis = 200 quarterly in-sample obs, held fixed in a rolling-window scheme

Toos = 50 quarterly oos obs, for the computation of historical PITs

Teval = 200 quarterly oos obs for the computation of (50) annual average
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Monte Carlo simulations - design

▶ AA and YoY density forecasts computed every four quarters for horizons one-, two-,
and three-years-ahead.1

▶ For every draw s = 1, . . . , S , transformed forecasts are based on well-known linear
(approximate) formula. For instance:
▶ 1-year-ahead AA from forecast origin Q4:

z
(s)
AA,t+1|t =

1
4
yt−2 +

2
4
yt−1 +

3
4
yt + y

(s)
t+1|t +

3
4
y
(s)
t+2|t +

2
4
y
(s)
t+3|t +

1
4
y
(s)
t+4|t

▶ 4-quarters-ahead YoY from forecast origin Q4:

z
(s)
YoY ,t+4|t = y

(s)
t+1|t + y

(s)
t+2|t + y

(s)
t+3|t + y

(s)
t+4|t

▶ We compare the proposed copula approach to a “benchmark” approach which ignores
cross-horizon dependence.

▶ We test for correct specification of the resulting transformed predictive distributions as
well as for equal predictive performance relative to the true predictive distribution.

1Results for AA and YoY forecasts are quantitatively similar. We hence do not report the latter in this
presentation.
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Monte Carlo results: QoQ to AA transformation 1/4

Table: Relative performance for AA forecast

Normal Skew-Normal Skew-t

θ1 Model \ hA 1 2 3 1 2 3 1 2 3

Log-score

0.7 Copula − Bench. 0.36 1.11 1.22 0.32 1.01 1.14 0.40 1.10 1.22
0.4 Copula − Bench. 0.11 0.25 0.24 0.12 0.25 0.25 0.14 0.30 0.32
0.1 Copula − Bench. 0.00 -0.03 -0.03 0.00 -0.02 -0.02 0.02 0.01 0.01

CRPS

0.7 Copula/Bench. 0.97 0.94 0.94 0.97 0.94 0.94 0.97 0.94 0.94
0.4 Copula/Bench. 0.99 0.98 0.98 0.99 0.98 0.98 0.98 0.97 0.97
0.1 Copula/Bench. 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Quantile-weighted CRPS

0.7 Copula/Bench. 0.91 0.85 0.84 0.92 0.85 0.85 0.92 0.85 0.85
0.4 Copula/Bench. 0.96 0.93 0.93 0.96 0.94 0.94 0.96 0.93 0.93
0.1 Copula/Bench. 1.00 1.01 1.01 1.00 1.00 1.00 1.00 1.00 1.00
Note: for the log-score, numbers above zero indicate a superior performance of the copula approach. For the CRPS
and QwCRPS, numbers smaller than one indicate a superior performance of the copula approach. The column θ1
denotes the autoregressive parameter of Yt in the DGP. Normal, Skew-Normal, and Skew-t indicate the distribution
of the error terms in the DGP. The column label hA denotes the annual-average horizon, i.e., one-, two-, and three-
years-ahead. Standard errors of the tests computed using a HAC estimator with bandwidth = hA − 1.
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Monte Carlo results: QoQ to AA transformation 2/4

Table: Tests of predictive performance: rejection frequency for AA forecast

Normal Skew-Normal Skew-t

θ1 Model \ hA 1 2 3 1 2 3 1 2 3

Log-score

0.7 Copula 0.07 0.07 0.07 0.07 0.06 0.07 0.11 0.04 0.07
Benchmark 0.39 0.69 0.64 0.36 0.61 0.55 0.44 0.62 0.57

0.4 Copula 0.14 0.10 0.09 0.16 0.08 0.10 0.17 0.09 0.09
Benchmark 0.27 0.39 0.39 0.27 0.29 0.35 0.32 0.39 0.38

0.1 Copula 0.29 0.18 0.17 0.34 0.18 0.20 0.28 0.16 0.16
Benchmark 0.27 0.12 0.13 0.27 0.13 0.14 0.25 0.12 0.12

Note: rejection frequency of the null hypothesis of a Giacomini and White (2006) test of unconditional equal
predictive ability. The nominal size is 5%. Standard errors of the tests computed using a HAC estimator
with bandwidth = hA − 1



