A Theory of Eligibility Requirements and Firm Risk-Taking

Matthias Kaldorf¹ Florian Wicknig¹

¹Deutsche Bundesbank

June 2023

The views expressed here are our own and do not necessarily reflect those of the Deutsche Bundesbank or the Eurosystem.

Eligibility Requirements

- Common in regulation/policy (QE, collateral, money market, pension & investment funds...).
- Focus on credit risk via minimum rating/maximum PD requirements.
- Sluggish instrument, but not fixed: ECB lowered min. rating requirement for corporate collateral from A to BBB in 2008. [Panel]
- Regulator's trade-off follows a risk management perspective.
 - Sufficient amount of eligible assets.
 - . Low credit risk of eligible assets.

Firm responses affect the trade-off.

Banks are willing to pay premia on eligible bonds. \Rightarrow (Highly-rated) firms increase bond issuance and leverage.

The Role of Firm Responses: This Paper

Research questions

- How do eligibility requirements affect debt and default risk at the firm level?
- What is the role of endogenous firm responses for macro aggregates?
- How should eligibility requirements be designed?

What we do

- Propose a **heterogeneous firm model** with eligibility premia and endogenous corporate debt and default behavior.
- Apply the model to **Eurosystem collateral policy** and evaluate aggregate effects.

The Role of Firm Responses: What We Find

Micro level: collateral eligibility affects firms heterogeneously.

- Low-risk firms issue more debt without losing eligibility (risk-taking effect).
- Medium-risk firms reduce their debt issuance to benefit from collateral premia (disciplining effect).

Macro level: reduce rating requirement from A to BBB.

- Risk- and disciplining effects **increase quantity** of eligible assets, but have opposing impacts on **quality**.
- In total, firm responses dampen the mechanical effect of a policy change on the collateral supply.

Eligibility covenant: extension of a minimum rating requirement to account for risk-taking effects \Rightarrow alleviates the dampening effect of firm responses.

Related Literature

Theory

- Koulischer and Struyven (2014) and Choi, Santos, and Yorulmazer (2021): central bank lending against low-quality bonds is beneficial under certain conditions.

Our paper is the first to study macro impact and policy implications in a setting with endogenous collateral supply response.

Empirics

- Chen et al. (2019), Mésonnier, O'Donnell, and Toutain (2022) and Pelizzon et al. (2020): pledgeability/eligibility premium.
- Grosse-Rueschkamp, Steffen, and Streitz (2019), Todorov (2020), Mota (2021): *QE-eligible* firms increase leverage, debt issuance, investment, dividends.
- Kisgen (2009) and Kisgen (2006): firms near rating thresholds reduce their debt issuance.

We provide an analytical framework to study these empirical regularities in equilibrium.

Stylized Model of Eligibility Requirements

- Two (risk-neutral) agents: **banks** and **firms**, trading on the corporate bond market.
- Firm owners/managers are **impatient** ($\beta < 1$): incentive to issue bonds.
- Banks do not discount the future and have an exogenous willingness to pay an eligibility premium.
- Exogenous eligibility threshold (set by the central bank).

Firms: Fundamentals

- Firms receive revenues μ_t^s with a type-specific distribution.
- Denote the cdf by F^s and consider three types $s \in \{low, medium, high\}$.
- These types will arise endogenously from a continuous type distribution.

Corporate Bonds

- One-period discount bonds b_{t+1} are issued at price q_t .
- Firms default in t + 1 if the debt repayment b_{t+1} exceeds the revenues μ_{t+1} . \Rightarrow The default probability is given by $F^{s}(b_{t+1})$.
- Eligibility depends on default risk, where eligibility threshold \overline{F} is a central bank policy variable:

$$\Psi(F_t^s) = \begin{cases} 1 & \text{if } F_t^s \leq \overline{F} \\ 0 & \text{else} \end{cases}$$

- Banks pay an **eligibility premium** *L* on eligible bonds. Banks' first-order condition gives the discontinuous bond price schedule for firm type *s*

$$q_t^s = (1 + \Psi(F_t^s) \cdot L) \cdot (1 - F_t^s)$$
 .

Firms: Optimal Debt Choice details

Observation I: Eligible Firms

Under a monotone hazard rate assumption on revenues eligible firms issue more debt than otherwise identical ineligible firms of the same type.

