Measuring the Productivity of Working from Home

Christine Braun¹ & Travis Cyronek² & Peter Rupert³

21.5.24

¹University of Warwick

²Bureau of Labor Statistics

³University of California, Santa Barbara

Question

Questions

- How much do we work at home and why?
- Are we more productive or do we prefer it?
- How have productivity and preferences changed?

Relevance

- Pandemic forced more to work from home
- What will happen in long run?
- Can we learn anything from what happened before?

What do we know so far

- Productivity at home literature is mixed
 - call center studies: 4% 8% more productive
 - Bloom et al. (2014), Harrington and Emanuel (2022)
 - worker and firm survey during pandemic mixed
 - Morikawa (2022), Barrero et al. (2020)
 - large difference across people
 - Morikawa (2022), Etheridge et al. (2020)
- What we add
 - estimate productivity before pandemic using model
 - Advantage: productivity is consistently and clearly defined
 - *Disadvantage:* do not know why productivity changed, ie, changes in monitoring technology or changes in tasks at home

What do we know so far

- Preferences and ability to work at home
 - large difference across occupations
 - Dingel and Neiman (2020), Hensvik et al. (2020), Adams-Prassl et al. (2020), Bick et al. (2020)
 - large difference worker characteristics
 - Bick et al. (2020), Etheridge et al. (2020), Pabilonia and Vernon (2022)
 - preference during pandemic changed
 - Barrero et al. (2020)
- What we add
 - estimate preferences structurally
 - Advantage: see changes before pandemic
 - Disadvantage: do not know why, ie, changes in stigma or changes in commuting times

What We Do

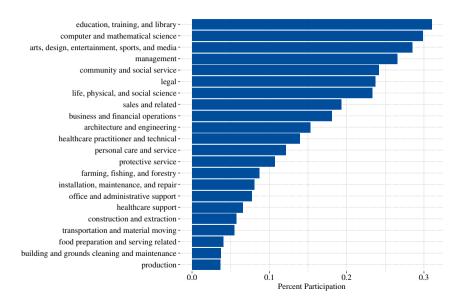
- Document rising work from home (WFH) since 2003
 - increase in teleworking
 - increase in workers splitting workday across office and home
- Document large difference of WFH across occupations
 - large intensive differences: 4% to 30%
 - large extensive differences: 1 hour 40 min 4 hours 10 min

What We Do

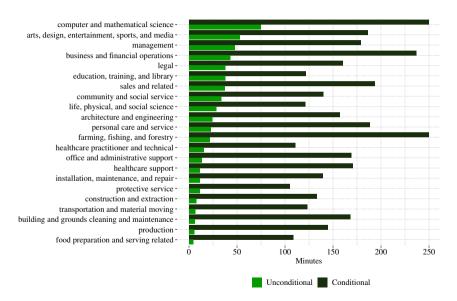
- Document rising work from home (WFH) since 2003
 - increase in teleworking
 - increase in workers splitting workday across office and home
- Document large difference of WFH across occupations
 - large intensive differences: 4% to 30%
 - large extensive differences: 1 hour 40 min 4 hours 10 min
- Estimate structural model with differences in
 - relative productivity of WFH over time
 - relative disutility of WFH over time
- Conduct counterfactuals to analyze observed increase in WFH
 - change in preferences vs change in productivity
 - change in demographics vs change in occupational employment

What We Find

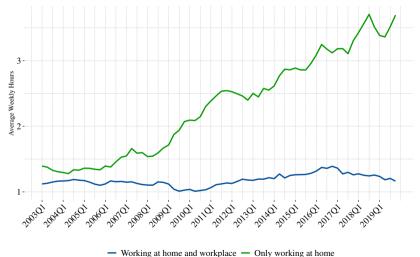
- Occupational differences in relative productivity of WFH
 - average relative productivity $\sim 40\%$
 - computer & mathematical, management, business occ. large increases
 - production, construction, food service, no increase
- Demographic difference in relative disutility of WFH
 - average relative disutility of WFH 6% more
 - increasing in education
 - lower from women with children than men
- Accounting for increase in WFH
 - Changes in relative disutility account for little
 - Changes in demographic composition account for little
 - Changes in relative productivity account for full increase
 - Changes in occupational employment account for 60%


