Trade and Informality in the Presence of Labor Market Frictions and Regulations

Bank of Spain - CEMFI Workshop

Rafael Dix-Carneiro

Duke University

Pinelopi Goldberg Yale University

Costas Meghir Yale University Gabriel Ulyssea University College London

April 24, 2024

Introduction

- Informality is a major feature of labor markets in developing countries.
- It represents a substantial share of the labor force in developing countries. In South America: 35% (Chile) to 80% (Peru) – Perry et al (2007).
- Informal firms evade taxes and social contributions as well as labor market regulations, including minimum wages and firing restrictions
- Informal workers are either not covered by various benefits (health, UI, pension) or just get limited cover
 - Informal sector jobs widely considered as low quality.

Introduction

- There are alternative views on informality
 - Some regard it as the mechanism by which an economy becomes more efficient undermining sclerotic regulations
 - Others view informality as undermining basic institutions designed to improve work standards and allow tax collection for the provision of public goods
- In a world with frictions informality will typically have both efficiency and distributional effects.
- Understanding the interaction with trade openness is of first order importance, given that many developing countries that opened up to trade also have large informal sectors.

Introduction

- An important feature of informality is that it is pervasive: it does not concern just the least skilled
- We observe workers transiting between formal and informal jobs.
- In Meghir, Narita and Robin (2015) we show that reducing informality can release valuable labor resources, which get reallocated to more productive formal firms.
- ► This leads to improvements in welfare.
- The extent that this is true depends on the degree of frictions and the costs of informality.

Introduction: Trade and Informality

- We now ask a broader question: how does the presence of informality affect the impact of trade openness?
- Shifts into/out of informality and unemployment are important margins of adjustment to trade (e.g. McCaig and Pavcnik, 2018; Dix-Carneiro and Kovak, 2019).
- Dix-Carneiro and Kovak (2019) show that the presence of a large informal sector acted as a buffer to trade-displaced workers.
- Labor market effects of trade depend on stringency of labor market regulations (Ponczek and Ulyssea, 2021).
- We revisit important questions on the impact of trade liberalization on productivity, inequality and welfare.

Introduction: Trade and Informality

- Reduced form empirical results based on Diff-in-Diffs, show evidence of interaction of trade and informality.
- Trade models typically abstract from informality, we fill this gap.
- A complete picture can only be obtained with an equilibrium framework.
- With our model we can quantify:
 - Aggregate effects
 - Distributional impacts
 - Counterfactual policy Analysis
 - Welfare analysis

Literature

- The paper brings together and extends the literatures on informality and on trade with heterogeneous firms and frictional labor markets:
- Informality: Meghir, Narita and Robin (2015), Ulyssea (2018), LaPorta and Shleifer (2014)
- Trade Cosar, Guner and Tybout (2016), Melitz (2003), Helpman, Itskhoki and Redding (2010)
- Trade and Informality Goldberg and Pavcnic (2003), McGaig and Pavcnik (2018), Dix-Carneiro and Kovak (2017, 2019)

Informality

Definitions:

- (i) Informal firms: those that do not register with tax authorities, invisible to the government.
- (ii) Informal workers: no formal contract, verifiable by the fact that their labor card is not stamped.

Potential Consequences:

- Tax evasion, hindering the provision of public goods.
- Misallocation of resources.
- Informal workers: no unemployment insurance, no employer social security contributions, no pension and no or limited healthcare.
- However, informality may provide *de facto* flexibility for firms and workers to cope with adverse shocks.

Our approach

We develop an **equilibrium** model that builds on Cosar, Guner and Tybout (2016) and the earlier results on informality (Meghir, Narita and Robin, 2015 and Ulyssea, 2018). It features:

- Heterogeneous firms choose to operate in the informal sector (but can be caught) or in the formal sector (and are subject to regulations).
- Search and matching frictions in the labor market.
- Rich institutional setting:
 - Government imposes minimum wages; firing costs; payroll and value added taxes; import tariffs.
- ► Taxes and labor market regulations are imperfectly enforced by the government → informality.
- International trade: (a) Imports affect all firms in the economy through aggregate demand and input-output links; (b) firms export subject to fixed export costs and variable trade costs (as in Melitz).

Data

- ▶ We estimate the model using several data sources from Brazil
 - ECINF / Economia Informal Urbana "Informality Survey": Matched Employer/Employee data representing all urban firms with up to 5 employees.
 - RAIS / All formal sector firms and workers Admin Data
 - SECEX Customs data identifying exporters
 - PIA, PAS, PAC: Censuses of all firms above 20 employees (PAC and PAS) and 30 employees (PIA), and a random survey of firms below these thresholds. Information on revenues, inputs and investment at the firm level.
 - PME Household Survey, worker level rotating panel similar to CPS
- Exclude Public and Primary sector. Use data from 2003/04
- Include self-employed as one person informal firms.

Five Facts on Formal and Informal Firms in Brazil

- Fact 1: (a) Brazil has a large informal sector (48% of employment).
 (b) Transitions from Unemployment to Informal are more than twice as likely than transitions from Unemployment to Formal.
- Fact 2: The probability that a firm is informal declines sharply with its employment size.
 Fact 2
- Fact 3: Informal firms are, on average, less productive than formal firms, but the distributions overlap.
- Fact 4: The average informal worker is paid lower wages than the average formal worker.
 Fact 4
- Fact 5: Firm-level labor turnover tends to decline with firm-level employment size. However, conditional on size, exporters tend to have higher turnover.

