# When Death was Postponed: The Effect of HIV Medication on Work, Savings and Marriage

Mette Ejrnæs Mette Gørtz

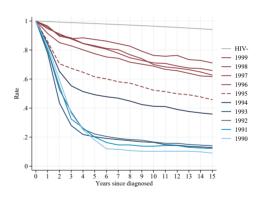
(University of Copenhagen) (University of Copenhagen)

Esteban García-Miralles Petter Lundborg (Banco de España) (Lund University)

April 25, 2024 - Workshop Banco de España - CEMFI

#### Motivation

Over the last century, global life expectancy has been increasing


- Explanations: Rising incomes, health insurance, medical innovation
- Life expectancy ⇒ human capital (Becker 1964, Ben-Porath 1967) ⇒ economic growth (e.g. Kalemli-Ozcan 2002, Soares 2005, Weil 2007)
- Uncertainties about remaining lifespan may have implications for incentives to work, save, and marry (e.g. Blundell & MaCurdy 1999, Browning & Crossley 2001, Dynan et al. 2002, Low et al.2018)

This paper: Causal effect of an increase in life expectancy due to a medical innovation (not mediated by improved health)

#### Context: New effective treatment for HIV

- Until mid 90s HIV was a deadly condition
- In 1995 a new medication, HAART, was introduced
- Unexpected and drastic improvement in survival rates following HIV diagnosis
- ⇒ HIV changed from deadly disease to chronic condition

### Survival by year of diagnosis



Source: Danish register data

#### Context: New effective treatment for HIV

### Public knowledge about positive impact of HAART:

People who had been planning to die sooner rather than later

- quitting their jobs, cashing in their insurance policies,

running their credit cards to the limit,

avoiding fresh romances or clinging to old relationships

- began finding themselves back in the business of living,

with all its complications.

"From the AIDS Conference, Talk of Life, not Death" Published in New York Times, July 15, 1996.

### This paper

**Strategy**: Compare individuals diagnosed **before** or **after** 1995. They all experience a shock but their life expectancy differs markedly.

- Not driven by poor health/medication ⇒ focus on healthy patients
- ullet Not driven by calendar time  $\Rightarrow$  DDD with matched HIV-

Results: Higher life expectancy leads to:

- Increased labor
- No effects significant on savings
- Delayed partnering

#### Contribution to the literature

### 1. Impact of life expectancy on work and savings

(Baranov et al. 2015, Baranov and Kohler 2018, Papageorge et al. 2021)

- $\Rightarrow$  We study a developed country
- $\Rightarrow$  Focus on representative HIV+ (excl. drug addicts)
- ⇒ High-quality register data
- ⇒ Novel evidence on marriage outcomes

### 2. Impact of life expectancy on human capital investment

(e.g. Fortson 2011, Jayachandran and Lleras-Muney, 2009 and Oster et al. 2013)

- $\Rightarrow$  We consider other major life choices: work, savings, and marriage
- ⇒ From a well-defined medical breakthrough

### Outline

1. Sample restriction: healthy HIV+ patients

2. Identification: Triple Difference

3. Results

4. Policy implications

### **Unique Data**

- 1. Danish administrative registers from 1981
  - Longitudinal data on entire population
  - Socio-economic outcomes: Employment, income, education, wealth
  - Marital status (marriage and cohabitation)
  - Hospital records
- 2. Medical data on HIV patients
  - Clinical database with all HIV patients started in 1995 (with retrospective information + imputation)
  - Observe immune system health: CD4 counts from blood test Focus on individuals diagnosed when still healthy, and expected to remain so

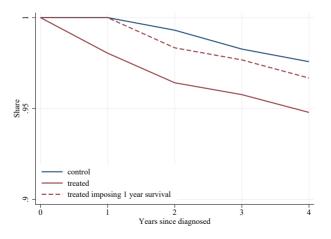
#### Health status and CD4 count

| CD4        |
|------------|
| 500-1500   |
| 500-1500 ↓ |
| <350       |
| <200       |
|            |

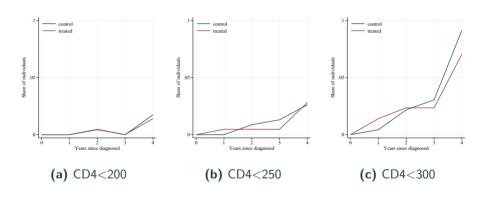
 $\Rightarrow$  Asymptomatic threshold somewhere between 200 and 350