Data

Data


- American Time Use Survey 2003 2019
- Interviews CPS respondents 2-5 months after CPS
 - interviewed only about 1 day
- Asks people what, where, and how long they did activities throughout the day
 - activities are classified into 400 categories
 - Time working at the office
 - WFH: work done anywhere else
- Samples selection
 - Employed, private and public (no self-employed), age 25-64
 - Interviewed on a weekday

ATUS Work From Home by Occupation: Participation


ATUS Work From Home by Occupation: Minutes

ATUS Work From Home over time: Participation

ATUS Work From Home over time: Minutes

Model

Model: The Goal

- We want a model that can
 - match hours and participation in WFH
 - allow for difference in preferences
 - allow for differences in relative productivity
- With the model we will decompose the rise in WFH
 - changes in preferences vs changes in productivity
 - changes in demographics vs changes in occupational employment

Model: Firms

- Firms are identical
 - allow work from home
 - demand labor input
 - pay marginal products
- Labor input is

$$\ell_{ijt} = h_{ijt}^w + \gamma_{ijt} h_{ijt}^h$$

- *i* individual, *j* occupation, *t* time
- h^w hours worked at the workplace
- hh hours worked at home
- γ_{ijt} is the relative productivity, a draw from F_{jt}

Model: Workers

• Workers are employed, can not save, and maximize

$$\max_{\{c_{it},h_{ijt}^{h},h_{ijt}^{w}\}} log(c_{it}) - \eta_{i} [(\chi_{it}h_{ijt}^{h})^{\rho} + (h_{ijt}^{w})^{\rho}]^{\frac{1}{\rho}}$$
s.t. $c_{it} = w_{ijt}(h_{ijt}^{w} + \gamma_{ijt}h_{ijt}^{h})$

- η_i disutility of work
- χ_{it} relative disutility of working from home
- ullet ho substitution parameter in preferences ho>1
 ightarrow substitutes
- Optimal Hours Worked

$$h_{ijt}^h = rac{\chi_{it}^{rac{ ilde{
ho}- ilde{
ho}}{\eta_i \left[1+\chi_{it}^{rac{ ilde{
ho}- ilde{
ho}}{
ho^{-1}}
ight]^{rac{ ilde{
ho}}{
ho}}}}{\eta_i \left[1+\chi_{it}^{rac{ ilde{
ho}- ilde{
ho}}{
ho^{-1}}
ight]^{rac{ ilde{
ho}}{
ho}}} \qquad h_{ijt}^w = rac{1}{\eta_i \left[1+\chi_{it}^{rac{ ilde{
ho}- ilde{
ho}}{
ho^{-1}}
ight]^{rac{ ilde{
ho}}{
ho}}}}$$

Estimation

Estimation

Optimal Hours Ratio

$$rac{h_{ijt}^h}{h_{iit}^w} = \left(rac{\gamma_{ijt}}{\chi_{it}^
ho}
ight)^{rac{1}{
ho-1}}$$

- Parameters to be estimated
 - ρ , $\{\chi_{it}\}$, $\{F_{jt}\}$, η_i
- Identification given and estimate of ρ using ATUS hours ratio
 - $\{\chi_{it}\}$ variation in hours ratio across individuals and over time
 - $\{F_{it}\}$ variation in hours ratio across occupation and over time

Estimating ρ

Logged hours ratio

$$\ln rac{h_{ijt}^n}{h_{ijt}^w} = rac{1}{
ho - 1} \ln \gamma_{ijt} + rac{
ho}{1 -
ho} \ln \chi_{it}$$

Job Leave and Flexibility Module 2017-2018 from ATUS

- "Are you paid for the hours that you work at home, or do you just take work home from the job?" \sim proxy for γ_{ijt} a dummy paid;
 - paid: $paid_i = 1$
 - take work home $paid_i = 0$
 - both $paid_i = 1$

Estimating ρ

Specification

$$\ln rac{h_{ijt}^h}{h_{ijt}^w} = eta_1 extit{paid}_i + eta_2 X_i + \delta_j + arepsilon_{ijt}$$

- $paid_i$ proxy for γ_{ijt}
- X_i vector of observables, including reason for wfh
- δ_i occupational FE
- The our estimate of ρ

$$\hat{
ho}=1+rac{1}{\hat{eta}}$$

Estimating ρ

Table: Elasticity of Substitution Estimates

	All	Paid vs Take home
paidhome	0.574***	0.897***
	(0.214)	(0.221)
$\overline{\rho}$	2.741	2.115
	(0.650)	(0.275)
Occupation FE	Yes	Yes
Observations	450	400