18/30

Monte Carlo results: QoQ to AA transformation 3/4

Table: Tests of predictive performance: rejection frequency for AA forecast

Normal Skew-Normal Skew-t

θ1 Model \ hA 1 2 3 1 2 3 1 2 3

Quantile weighted CRPS

0.7 Copula 0.13 0.08 0.09 0.14 0.09 0.08 0.21 0.07 0.07
Benchmark 0.43 0.73 0.68 0.38 0.66 0.66 0.45 0.70 0.68

0.4 Copula 0.21 0.11 0.09 0.20 0.10 0.09 0.21 0.10 0.08
Benchmark 0.30 0.35 0.36 0.31 0.30 0.33 0.33 0.36 0.38

0.1 Copula 0.29 0.18 0.17 0.33 0.18 0.19 0.27 0.16 0.16
Benchmark 0.26 0.12 0.11 0.26 0.14 0.13 0.25 0.13 0.12

Note: rejection frequency of the null hypothesis of a Giacomini and White (2006) test of unconditional equal
predictive ability. The nominal size is 5%. Standard errors of the tests computed using a HAC estimator
with bandwidth = hA − 1
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Monte Carlo results: QoQ to AA transformation 4/4

Table: Tests of predictive performance: rejection frequency for AA forecast

Normal Skew-Normal Skew-t

θ1 Model \ hA 1 2 3 1 2 3 1 2 3

PIT

0.7 Copula 0.06 0.10 0.12 0.06 0.08 0.10 0.08 0.08 0.12
Benchmark 0.49 0.77 0.74 0.49 0.77 0.74 0.48 0.75 0.74

0.4 Copula 0.08 0.12 0.13 0.07 0.11 0.12 0.06 0.10 0.12
Benchmark 0.24 0.40 0.38 0.25 0.37 0.37 0.25 0.37 0.36

0.1 Copula 0.07 0.14 0.15 0.09 0.16 0.18 0.07 0.11 0.12
Benchmark 0.08 0.10 0.11 0.11 0.14 0.13 0.08 0.09 0.11

Note: rejection frequency of the null hypothesis of uniformity of PITs of the Rossi and Sekhposyan (2019)
test for correct calibration of the density forecasts. The nominal size is 5%. The test is based on the
Kolmogorov-Smirnov statistic. Standard errors of the tests were computed using a HAC estimator with
bandwidth = hA − 1
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Empirical results
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Empirical application 1: from monthly to quarterly frequency 1/2

▶ Large-scale forecasting exercise based on monthly data from FRED-MD (McCracken
and McGillicuddy, 2019).

▶ 101 monthly series organized in 5 groups.
▶ Data sample: 1974:M1 to 2019:M12

▶ historical PITs sample for copula parameter estimation: 2000:M1 to 2004:M12
▶ evaluation sample: 2005:M1 to 2019:M12

▶ We consider random bivariate systems and estimate 1000 ARDL-DMS horizon-specific
monthly frequency regressions:

yt+hM = α+

p−1∑
j=0

βjyt−j +

p−1∑
j=0

γjxt−j + εt+h

where hM = 1, . . . , 12 is the monthly horizon and

yt+hM =

{
Yt+hM − Yt if Yt ∼ I (1)

Yt+hM − Yt − hM∆Yt if Yt ∼ I (2)

▶ Forecasts yt+hM |t are used to compute Yt+hM |t , which are used in turn to provide
forecasts of yt+hQ |t at quarterly frequency, with hQ = 1, . . . , 4 the quarterly horizon.
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Empirical application 1: from monthly to quarterly frequency 2/2

Table: Relative performance of copula approach for quarter-on-quarter forecasts

p = 4 p = BIC

Statistics \ hQ 1 2 3 4 1 2 3 4

CRPS

Mean 0.99 0.96 0.96 0.95 0.99 0.96 0.96 0.96
2S Test 0.50 0.66 0.67 0.70 0.52 0.65 0.66 0.69
1S Test 0.44 0.66 0.67 0.70 0.42 0.63 0.64 0.67