Details

Fact 5: Turnover, Firm Size and Export Status

	Dep. Variable: <i>Turnover</i> i		
	Manufacturing (C) sector	Service (S) sector	
Intercept	0.741	0.645	
	(0.008)	(0.003)	
$\log(\ell_i)$	-0.126	-0.096	
	(0.003)	(0.002)	
<i>Exporter</i> _i (Dummy)	0.071		
	(0.019)		
Observations	20,342	147,936	

Table: Turnover, Firm Size and Export Status

Data Sources: 2003 and 2004 RAIS and 2003 SECEX. Turnover of firm *i* between 2003 and 2004 measured as $Turnover_i = \frac{|\ell_{i,2004} - \ell_{i,2003}|}{0.5 \times (\ell_{i,2004} + \ell_{i,2003})}$. Standard errors in parentheses.

The Model

Economy is populated by homogeneous, infinitely-lived workers-consumers with utility

$$U = \sum_{t=1}^{\infty} \frac{C_t^{\zeta} S_t^{1-\zeta}}{\left(1+r\right)^t}$$

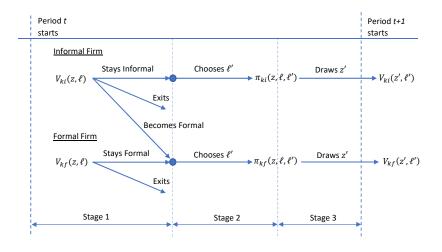
• C_t and S_t are aggregates of varieties $c_t(n)$ and $s_t(n)$

$$C_t = \left(\int_0^{N_{Ct}} c_t(n)^{\frac{\sigma_C-1}{\sigma_C}} dn\right)^{\frac{\sigma_C}{\sigma_C-1}}$$

$$S_t = \left(\int_0^{N_{St}} s_t(n)^{\frac{\sigma_S-1}{\sigma_S}} dn\right)^{\frac{\sigma_S}{\sigma_S-1}}$$

- C = Manufacturing / tradable
- S =Services / non-tradable

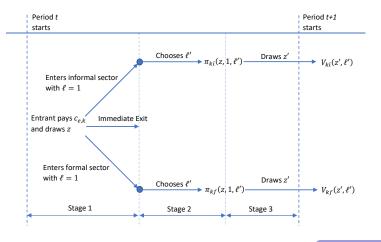
The Model


Sector k ∈ {C, S} goods are produced by heterogeneous firms, which produce a unique variety using <u>labor ℓ</u> and intermediate ι_k inputs:

$$q = z\ell^{\delta_k} \iota_k^{1-\delta_k}; \quad \iota_k = im_C^{\lambda_k} im_S^{1-\lambda_k}$$

- *im_C* and *im_S* are CES aggregates of tradable (C) and non-tradable (S) varieties.
- Intermediate inputs play a key role in transmitting changes in trade openness to the entire economy
- Firm's productivity follows a AR(1) process:

$$\ln z' = \rho_k \ln z + \epsilon_k^z, \ k = C, S$$


Timing: Incumbents

► ValueFunctions

Entry

Mass M_k of entrants into sector k pay an entry cost c_{e,k}, draw z from the ergodic distribution of prod. + Free Entry.

ValueFunctions

Profit functions

Formal firms:

$$\pi_{kf}\left(z,\ell,\ell'\right) = (1-\tau_{y}) V A_{k}\left(z,\ell'\right) - C_{kf}\left(z,\ell,\ell'\right) - \overline{c}_{k}, \ k = C, S$$

Variable costs:

$$C_{kf}(z,\ell,\ell') = \begin{cases} (1+\tau_w) \max \{ w_{kf}(z,\ell'), \underline{w} \} \ell' + H_{kf}(\ell,\ell') & \text{if } \ell' > \ell \\ (1+\tau_w) \max \{ w_{kf}(z,\ell'), \underline{w} \} \ell' + \kappa (\ell-\ell') & \text{if } \ell' \le \ell \end{cases}$$

Wage bill is bounded below by the minimum wage

- Expanding firms pay hiring costs reflecting <u>frictions</u>
- Contracting firms pay firing costs reflecting regulations

Profit functions

Informal firms:

$$\pi_{ki}(z,\ell,\ell') = VA_k(z,\ell') - \mathcal{K}^{inf}(z,\ell') - C_{ki}(z,\ell,\ell') - \overline{c}_k,$$

$$C_{ki}(z,\ell,\ell') = \begin{cases} w_{ki}(z,\ell')\ell' + H_{ki}(\ell,\ell') & \text{if } \ell' > \ell \\ \\ w_{ki}(z,\ell')\ell' & \text{if } \ell' \le \ell, \end{cases}$$

- No minimum wage, No firing costs and No taxes
- K^{inf}(z, l'): Costs of informality (fines access, to finance and latest technology) proportional to revenue
- The costs of informality are convex in employment

Revenues and Value Added

Monopolistic Competition + Intermediate Input Usage ⇒ Value Added of firm with productivity z and employment ℓ:

$$VA_{k}(z,\ell) = \Psi_{k}\left(z\ell^{\delta_{k}}\right)^{\Lambda_{k}}$$

- \triangleright Λ_k depends on the substitution elasticity in sector k
- ▶ Demand shifter Ψ_k depends on both P_C and P_S (pricing out intermediates) and on aggregate income.