^{*} *p* < 0.1, ** *p* < 0.05, *** *p* < 0.01

Estimating Preferences and Productivity

- Structural assumptions on Productivity
 - $\gamma_{ijt} \sim \textit{Gamma}(k_j, \theta_{jt})$
 - $\theta_{jt} = \theta_j^0 + \delta_j^\theta \cdot t$
- Structural assumptions on Preferences
 - $\chi_{it} = \chi_i^0 + \delta_i^{\chi} \cdot t$
 - *i* are 24 demographic groups
 - sex, marital status, children, and three education levels
 - $\eta_i = \exp(\beta Z_i)$
 - full-time, diary day, sex, marital status, children, five education levels, and four age categories

Estimating Preferences and Productivity

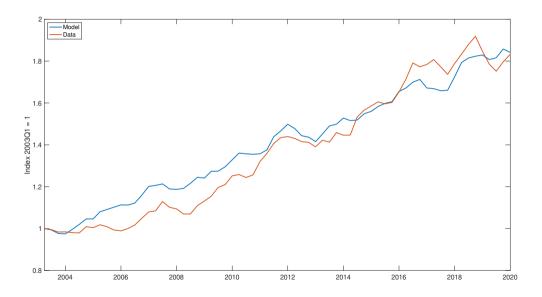
- Maximize the likelihood of observed hours ratio
- For corner solutions
 - report no work at home $\rightarrow h_{iit}^h < 1/60$

$$P(h_{ijt}^h < 1/60 | \rho) = F(\underline{\gamma}_{it} | \rho; \eta_i, \chi_{ijt}, k_j, \theta_{jt})$$

• report no work at the workplace $\rightarrow h_{iit}^w < 1/60$

$$P(h_{iit}^w < 1/60 | \rho) = 1 - F(\overline{\gamma}_{it} | \rho; k_i, \theta_{it})$$

• Interior solution: $h_{ijt}^h/h_{ijt}^w=\tilde{h}_{ijt}$


$$P(h_{ijt}^h/h_{ijt}^w = \tilde{h}_{ijt}|\rho) = (\rho - 1)\tilde{h}_{ijt}^{\rho-2}\chi_{it}^\rho \cdot f(\chi_{it}^\rho \tilde{h}_{ijt}^{\rho-1}|\rho; k_j, \theta_{jt})$$

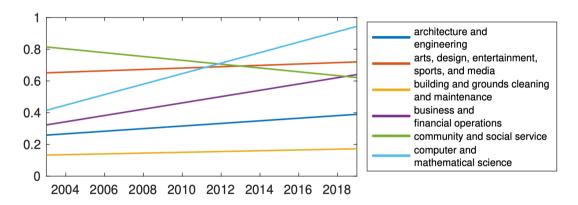
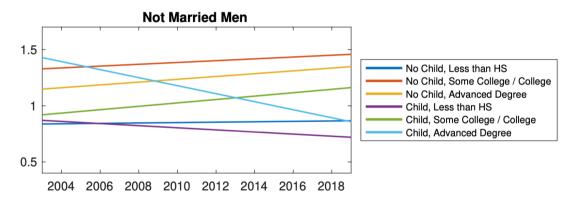
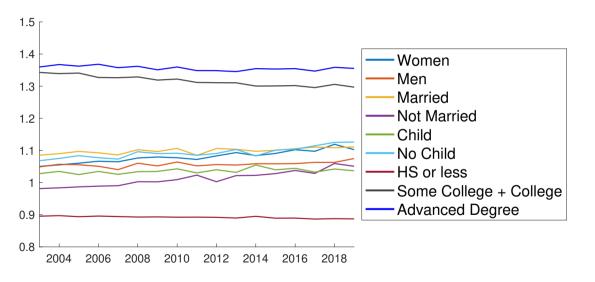
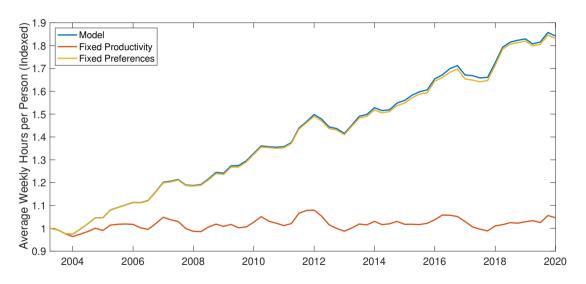