Observation II: Endogenous Firm Types

- Unconstrained eligible (low risk) satisfy $F(b_{t+1}^s) < \overline{F}$.
- Constrained eligible (medium risk) choose $F(b_{t+1}^s) = \overline{F}$.
- Non-eligible (high risk) choose $F(b_{t+1}^s) > \overline{F}$.

Firms: Effect of Eligibility

Application to ECB Collateral Policy Skip to Results

- Modification/extension of Gomes, Jermann, and Schmid (2016).
- Persistent idiosyncratic revenues instead of permanently different firms. details
- Long-term bonds that mature probabilistically instead of one period bonds \Rightarrow debt rollover in FOC. details
- Free parameters are chosen to match the cross-section of spreads, median debt/EBIT, the collateral premium, and the share of eligible bonds.

Full Parameterization

Full Model: Targeted Moments

- Small discrepancy regarding debt/EBIT. The bond spread distribution is matched well.
- We reconcile empirical evidence at the firm level using a simulated cross-section of firms: details

Moment	Data	Model
Eligibility premium $r - r_0$	11	11
$Debt/EBIT \ Q_{0.50} \overline{F}^{A} $	4.2	3.2
Bond spread $Q_{0.25} \overline{F}^A$	31	30
Bond spread $Q_{0.50} \overline{F}^A$	51	58
Bond spread $Q_{0.75} \overline{F}^A$	81	80

Macro Effect of Collateral Easing Cormal decomposition Ro

- Decompose the effect on collateral supply into the
 - Mechanical effect (higher \overline{F} , constant firm behavior).
 - Firm responses
- Compute the fraction of firms subject to risk-taking or disciplining effects.

	Total Effect	Mechanical Effect
Collateral Supply \overline{B} Default Costs ${\cal M}$	+62% +8%	+71%
Firm Responses	Disciplining	Risk-Taking
Tight (A) Lenient (BBB)	19% 3%	51% 79%

- Driven by increased risk-taking, firm responses dampen the total effect. \Rightarrow Long-term debt and persistence of revenue imply debt-rollover risk.

What Can the Central Bank Do?

- Disincentivize risk-taking while preserving a sufficiently high supply of collateral.
- How? Condition eligibility on current default risk and leverage with leverage-based eligibility covenants.
- Leverage-dependent minimum rating requirement with $\frac{\partial F'_t}{\partial b'_t} < 0$ and policy parameter γ .
- If $\gamma >$ 0, highly levered firms have an incentive to deleverage.
- In paper, focus on exponential class to scale the maximum debt a firm can issue without losing eligibility $(\widetilde{b_{t+1}^j})$

 $\widetilde{b}_{t+1}^{j,\textit{covenant}} = \exp\{-\gamma b_t^j\} \cdot \widetilde{b}_{t+1}^j$

Leverage-Based Covenant: Collateral Laffer Curve

Leverage-Based Covenant: Mechanism

Conclusion

This paper:

- We provide a framework to study the endogenous response of firms to eligibility requirements.
- Eligibility requirements have a heterogeneous impact at the firm level.

Application to ECB collateral policy:

- On the aggregate level, firm responses *dampen* the impact of eligibility requirements on collateral supply and increase aggregate default costs.

Policy implication:

- It becomes necessary to account for firm responses in the design of eligibility requirements.
- Eligibility covenants are a potential tool to alleviate these adverse effects.

Corporate Bonds as Collateral: Overview 🔤

Central bank	Pre GFC (Min. rating)	Post GFC (Min. rating)	Post Covid-19 (Min. rating)
Australia	No	Yes (AAA)	Yes (BBB)
Eurosystem	Yes (A)	Yes (BBB)	Yes (BB)*
Japan	Yes (A)	Yes (BBB)†	Yes (BBB)
Switzerland	Yes (AA)	Yes (AA)	Yes (AA)
United Kingdom	No	No	No
United States ^{††}	Yes (AAA)	Yes (AAA)	Yes (AAA)

Source: Bank for International Settlements (2013) & national central banks.

Corporate Bonds as Collateral: Eurosystem 🔤

Timespan	Regime Haircut:		ıt:
		A- or higher	BBB
Jan 2007 - Oct 2008	Fitch, S&P and Moody's accepted as ECAI: minimum requirement A-	4.5 %	100 %
Oct 2008 - Dec 2010	DBRS added as ECAI: minimum requirement BBB-	4.5 %	9.5 %
Jan 2011 - Sep 2013	Tightening of haircuts	5 %	25.5 %
Oct 2013 - today	Relaxation of haircuts	3 %	22.5 %
April 2020	 Relaxation of haircuts by 20 %	6 for duration of	 of PEPP

Haircuts based on corporate bond with fixed coupon and maturity of 3 to 5 years.