Hiring costs

- Hiring costs are an important friction in the labor market and reflects the cost of locating workers and firm adjustment costs.
- Cost of expanding from ℓ to ℓ' workers

$$\begin{aligned} H_{kj}\left(\ell,\ell'\right) &= \left(\mu_{kj}^{\upsilon}\right)^{-\gamma_{k1}} \times \left(\frac{h_k}{\gamma_{k1}}\right) \times \left(\frac{\ell'-\ell}{\ell^{\gamma_{k2}}}\right)^{\gamma_{k1}} \\ \mu_{kj}^{\upsilon} &= \text{Prob. of filling a vacancy in } k,j \end{aligned}$$

>
$$\gamma_{k1}$$
 controls convexity of hiring costs

- γ_{k2} controls scale economies of hiring costs
- Hiring costs are incurred in terms of purchases of non-tradable sector composite good.

Hiring costs

Nature of hiring costs is important to generate:

- Fact 5: firm-level turnover declines with firm size.
- Wage dispersion across firms.
- Wage dispersion and hiring costs: Firms set marginal value = to cost of additional worker.
- With convex hiring costs expanding firms pay higher wages.
- We return to wages shortly

- Workers are matched to firms/vacancies randomly (random matching).
- Wages are determined by Nash bargaining.
- Search frictions: Firms are able to keep workers at lower wages (as long as they are above the worker's reservation wage).

Search and Matching

- ▶ To expand (in expectation) from ℓ to ℓ' firms post vacancies
- Firm vacancies and the number of unemployed workers determine the number of matches that will occur through the matching function.

Total number of matches in the economy:

$$m(\tilde{v}, L_u) = \phi \tilde{v}^{\xi} L_u^{1-\xi}$$
$$\tilde{v} = v_{Cf} + v_{Ci} + v_{Sf} + v_{Si}$$

Matches in each sector are proportional to the relative number of vacancies they post

$$m_{kj} = \frac{v_{kj}}{\widetilde{v}} m\left(\widetilde{v}, L_u\right)$$

Open Economy

- Small open economy model: aggregate conditions abroad are fixed + set of imported goods is fixed.
- Manufacturing (C) sector firms choose how much to export given foreign demand. Need to pay fixed cost f_x to export.

Export decision

$$\mathcal{I}_{C}^{x}\left(z,\ell'\right) = \begin{cases} 1 & \text{if } VA_{C}^{x}\left(z,\ell'\right) - f_{x} > VA_{C}^{d}\left(z,\ell'\right), \text{ Export} \\ 0 & \text{otherwise} \end{cases}$$

 Intermediate inputs: Transmission of trade shocks to the Service (S) and the informal sector (I) firms.

Open Economy

Value Added Domestic Producers:

$$VA_{C}^{d}(z,\ell) = \Psi_{C}\left(z\ell^{\delta_{C}}\right)^{\Lambda_{C}}$$

$$VA_{C}^{x}(z,\ell) = \underbrace{\left(\exp\left(d_{F}\right)\right)^{\frac{\sigma_{C}}{\sigma_{C}-1}\Lambda_{C}}}_{>1} \times VA_{C}^{d}(z,\ell)$$

Trade costs / tariffs affect domestic demand shifters Ψ_C (for formal and informal firms) and foreign demand d_F.

VA Expression

Wage Setting

 Frictions imply a surplus to be shared between workers and firms

$$S_{kf}^{e}(z,\ell') = \underbrace{(1-\tau_{y}) \, VA_{k}\left(z,\ell'\right) - (1+\tau_{w}) \, w_{kf}\left(z,\ell'\right)\ell'}_{\text{Flow value}} + \underbrace{\beta E_{z'|z} \, V_{kf}\left(z',\ell'\right)}_{\text{Future value}}$$

$$\bullet \text{ Surplus of workers (union)}$$

$$S_{kf}^{u}\left(z,\ell'\right) = \ell' \times \underbrace{[w_{kf}\left(z,\ell'\right) + \beta J_{kf}^{e}(z,\ell')}_{\text{Job Value}} - \underbrace{(b+b^{u}+\frac{1}{1+r}J^{u})]_{,}}_{\text{Hampleument value}},$$

Wage Setting

 Wages are set to satisfy the Nash bargaining solution if the Surplus is positive.

$$S_{kf}^{u}\left(z,\ell'\right) = \beta\left(S_{kf}^{e}\left(z,\ell'\right) + S_{kf}^{u}\left(z,\ell'\right)\right).$$

- β is the workers' bargaining power. We set this to 0.5 (symmetric bargaining)
- For formal firms the minimum wage constraint has to be satisfied and the firm will still want to hire.
- ▶ Wages must exceed reservation wages (Worker surplus >= 0)

Demand Functions

The domestic demand for goods produced domestically:

$$Q_{H,C}(n) = D_{H,C}p(n)^{-\sigma_C}$$

The domestic demand for foreign-produced goods is:

$$Q_{H,C}(n) = D_{H,C} \left(\epsilon \tau_{a} \tau_{c} p^{*}(n) \right)^{-\sigma_{C}}$$

Foreign demand for domestically produced goods

$$Q_{F,C}(n) = D_F^*(p_x^*(n))^{-\sigma_C}$$

• $p^*(n)$ is a price in foreign currency

Equilibrium

- Firms act optimally and make entry, exit decisions and post vacancies.
- Free entry.
- Wages solve bargaining problem between workers and the firm.
- Labor markets clear.
- Goods markets clear.
- Steady state: distribution of firms, number of firms, number of workers in each sector are stable.