Papageorge et al. (JHR 2019) "women in the treatment group [CD4 300-399] have yet to reach CD4 counts where they would experience physical illness"  $^{\prime\prime}$ 

### Sample of analysis


- 1,932 individuals diagnosed between 1990 and 1999 (excl. drug-addicts)
- 596 have CD4≥400 when diagnosed
- Control: Diagnosed 1990-1994. 289 individuals (230 balanced)
- Treated: Diagnosed 1995-1999. 307 individuals (213 balanced)

Baseline sample of analysis (we show robustness to alternative choices):


- Balanced = [-4,4]
- Keep control group post 1995
- Keep those who receive HAART medication

### Survival probability

Individuals in the (unbalanced) sample are diagnosed early enough that mortality is low. By construction, control group survives at least 1 year



# Share of individuals below symptoms thresholds



Both groups have small and similar share below symptoms threshold

# Balance Test (t-1)

|                               | Control | Treated | Difference | P-value | HIV-    |
|-------------------------------|---------|---------|------------|---------|---------|
|                               |         |         |            |         |         |
|                               | (1)     | (2)     | (3)        | (4)     | (5)     |
| Demographics                  |         |         |            |         |         |
| Age                           | 33.60   | 34.54   | -0.94      | 0.27    | 34.04   |
| Male                          | 0.82    | 0.80    | 0.02       | 0.53    | 0.81    |
| Years of education            | 11.6    | 11.8    | -0.21      | 0.37    | 12.1    |
| Dane                          | 0.93    | 0.91    | 0.03       | 0.26    | 0.96    |
| Economic outcomes             |         |         |            |         |         |
| Employed                      | 0.68    | 0.68    | 0.00       | 0.97    | 0.81    |
| Earnings (diff. HIV-)         | -29,519 | -27,701 | -1,820     | 0.87    | 169,700 |
| Earnings (quartile)           | 2.17    | 2.30    | -0.12      | 0.25    | 2.24    |
| Home Owner                    | 0.24    | 0.27    | -0.02      | 0.56    | 0.49    |
| Stocks Ownership (diff. HIV-) | -0.03   | -0.06   | 0.03       | 0.25    | 0.16    |
| Marital                       |         |         |            |         |         |
| Married                       | 0.13    | 0.18    | -0.06      | 0.10    | 0.44    |
| Cohabiting                    | 0.07    | 0.10    | -0.03      | 0.27    | 0.23    |
| Health                        |         |         |            |         |         |
| Hospital visit                | 0.14    | 0.14    | 0.00       | 0.97    | 0.139   |
| Psychologist                  | < 0.01  | < 0.01  | 0.00       | 0.99    | 0.002   |
| Psychiatry                    | 0.02    | 0.03    | -0.01      | 0.66    | 0.008   |
| Charlson Index                | < 0.01  | 0.02    | -0.02      | 0.08    | 0.006   |
| Infections                    | < 0.01  | < 0.01  | -0.01      | 0.14    | 0.001   |
| DANHIV                        |         |         |            |         |         |
| CD4 Count                     | 619     | 620     | -1.08      | 0.95    | -       |
| Heterosexual                  | 0.43    | 0.44    | -0.01      | 0.82    | -       |
| Observations                  | 230     | 213     |            |         | 443,000 |

### **Outline**

1. Sample restriction: healthy HIV+ patients

2. Identification: Triple Difference

3. Results

4. Policy implications

### **Dynamic Triple Difference Strategy**

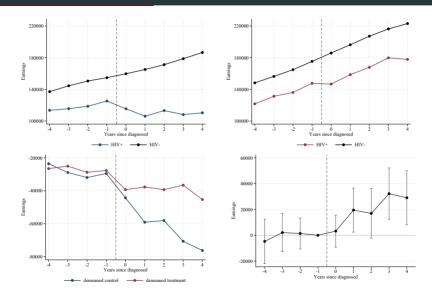
Identification comes from comparing:

- 1. Period before and after diagnosis:  $\rightarrow$  *Time*
- 2. Diagnosed pre-1995 (control) or after-1995 (treated):  $\rightarrow$  *Treat*
- 3. HIV+ and HIV- synthetic control (cohort, year, sex, educ.):  $\rightarrow$  Inf

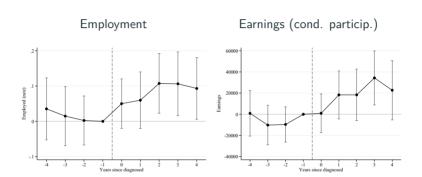
$$\begin{split} Y_{it} = & \alpha_0 + \sum_{j \neq -1} \beta_j \cdot \textit{Treat}_{it} \cdot \textit{Inf}_{it} \cdot \textit{Time}_{t=j} + \sum_{j \neq -1} \gamma_j \cdot \textit{Inf}_{it} \cdot \textit{Time}_{t=j} + \sum_{j \neq -1} \eta_j \cdot \textit{Treat}_{it} \cdot \textit{Time}_{t=j} \\ & + \sum_{j \neq -1} \theta_j \cdot \textit{Time}_{t=j} + \phi_1 \cdot \textit{Treat}_{it} \cdot \textit{Inf}_{it} + \phi_2 \cdot \textit{Inf}_{it} + \phi_3 \cdot \textit{Treat}_{it} + X_{it} \cdot \Phi_4 + \epsilon_{it}, \end{split}$$

where  $X_{it}$  contains age, sex and citizenship

### Outline


1. Sample restriction: healthy HIV+ patients

2. Identification: Triple Difference


3. Results

4. Policy implications

# Labor market outcomes: Earnings



#### Labor market outcomes



#### Labor market outcomes

|                        | Estimate (1)         | Mean<br>(2)    |
|------------------------|----------------------|----------------|
| Employment             | 0.0753***<br>(0.028) | 0.663          |
| Earnings               | 23,897***<br>(7,706) | 130,918        |
| Earnings (cond. part.) | 23,909***<br>(8,879) | 180,733        |
| Obs.<br>N. Clusters    | 4,394,390<br>439,439 | 4,394,390<br>- |
|                        |                      |                |

• Individuals substitute towards leisure as life expectancy is reduced

# Savings outcomes

(Insignificant) reduction in deposits and stocks. No effect on housing



What explains these results?

- Still too healthy? (Sample with low CD4)
- Precautionary savings / bequest motives?
- Institutional context?

# Marital outcomes: Partnership (married+cohabitation)



#### Marital outcomes

| Full Sample (1)      | Mean<br>(2)                                                                        |
|----------------------|------------------------------------------------------------------------------------|
| -0.104***<br>(0.036) | 0.24                                                                               |
| -0.0596*<br>(0.032)  | 0.15                                                                               |
| -0.0441**<br>(0.022) | 0.09                                                                               |
| -0.0086<br>(0.010)   | 0.03                                                                               |
| 3,990,987<br>443,443 | 3,990,987<br>443,443                                                               |
|                      | (1) -0.104*** (0.036) -0.0596* (0.032) -0.0441** (0.022) -0.0086 (0.010) 3,990,987 |

Married

Cohabiting <sup>\*</sup>

Divorce

Hetero/homo

- Partnership as insurance mechanism
- Increased value of leisure + leisure complementarities with partner

### **Outline**

1. Sample restriction: healthy HIV+ patients

2. Identification: Triple Difference

3. Results

4. Policy implications

#### Assessment of medical innovations

We have shown that economic behaviors change in *anticipation* of future access to medical technologies (before actually receiving it)

 $\Rightarrow$  This incentive effect may impact assessment of medical innovations

We compare employment trajectories after HIV *diagnosis* in two scenarios: with and without HAART medication

 $\Rightarrow$  Incentive effect amounts to at least 19% of total effect on employment during the first 15 years after an HIV diagnosis.