Log-score

Mean 0.45 2.03 2.52 2.68 0.45 2.17 2.57 2.66
2S Test 0.36 0.55 0.56 0.59 0.35 0.56 0.55 0.58
1S Test 0.34 0.55 0.56 0.59 0.31 0.55 0.53 0.57

Quantile-weighted CRPS

Mean 0.97 0.91 0.89 0.88 0.98 0.92 0.91 0.90
2S Test 0.60 0.75 0.73 0.73 0.62 0.71 0.68 0.72
1S Test 0.53 0.74 0.72 0.73 0.52 0.68 0.66 0.70
Note: Row "Mean" denotes the copula approach relative to the benchmark approach, i.e.
numbers smaller than one (larger then zero for Log-score) indicate a better performance of
the copula approach. Values in the row "Test" shows the rejection frequency (at a 5% level)
of the Giacomini and White (2006) test of unconditional equal predictive ability. Standard
errors of the tests were computed using a HAC estimator with bandwidth = hQ − 1
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Empirical application 2: Inflation-at-Risk 1/2

▶ Loosely follows Korobilis (2017): QR-Lasso of yoy US CPI inflation on 22 predictors.

min
β∈Rp

T∑
t=1

ρτ (yt+h − x ′
tβ) +

λ
√

u(1 − u)

n

p∑
j=1

σ̂2
j |βj |, (2)

▶ yt+h denotes the monthly year-on-year US inflation rate
▶ ρτ (z) = (τ − 1{z ≤ 0})z denotes the tick function
▶ λ is a hyperparameter that determines the degree of penalization, p is the number of

predictors
▶ h = 1, ..., 12 is the forecast horizon and σ̂2

j =
∑T

t=1 x
2
i,t .

Forecast environment:
▶ Data from 1960 to 2022, rolling window estimation scheme
▶ Transform the yoy density forecasts into annual average density forecasts via copula

and "simple" approach
▶ Empirical PITs computed from 1975 to 1984. Out-of-sample from 1985 to 2022.
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Empirical application 2: Inflation-at-Risk 2/2

▶ According to the CRPS ratio the copula-based approach delivers a 10% better
performance (statistically significant at the 1% level ).

Figure: Inflation@Risk for 2001 and 2011

(a) 2001 (b) 2011
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Empirical application 3: Growth-at-Risk 1/2

▶ Based on density forecasts Adrian et al. (2019): QR of qoq US GDP growth on NFCI.

Figure: G@Risk for QoQ growth for the year 2008
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Empirical application 3: Growth-at-Risk 2/2

▶ We transform qoq density forecasts into annual average density forecasts.
▶ Empirical PITs computed from 1993 to 2001. Out-of-sample from 2002 onwards (only

12 observations).
▶ Forecast origin is Q4.

Figure: G@Risk for the year 2008 (forecast origin in 2007Q4)
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Direct annual-average regression
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Direct annual-average regression 1/3

▶ Recurring comment: why not built annual-average density forecasts from
annual-average regression.

▶ Let’s simplify and assume there are just two quarters per year
▶ DGP yt = ρyt−1 + et , et ∼ N(0, σ2) ...
▶ ... and that annual-average is defined as Zt =

1
2 (yt + yt−1),Zt−2 = 1

2 (yt−2 + yt−3),...

▶ MSFE of Zt+2|Zt is larger than quarter-on-quarter-then-average regression by: ρ2σ2

4

▶ Why? Because the predictor Zt is the average of yt and yt−1, i.e., the predictor in the
annual-average regression uses the "out-dated" information yt−1

▶ Has the flavour of a mixed-frequency regression where instead of using the higher
frequency, the lower frequency is used

▶ The difference in the MSFE disappears with the forecasting horizon because of mean
reversion of the process

▶ It would be better to regress Zt on yt−2 instead of 1
2 (yt−2 + yt−3)

▶ The MSFE of this regression and the quarter-on-quarter-then-average is identical
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Direct annual-average regression 2/3

Same Monte Carlo study as before with two additional competitor models:

Table: Relative performance for AA forecast

Normal Skew-Normal Skew-t

θ1 Model \ hA 1 2 3 1 2 3 1 2 3

CRPS

0.7 Copula/Benchmark 0.97 0.94 0.94 0.97 0.94 0.94 0.97 0.94 0.94
Copula/AAonAA 0.62 0.96 0.99 0.60 0.94 0.97 0.59 0.94 0.97
Copula/AAonQoQ 0.95 1.00 1.00 0.93 0.98 0.98 0.94 0.98 0.98