Mechanisms

- Reduction of trade barriers has a number of effects often in opposing directions
- First, domestic firms in the tradable sector face greater competition.
 - 1. Decline in demand for domestically produced goods: low productivity formal firms replaced by informal.
 - 2. Closure of informal firms because of decline in demand for domestic goods
 - 3. **Decline in formal employment**, leading to increases in unemployment and more workers directed to informal firms. Transitions from unemployment to informal firms is much higher than to formal firms.
 - 4. **Decline in prices of intermediates** (foreign competition): Growth of all firms and increases in formalizations. Also entry of lower productivity informal firms.

Mechanisms

- External Balance: imports = exports
- This implies that the demand for exports will rise
- Lower costs of intermediaries can promote exports.
- Exporting firms will grow reallocating employment to larger more productive firms
- Lower trade barriers will increase the proportion of exporting firms
- ► This will have two implications:
 - 1. Larger firms have more stable employment (because of hiring and firing frictions).
 - 2. At the same time exporting firms are more sensitive to productivity shocks (because of d_F , which leads to more turnover and hence more unemployment.

Estimation

- Some parameters are preset/ Estimation is conditional on these values.
- We use Indirect Inference to estimate 27 parameters using 84 data moments and auxiliary model coefficients (Gourieroux, Monfort, Renault, 1993).
- This matches the coefficients of auxiliary regressions obtained from simulating the model to those obtained by the data
- For example, an auxiliary regression can be the relationship between turnover and firm size.

▶ ModelFit

FixedParameters

Identifying Information

- In general all moments contribute to most parameters. To give some intuition we can say:
 - The elasticity of substitution is informed by the relationship between value added and firm size.
 - The scaling of hiring cost function is identified by average turnover rates and the unemployment rates.
 - The scale economies for hiring are identified by the auxiliary model relating turnover to employment levels and export status.

Identifying information

- The relationship of log-wages to log-employment and an export status informs on the convexity of hiring costs, as it relates to wage dispersion across firms.
- The fixed cost of production is identified by the way the exit rate varies with firm size.
- The cost of informality is identified by the informal sector firm-size distribution, share of employment, and the fraction of informal firms by size.
- The fixed cost of exporting is identified by the proportion of firms exporting

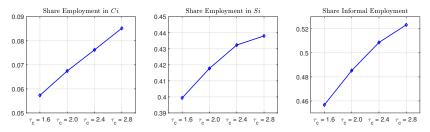
Preset Parameters

Table: Fixed Parameters

Parameter	Description	Source	Value
τ_c	Iceberg Trade Cost	Cosar et al. and EatonKortum2002	2.50
ς	Share of final expend. on C	IBGE National Accounts (2000/2005)	0.283
λ_{C}	Prod. Function	IBGE National Accounts (2000/2005)	0.645
λ_{S}	Prod. Function	IBGE National Accounts (2000/2005)	0.291
r	Interest rate	Ulyssea	0.08
τ_{V}	Value Added Tax	Ulyssea	0.293
τ_w	Payroll Tax	Ulyssea	0.375
$\tau_a - 1$	Import Tariff	UNCTAD TRAINS	0.12
κ	Firing Costs (in R\$)	Heckman and Pages	1,956.7
w	Min. Wage (in R\$)	Annualized 2003 value	2,880
bu	Unemployment Benefit	$1.37 \times 5 = 6.85$ monthly Min. Wage	1,644
ξ	Matching Function	Petrongolo and Pissarides	0.5
ϕ	Matching Function	Match unemployment to employment trans.	0.576
β	Workers' Bargaining Weight	Symmetric Bargaining	0.5

▶ 1 Real = 0.3 US\$ in 2003

Estimated Parameters


Table: Parameter Estimates

Parameter	Description	<i>k</i> = <i>C</i>	<i>k</i> = <i>S</i>
\widetilde{a}_k	Cost of Informality, Intercept	0.183	0.379
\widetilde{b}_k	Cost of Informality, Convexity	0.090	0.011
h_k	Hiring Cost, Level	471.3	2959.4
γ_k^1	Hiring Cost, Convexity	2.007	5.745
γ_k^2	Hiring Cost, Scale Economies	0.109	0.147
σ_k	Elasticity of Substitution	5.256	3.063
$ ho_k$	Productivity AR(1) Process, Pers. Coeff.	0.979	0.977
σ_k^z	Productivity AR(1) Process, SD of Shock	0.197	0.340
α_k	Exogenous Exit Probability	0.073	0.082
\overline{c}_k	Fixed Cost of Operation	174.404	29.383
δ_k	Labor Share in Production	0.264	0.525
c_k^e	Entry Cost	5004.2	3960.6
f_{x}	Fixed Cost of Exporting	56900.9	
b_0	Utility Flow of Unemployment	-0.764	
$(D_F^*)^{\frac{1}{\sigma_C}}$	Foreign Demand Shifter	1169.5	