Model Fit

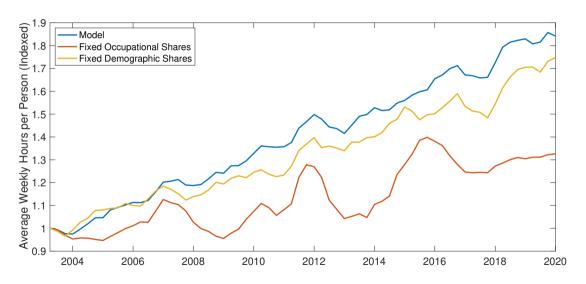
Table: Model and Data Moments


	Data	Model
Hours ratio	0.383	0.370
$P(h^h > 0 \& h^w > 0)$	0.107	0.103
$P(h^h=0)$	0.828	0.830
$P(h^w=0)$	0.065	0.067

Model Fit






Counterfactuals

- Preferences vs Productivity
 - predict hours worked at home if preferences had not changed $\delta_i^{\chi} = 0 \ \forall i$
 - ullet predict hours worked at home if productivity had not changed $\delta_j^ heta=0 \ \ orall j$
- Demographic vs Occupational Employment Composition
 - aggregate hours worked at home if demographic comp. had not changed
 - aggregate hours worked at home if occupational employment comp. had not changed

Preferences vs Productivity

Demographic vs Occupational Employment Composition

Conclusion

- Document a doubling of hours worked at home pre pandemic
- Document large difference across occupations
- Estimate relative productivity and disutility of WFH
- Preference and demographic changes account for little of the increase
- Productivity and occupational employment changes account for the rise in WFH

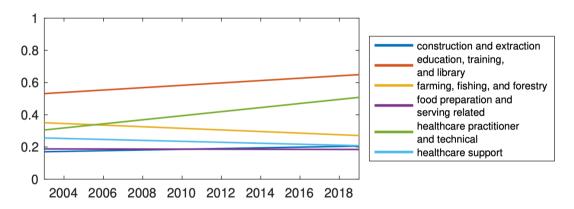
Appendix: ATUS Hours Worked Summary

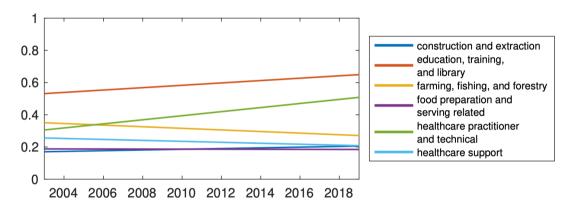
	Sample Mean
Panel (a): All Work	
Participation	0.85
Unconditional Hours	6.92
Conditional Hours	8.15
Panel (b): Work at Workplace	
Participation	0.79
Unconditional Hours	6.50
Conditional Hours	8.19
Panel (c): Work at Home	
Participation	0.15
Unconditional Hours	0.42
Conditional Hours	2.86
Total number of Observations	47,792

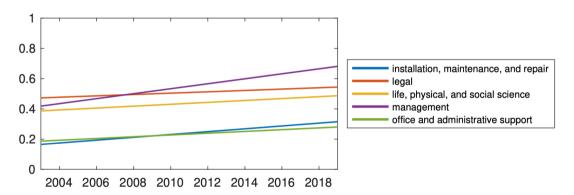
Appendix: ATUS Commute to work

Appendix: JFL Summary Statistics

Table: Job Flexibility and Leave Module Summary Statistics


	Mean		Mean
Female	0.46	Advanced Degree	0.35
Married	0.67	White	0.84
Age	42.45	Black	0.08
Child	0.45	Other	0.09
Less than HS	0.00	Full Time	0.93
High School	0.06	Paid work at home	0.75
Some College	0.14	Take work home	0.12
College	0.44	Both paid at and take work home	0.12
Observations			1,363


Appendix: Days at home distribution


Table: Summary Statistics: Hours ratio and Days ratio

	Minimum	25th percentile	Median	Mean	75th percentile	Max
Hours Ratio	0.0012	0.0531	0.1333	0.4758	0.3131	95.0000
Days Ratio	0.0161	0.0465	0.1111	0.6086	0.4286	10.0000