Quantile weighted CRPS

0.7 Copula/Benchmark 0.91 0.85 0.84 0.92 0.85 0.85 0.92 0.85 0.85
Copula/AAonAA 0.62 0.96 1.00 0.60 0.93 0.96 0.59 0.93 0.96
Copula/AAonQoQ 0.95 1.00 1.00 0.92 0.97 0.97 0.92 0.97 0.97

Note:
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Direct annual-average regression 3/3

Table: Tests of predictive performance for AA forecast

Normal Skew-Normal Skew-t

θ1 Model \ hA 1 2 3 1 2 3 1 2 3

CRPS

0.7 Copula 0.24 0.11 0.10 0.18 0.10 0.08 0.26 0.12 0.11
Benchmark 0.34 0.44 0.40 0.29 0.36 0.37 0.36 0.40 0.38
AAonAA 0.99 0.24 0.11 1.00 0.26 0.13 1.00 0.27 0.16
AAonQoQ 0.37 0.12 0.10 0.42 0.16 0.13 0.43 0.20 0.16

PIT

0.7 Copula 0.06 0.10 0.12 0.06 0.08 0.10 0.08 0.08 0.12
Benchmark 0.49 0.77 0.74 0.49 0.77 0.74 0.48 0.75 0.74
AAonAA 0.03 0.06 0.08 0.06 0.06 0.08 0.03 0.06 0.08
AAonQoQ 0.05 0.05 0.08 0.05 0.07 0.07 0.06 0.05 0.07

Note: In Panel CRPS, numbers show the rejection frequency of a equal forecast ability test with the alternative model
being the optimal forecast. Panel PIT shows the rejection frequency of a test for correct specification.

▶ PIT results for AAreg suggest that AAreg is an inefficient forecasts because it uses
old information but it is correctly specified
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Concluding remarks

▶ We provide a copula-based approach to combine direct forecasts to obtain new
predictive objects that are functions of several horizons (e.g. annual average growth
rates).

▶ The approach is simple to implement and requires only enough oos observations to
compute the correlation of PITs at the necessary horizons.

▶ In a Monte Carlo exercise, we show that our methodology outperforms the “simple”
approach whenever the serial correlation across different forecasting horizons is not
extremely low.

▶ Three empirical applications provide evidence that the copula approach can provide
better density forecasts than the “simple” approach.

▶ The approach is already implemented in the Macro@Risk toolbox (to be published
soon) and as that part of the (B)MPE

Work in progress:
▶ Provide some guidance on how strong the cross-horizon correlation must be for the

copula approach to be preferable.



30/30

Thank you for your attention

matteo.mogliani@banque-france.fr
florens.odendahl@bde.es

mailto:matteo.mogliani@banque-france.fr
mailto:florens.odendahl@bde.es


30/30

Terminology

▶ Direct forecasts:

yt+1 = α1 + β1yt︸ ︷︷ ︸
mean prediction

+ ut+1︸︷︷︸
”uncertainty”

, ... , yt+h = αh + βhyt︸ ︷︷ ︸
mean prediction

+ ut+h︸︷︷︸
”uncertainty”

(3)

▶ Iterative forecasts:

yt+1 = α+ βyt︸ ︷︷ ︸
mean prediction

+ et+1︸︷︷︸
”uncertainty”

= ŷt+1|t + et+1 (4)

yt+2 = α+ βŷt+1|t + et+2, ... , yt+h = α+ βŷt+h|t+h−1 + et+h (5)

▶ Advantage of "direct forecasts": additional predictors xt do not need to be predicted:

yt+h = αh + βhyt + γhxt︸ ︷︷ ︸
mean prediction

+ ut+h︸︷︷︸
”uncertainty”

(6)

▶ Iterative forecasts would require:

yt+h = α+ βŷt+h|t+h−1 + γx̂t+h|t+h−1︸ ︷︷ ︸
mean prediction

+ et+h︸︷︷︸
”uncertainty”

(7)

back