Model Implications and Counterfactuals

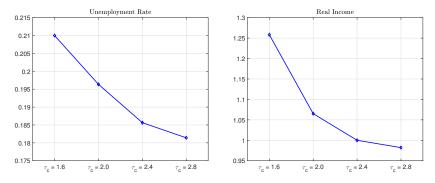

- We now turn to see what the model tells us about trade openness
- We use alternative iceberg costs ranging from $\tau_c = 1.6$ to $\tau_c = 6$ (autarky)
- Tariffs have a much smaller impact

Figure: Trade and Informality

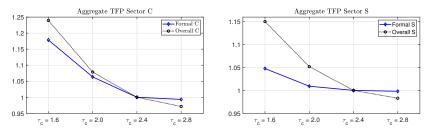
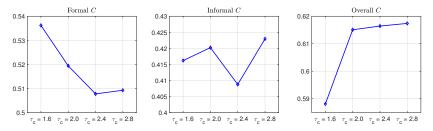
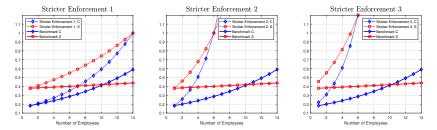

- In C:Wages increase across the board and reduction in demand for purely-domestic firms ⇒ low-productivity formal firms → informality, but also low-productivity informal firms exit.
- Consistent with McGaig and Pavcnik Vietnam formal manufacturing benefited from improved exports to the US.
- In S: increased income and demand for intermediates driven by exporting C sector ⇒ entry of low-productivity informal firms, but also formalization of high-productivity informal firms. On net decline in informality.

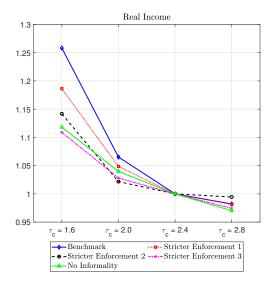
Figure: Trade, Unemployment and Welfare

- τ_c ↓ ⇒ resources reallocated toward larger firms (both in C and S)
 ⇒ less turnover as larger firms tend to be more stable.
- ► However, resources reallocated towards exporters, and $d_F \uparrow \Rightarrow$ more turnover.
- \blacktriangleright \uparrow turnover associated with \uparrow unemployment.

Figure: Trade and Aggregate TFP

Trade drives highly unproductive informal C and S sector firms out of the market, freeing up resources to be reallocated to more productive formal ones.


Figure: Trade and the Std. Dev. of log-Wages Across Workers in the C sector

- τ_c ↓ ⇒ Wage inequality ↑ in the formal C sector. Wage exporter premium ↑.
- Consistent with Cosar et al (2016), Helpman et al (2017).
- ► However, between-sector differences ↓.

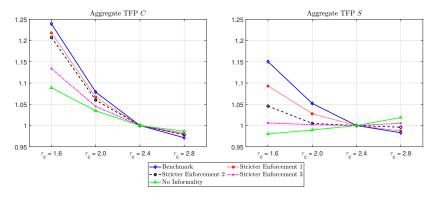


Figure: Various Scenarios of Stricter Enforcement

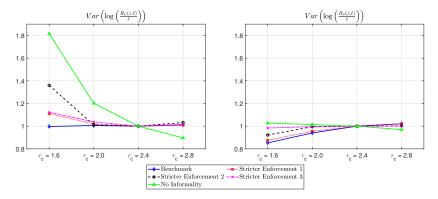
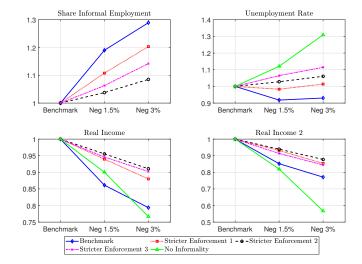

Figure: Trade and Welfare: Various Scenarios

Figure: Iceberg Trade Costs and Aggregate TFP Relative to $\tau_c =$ 2.4, Various Enforcement Scenarios

Figure: Variance of log $\left(\frac{R_k(z,\ell)}{\ell}\right)$ Relative to $\tau_c = 2.4$, Various Enforcement Scenarios



With small shocks

Δ Welfare $\approx \Delta$ Mechanical Effect + Δ Reallocation Effect

	Bench	SE1	SE2	SE3	No Inf.
$100 \times \Delta \log(Real \ Income)$	1.287	0.791	0.553	0.632	0.868
$100 \times \Delta Mechanical Effect$	0.228	0.239	0.253	0.262	0.286
$100 \times \Delta Reallocation Effect$	1.059	0.552	0.300	0.370	0.582
$100 \times \Delta \log(\text{Real Income}/\text{Employment})$	1.730	0.755	0.578	0.653	0.674
$100 \times \Delta \log(Employment)$	-0.443	0.036	-0.025	-0.021	0.194