#### **Conclusion**

### This paper:

- We study the the causal effect of improved life-expectancy
- In the context of a sudden medical innovation to treat HIV

#### We find:

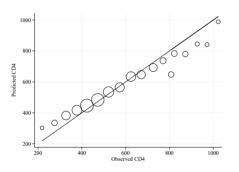
- Improved labor outcomes, muted savings responses, delayed partnership
- Evidence that informs models of household behavior and projections
- Implication: Incentive effect affects assessment of medical innovations

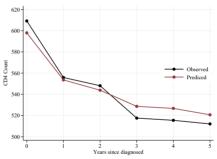
| - | Thank you!                     |  |
|---|--------------------------------|--|
| 6 | esteban.garcia.miralles@bde.es |  |

### Imputation of CD4 pre 1995

Medical register starts in 1995  $\rightarrow$  CD4 not observed before 1995

We impute CD4 counts backwards using:

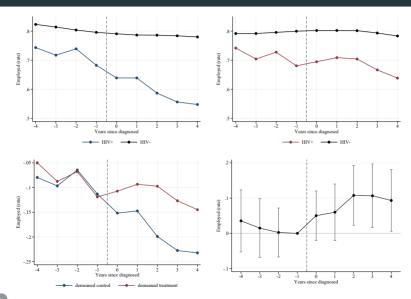

$$CD4_{it} = \alpha + \beta_1 time + \beta_2 time^2 + \phi_i + \epsilon_{it}$$


 $time \rightarrow vears since diagnosis$ 

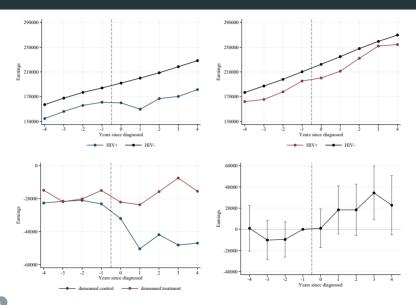
 $\phi_i \rightarrow \text{individual fixed effect}$ 

We use CD4 counts *just* to define sample of analysis (healthy HIV+)

# **CD4 Imputation Fit**





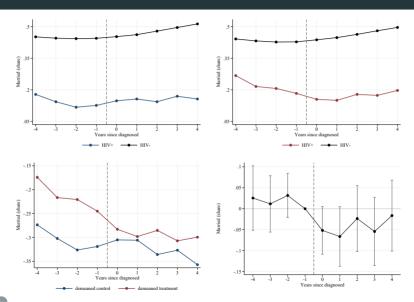


# Frequency of HIV diagnosis for analysis sample



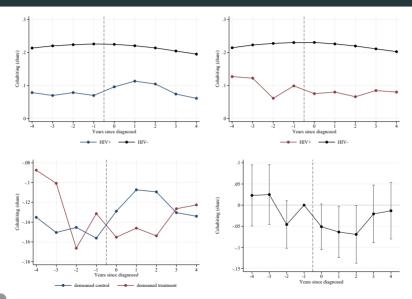
# Labor market outcomes: Employment



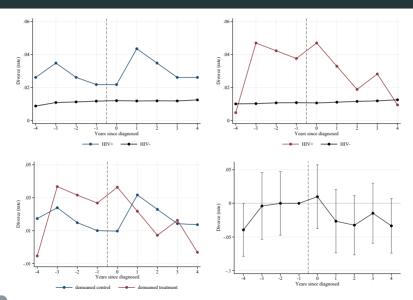
### Labor market outcomes: Earnings conditional on participation