Table: Small shock, τ_c declines from 2.4 to 2.3

Figure: Negative Productivity Shocks, Informality, Unemployment and Welfare

	Bench	SE1	SE2	SE3	No Inf.
$100 \times \Delta \log(Real \ Income)$	-4.801	-2.488	-1.520	-1.831	-2.702
$100 \times \Delta Mechanical Effect$	-0.309	-0.308	-0.307	-0.306	-0.304
$100 \times \Delta Reallocation Effect$	-4.492	-2.180	-1.213	-1.524	-2.398
$100 \times \Delta \log(\text{Real Income}/\text{Employment})$	-5.122	-2.583	-1.256	-1.231	-1.155
$100 \times \Delta \log(Employment)$	0.321	0.096	-0.264	-0.599	-1.547
$100 \times \Delta \log(Agg \ TFP_C)$	-1.721	-1.265	-0.809	-0.062	0.592
$100 \times \Delta \log(Agg \ TFP_S)$	-4.301	-2.048	-0.355	-0.018	1.599
$100 \times \Delta Var(\log(\frac{R_C(z,\ell)}{2}))$	1.016	1.295	1.869	-0.522	-5.971
$100 imes \Delta Var(\log(rac{R_{\mathcal{S}}(\tilde{z},\ell)}{\ell}))$	4.224	2.046	0.087	0.145	-3.413

Table: Small shock, Negative Productivity Shock of 0.5 pct

Conclusions

- Important to carefully model both the informal sector and the non-tradable sector to obtain an accurate and comprehensive picture of the effects of trade in developing countries.
- Our model is consistent with empirical patterns in the literature, based on Diff-in-Diff's:
 - Trade openness leads to declines in informality in the tradable sector (McCaig and Pavcnik, 2018)
 - Informal sector acts an "employment buffer" in face of negative shocks (Dix-Carneiro and Kovak, 2019)
- But new insights that cannot be obtained with Diff-in-Diff's:
 - Informal sector does not act as a "welfare buffer" in face of negative shocks.

Conclusions

- Trade increases wage inequality in the formal tradable sector, but this effect is reversed when we include the informal sector in the analysis.
- The effect of trade on productivity is understated if the informal sector is left out.
- Large welfare gains from trade.
 - Gains from trade are larger in the presence of informality / domestic distortions.
 - Trade can partially "correct" for misallocation implied by these distortions.

Fact 1: Informality and Transitions

	Share of Workers	Transition Rates From Unemp.
Informal Tradable (<i>Ci</i>)	0.059	0.064
Formal Tradable (Cf)	0.106	0.050
Informal Non-Tradable (Si)	0.351	0.389
Formal Non-Tradable (Sf)	0.334	0.161
Unemployment	0.150	0.336
Share of Informal Employment	0.48	32
Transition Rate from Unemp.		
to Informal Employment	0.45	53
to Formal Employment	0.21	.1
Ratio	2.14	6

Table: Employment Shares and Transition Rates

Data source: 2003 PME.

Fact 2: Informality Status by Firm Size

Table: Firm-Level Informality Status vs. Firm-Level Employment

	Dep. Variable: Inforr	mal Status Indicator _i
	C sector	S sector
Intercept	1.135	1.130
	(0.028)	(0.012)
ℓ_i	-0.179	-0.204
	(0.025)	(0.009)
Observations	1,194	7,273

Data source: 2003 ECINF. Standard errors in parentheses.

Back

Facts 3 and 4: Productivity and Wages

	A. De	p. Variable:	log(Revenu	e_i/ℓ_i)	В.	Dep. Variat	ole: log(<i>wag</i>	e;)
Sector /								
Firm Type	Cf	Sf	Ci	Si	Cf	Sf	Ci	Si
Intercept	10.118	10.004	8.391	8.825	8.509	8.436	8.013	8.417
	(0.013)	(0.005)	(0.037)	(0.015)	(0.006)	(0.002)	(0.033)	(0.014)
$log(\ell_i)$	0.000	-0.128	0.342	0.321	0.117	0.105	0.292	0.231
	(0.005)	(0.003)	(0.114)	(0.050)	(0.003)	(0.001)	(0.103)	(0.048)
Exporter;	1.462	. ,	. ,	. ,	0.462	. ,	. ,	. ,
	(0.021)				(0.014)			
Observations	16,986	43,861	1,070	6,202	20,075	145,981	1,071	6,205
Dataset	PIA +	PAS +	ECINF	ECINF	RAIS +	RAIS	ECINF	ECINF
Dataset	SECEX	PAC	LCINE	LCINF	SECEX	IVAI3	LCINF	LCINF

Table: Firm-Level log-Revenue per Worker and log-Wages vs. log-Employment

Standard errors in parentheses.

▶ Back

Firms' value functions

$$V_{kf}\left(z,\ell\right) = \left(1 - \alpha_{kf}\right) \max\left\{0, \max_{\ell'}\left\{\pi_{kf}\left(z,\ell,\ell'\right) + \frac{1}{1+r} E_{z'|z} V_{kf}\left(z',\ell'\right)\right\}\right\}$$

$$V_{ki}(z,\ell) = (1 - \alpha_{ki}) \max \left\{ \begin{array}{l} 0, \max_{\ell'} \left\{ \pi_{ki}(z,\ell,\ell') + \frac{1}{1+r} E_{z'|z} V_{ki}(z',\ell') \right\}, \\ \max_{\ell'} \left\{ \pi_{kf}(z,\ell,\ell') + \frac{1}{1+r} E_{z'|z} V_{kf}(z',\ell') \right\} \end{array} \right\}$$

→ Back

Entry value functions

Value of entry into sector k / formal status j:

$$V_{kj}^{e}(z) = \max_{\ell'} \left\{ \pi_{kj}\left(z, 1, \ell'\right) + \frac{1}{1+r} E_{z'|z} V_{kj}\left(z', \ell'\right) \right\}$$

Expected value of entry into sector k, before drawing z is given by:

$$V_{k}^{e} = E_{z} \max \{ V_{ki}^{e}(z), V_{kf}^{e}(z), 0 \}$$

Free entry leads to:

$$V_k^e = c_{e,k}.$$

Revenues and Value Added

Revenues under Monopolistic Competition:

$$R_k(q) = \left(rac{X_k}{P_k^{1-\sigma_k}}
ight)^{rac{1}{\sigma_k}} q^{rac{\sigma_k-1}{\sigma_k}}$$

• Expenditure on tradables: $X_C = \zeta I + X_C^{int}$, and

- Expenditure on non-tradables: $X_S = (1 \zeta)I + X_S^{int} + E_S$.
- X^{int} is expenditure on intermediates and E_S expenditures on nontradables to cover entry, hiring and export costs.

► Value added:
$$V\!A_k\left(z,\ell
ight) = \Psi_k\left(z\ell^{\delta_k}
ight)^{\Lambda_k}$$

Search and Matching

Probability of filling a vacancy in k[sector]-j[formal status]:

$$\mu_{kj}^{\upsilon} \equiv \frac{m_{kj}}{\upsilon_{kj}} = \phi \left(\frac{L_u}{\widetilde{\upsilon}}\right)^{1-\xi} = \mu^{\upsilon}$$

Probability of unemployed worker find a job in k[sector]-j[formal status]:

$$\mu_{kj}^{e} \equiv \frac{m_{kj}}{L_{u}} = \frac{\upsilon_{kj}}{\widetilde{\upsilon}} \left(\frac{\phi}{(\mu^{\upsilon})^{\xi}}\right)^{\frac{1}{1-\xi}}$$

	C	

Value Added, Domestic Firms

$$\begin{split} V\!A_k\left(z,\ell\right) &= \Psi_k \left(z\ell^{\delta_k}\right)^{\Lambda_k} \\ \Psi_k &\equiv \Theta_k \left(P_k^m\right)^{-(1-\delta_k)\Lambda_k} \left(\exp\left(d_{H,k}\right)\right)^{\frac{\sigma_k}{\sigma_k-1}\Lambda_k} . \\ P_k^m &\equiv \frac{P_C^{\lambda_k}P_S^{1-\lambda_k}}{\lambda_k^{\lambda_k}\left(1-\lambda_k\right)^{1-\lambda_k}}, \\ d_{H,k} &= \log\left(\left(\frac{X_k}{P_k}\right)^{\frac{1}{\sigma_k}}\right) \end{split}$$

	C	

Fixed Parameters

Table: Fixed Parameters

Parameter	Description	Value
$ au_{c}$	Iceberg Trade Cost	2.50
ζ	Share of final expend. on C	0.283
λ_{C}	Prod. Function	0.645
λ_S	Prod. Function	0.291
r	Interest rate	0.08
$ au_y$	Value Added Tax	0.293
$ au_w$	Payroll Tax	0.375
$ au_{\sf a}-1$	Import Tariff	0.12
κ	Firing Costs (in R\$)	1,956.7
W	Min. Wage (in R\$)	2,880
bu	Unemployment Benefit	1,644
ξ	Matching Function	0.5
ϕ	Matching Function	0.576
β	Workers' Bargaining Weight	0.5

Back

	Bench.	Strict Enf. 1	Strict Enf. 2	Strict Enf. 3	No Inf.
Unemployment Rate	0.186	0.207	0.221	0.253	0.303
Share Emp. <i>Ci</i>	0.076	0.062	0.042	0.029	0.000
Share Emp. Si	0.432	0.296	0.246	0.128	0.000
Share Informal Emp.	0.509	0.358	0.288	0.157	0.000
Imports/GDP	0.066	0.069	0.073	0.076	0.084
$N_C = N_{Cf} + N_{Ci}$	1.000	0.921	0.807	0.667	0.360
$N_{S} = N_{Sf} + N_{Si}$	1.000	1.011	0.992	0.803	0.561
Aggregate TFP C	1.000	1.037	1.075	1.104	1.208
Real Rev per worker C	1.000	0.969	0.946	0.890	0.860
Aggregate TFP S	1.000	1.052	1.091	1.211	1.439
Real Rev per worker S	1.000	0.996	0.975	1.006	1.055
P_{c}^{m}	1.000	1.009	1.029	1.032	1.046
P ^m _C P ^m _S	1.000	1.004	1.013	1.014	1.020
Real Income	1.000	0.965	0.929	0.900	0.861
Real Income 2	1.000	0.940	0.885	0.824	0.734

Table: Effects of Increasing the Cost of Informality

Notes: Real Income refers to the real value of the sum of all wages and profits in the economy. Real Income 2 refers to the real value of the sum of all wages and profits in the economy including the disutility of unemployment $b_0 \times L_u$. Aggregate TFP is computed as the weighted average of the zs of all active firms—weights are given by firm-level employment. V.A. stands for value added. All variables below line 6 are normalized relative to Benchmark values.