# Sample diagnosed with low CD4 counts. Savings outcomes



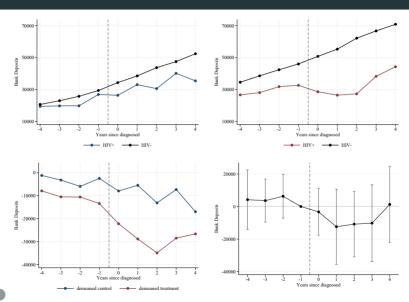




# Marriage

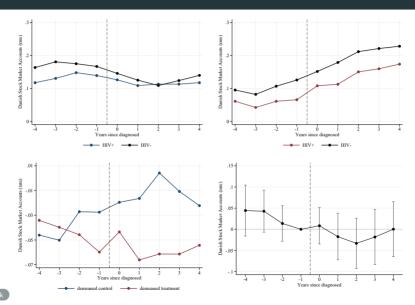


### Cohabitation

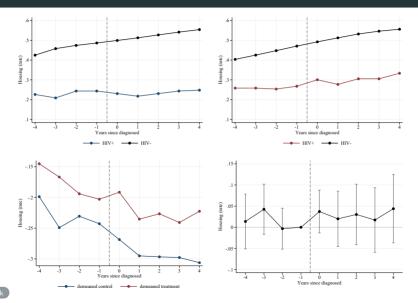



### **Divorce**

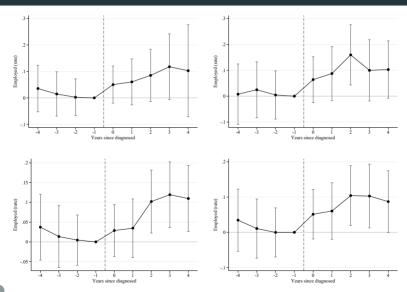



# **Savings outcomes**

|                     | Estimate<br>(1)      | Mean<br>(2)    |
|---------------------|----------------------|----------------|
| Any Stocks          | -0.0330<br>(0.0245)  | 0.119          |
| Bank Accounts       | -6,415<br>(7,537)    | 26,882         |
| Home Ownership      | 0.0213<br>(0.0307)   | 0.267          |
| Obs.<br>N. Clusters | 4,394,390<br>439,439 | 4,394,390<br>- |

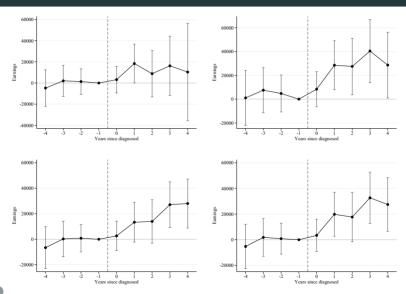

# Savings outcomes: Bank Accounts Balances




# Savings outcomes: Stock Ownership

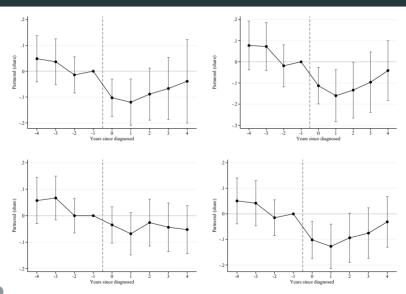


# Savings outcomes: Housing Ownership




# Robustness to alternative definitions (Employment)





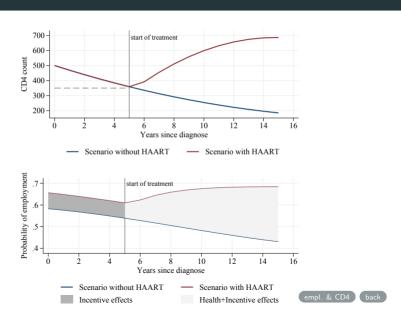

# Robustness to alternative definitions (Earnings)



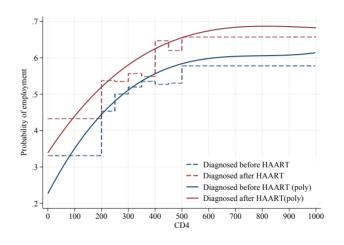


# Robustness to alternative definitions (Partnered)






### Marital outcomes


|                     | Full Sample (1)      | Hetero<br>(2)        | MSM<br>(3)           | Mean<br>(4)          |
|---------------------|----------------------|----------------------|----------------------|----------------------|
| Partnered           | -0.104***<br>(0.036) | -0.119**<br>(0.057)  | -0.0922**<br>(0.044) | 0.24                 |
| Married             | -0.0596*<br>(0.032)  | -0.0634<br>(0.050)   | -0.0574<br>(0.041)   | 0.15                 |
| Cohabiting          | -0.0441**<br>(0.022) | -0.0559<br>(0.039)   | -0.0349<br>(0.022)   | 0.09                 |
| Divorce             | -0.0086<br>(0.010)   | -0.0134<br>(0.017)   | -0.0036<br>(0.012)   | 0.03                 |
| Obs.<br>N. Clusters | 3,990,987<br>443,443 | 1,891,890<br>210,210 | 2,099,097<br>233,233 | 3,990,987<br>443,443 |



### Assessment of medical innovation in the presence of anticipation effects



### Assessment of medical innovation in the presence of anticipation effects