Moment	Dataset	Model	Data
Share of Employment Ci	PME	0.062	0.059
Share of Employment Cf	PME	0.097	0.106
Share of Employment Si	PME	0.351	0.351
Share of Employment Sf	PME	0.303	0.334
Share Unemployment	PME	0.186	0.150
Share Informal Workers (Conditional on Working)	PME	0.508	0.482
Trans. Rate from Unemp. to Ci	PME	0.064	0.064
Trans. Rate from Unemp. to Cf	PME	0.060	0.050
Trans. Rate from Unemp. to Si	PME	0.380	0.389
Trans. Rate from Unemp. to Sf	PME	0.161	0.161
Trans. Rate from Unemp. to Unemp.	PME	0.336	0.336
Ratio Trans. to Informal job / Trans. to Formal job	PME	2.013	2.146

Table: Employment Shares and Transition Rates from Unemployment

▶ Back

		C se	ector	S se	ctor	
	Dataset	Model	Data	Model	Data	
Exit Rate	RAIS	0.098	0.103	0.100	0.125	
Average Firm-level Turnover	RAIS	0.231	0.505	0.190	0.525	
Corr $(\log \ell_{i,t+1}, \log \ell_{i,t})$	RAIS	0.951	0.929	0.938	0.914	
$E_{xit_i} = \alpha + \beta \log(\ell_i)$						
Intercept	RAIS	0.153	0.188	0.145	0.185	
$\log(\ell_i)$	RAIS	-0.024	-0.045	-0.035	-0.049	
$Turnover_i = \alpha + \beta \log(\ell_i) + \gamma Exporter_i$						
Intercept	RAIS+SECEX	0.426	0.741	0.326	0.645	
$\log(\ell_i)$	RAIS+SECEX	-0.089	-0.126	-0.106	-0.096	
Exporter _i	RAIS+SECEX	0.072	0.071			
$Turnover_{i} = \alpha + \beta \log (\ell_{i}) +$	$\gamma Exporter_i$, Condi	tional on E	xpansions			
Intercept	RAIS+SECEX	0.379	0.692	0.278	0.690	
$\log(\ell_i)$	RAIS+SECEX	-0.094	-0.138	-0.100	-0.150	
Exporteri	RAIS+SECEX	0.118	0.116			
$Turnover_{i} = \alpha + \beta \log (\ell_{i}) +$	$\gamma Exporter_i$, Condi	tional on C	ontractions			
Intercept	RAIS+SECEX	0.466	0.744	0.368	0.624	
$\log(\ell_i)$	RAIS+SECEX	-0.072	-0.101	-0.067	-0.064	
Exporter;	RAIS+SECEX	0.056	0.056			

Table: Turnover-Related Moments and Auxiliary Models (Formal Sectors)

Back

		C sector		S sector	
	Dataset	Model	Data	Model	Data
Avg. Firm-Level log-Employment	RAIS	2.286	1.918	1.287	1.237
Std Dev. Firm-Level log-Employment	RAIS	0.889	1.416	0.667	1.175
Avg. Exporter log-Employment	RAIS + SECEX	3.621	4.014		

Table: Firm-Size Distribution (Formal Sectors)

▶ Back

Table: Trade-Related Moments

	Dataset	Model	Data
Fraction of Exporters (among formal C-sector firms)	RAIS + SECEX	0.124	0.073
Total Exports / (Total Formal Manufacturing Revenue)	SECEX + IBGE	0.134	0.134

Back

Table: Formal-Sector Wages

		C sector		S sector		
	Dataset	Model	Data	Model	Data	
Avg. log-Wages	RAIS	8.630	8.769	8.568	8.567	
$\log(w_i) = \alpha + \beta \log(\ell_i) + \gamma Exporter_i$						
Intercept	RAIS+SECEX	8.298	8.509	8.433	8.436	
$\log(\ell_i)$	RAIS+SECEX	0.116	0.117	0.105	0.105	
Exporteri	RAIS+SECEX	0.549	0.462			

Table: Formal-Sector Revenues

		C sector		S sector	
	Dataset	Model	Data	Model	Data
Avg. log-Revenues	IBGE	12.682	12.726	11.151	10.814
Std. Dev. log-Revenues	IBGE	1.241	1.874	0.966	1.440
$Corr \left(\log Rev_{i,t+1}, \log Rev_{i,t} \right)$	IBGE	0.777	0.929	0.756	0.845
$\log(\text{Rev}_i) = \alpha + \beta \log(\ell_i) + \gamma \text{Exporter}_i$					
Intercept	IBGE+SECEX	9.997	10.118	9.671	10.004
$\log(\ell_i)$	IBGE+SECEX	1.144	1.000	1.150	0.872
Exporteri	IBGE+SECEX	0.564	1.462		

Notes: The serial correlation of $\log(Rev)$ is conditional on the employment cutoffs the PIA (30 employees) and PAS (20 employees) panels.

Back

Table: Informal Sector Moments and Auxiliary Moments

		C sector		S se	S sector	
	Dataset	Model	Data	Model	Data	
Average log-Employment	ECINF	0.249	0.105	0.275	0.097	
Std. Dev. log-Employment	ECINF	0.361	0.303	0.373	0.274	
Avg. log-Revenue	ECINF	9.827	8.531	9.254	8.953	
Avg. log-Wages	ECINF	7.819	8.043	7.603	8.440	
$Informal_i = \alpha + \beta \ell_i$						
Intercept	ECINF	1.328	1.135	1.244	1.130	
li	ECINF	-0.179	-0.179	-0.204	-0.204	

Notes: All statistics are computed conditional on firms with five employees or less, both in the data and in the model.

→ Back