Firms: Eligible Debt Capacity

Eligible debt capacity: Maximum amount of debt a firm of type *s* can issue without losing eligibility.

Firms: Debt Choice **back**

- Solving the firm problem yields the FOC for debt b_{t+1}

$$rac{\partial q^s(b_{t+1})}{\partial b_{t+1}}b_{t+1}+q^s(b_{t+1})=etaig(1-F^s(b_{t+1})ig)$$

- Derivative of the bond price depends on eligibility

$$\frac{\partial q^s(b_{t+1})}{\partial b_{t+1}} = \begin{cases} -F'(b_{t+1}), & \text{if } F^s_{t+1} > \overline{F} \\ -F'(b_{t+1})(1+L), & \text{if } F^s_{t+1} \le \overline{F} \end{cases}.$$

- Two potentially optimal debt choices: $b_{t+1}^{s,1}$ and $b_{t+1}^{s,2}$.
- Define the eligible debt capacity as $F(\widetilde{b}_{t+1}^s) = \overline{F}.$
- Denote firm value function by $V^{s}(\cdot)$. Optimal debt choice

$$\begin{split} \mathcal{B}^{s} &= \mathbb{1}\left\{V^{s}(b_{t+1}^{s,1}) \leq V^{s}(\min\{b_{t+1}^{s,2}, \widetilde{b}_{t+1}^{s}\})\right\} \cdot \min\{b_{t+1}^{s,2}, \widetilde{b}_{t+1}^{s}\} \\ &+ \mathbb{1}\left\{V^{s}(b_{t+1}^{s,1}) > V^{s}(\min\{b_{t+1}^{s,2}, \widetilde{b}_{t+1}^{s}\})\right\} \cdot b_{t+1}^{s,1} \,. \end{split}$$

Firms: Collateral Easing **back**

Firms: Fundamentals **back**

- Firm j receives idiosyncratic revenues $e^{\mu_t^j}$.
- Revenues follow AR(1)-process: $\mu_t^j = \rho_\mu \mu_{t-1}^j + \sigma_\mu \epsilon_t^j$ and $\epsilon_t^j \sim N(0, 1)$.
- Bonds mature with probability π .
- Default probability given by

$$F_{t+1}^{j} = \Phi\left(\frac{\log\left(\pi b_{t+1}^{j}\right) - \rho_{\mu}\mu_{t}^{j}}{\sigma_{\mu}}\right)$$

- Re-arranging gives eligible debt capacity

$$\widetilde{b}_{t+1}^{j} = \frac{\exp\{\sigma_{\mu} \Phi^{-1}(\overline{F}) + \rho_{\mu} \mu_{t}^{j}\}}{\pi}$$

Banks: Bond Pricing **back**

- Price schedule for long-term bonds contains two parts:

$$egin{aligned} q(b_{t+1}^{j},\mu_{t}^{j}) &= rac{1+\Psi(\mathcal{F}(b_{t+1}^{j}|\mu_{t}^{j}))L}{1+r^{rf}}iggl(\pi\cdotiggl(1-\mathcal{F}(b_{t+1}^{j}|\mu_{t}^{j})iggr)-(1-\pi)\cdot\mathbb{E}_{t}\Big[q\left(\mathcal{B}(b_{t+1}^{j},\mu_{t}^{j}),\mu_{t+1}^{j}
ight)\Big]iggr) \end{aligned}$$

- 1. Repayment and rollover.
- 2. Eligibility premium.

Firm: Debt Problem (back)

- The maximization problem can be represented by the Bellman equation

$$\begin{split} \mathcal{W}(b_{t}^{j},\mu_{t}^{j}) &= \max_{\substack{b_{t+1}^{j} \\ b_{t+1}^{j}}} \quad \mathcal{V}(b_{t+1}^{j},\mu_{t}^{j}) &= \mathbb{I}\{e^{\mu_{t}^{j}} > \pi b_{t}^{j}\} \left(e^{\mu_{t}^{j}} - \pi b_{t}^{j}\right) + \\ q(b_{t+1}^{j},\mu_{t}^{j}) \left(b_{t+1}^{j} - (1-\pi)b_{t}^{j}\right) + \beta \mathbb{E}_{t} \left[\mathcal{W}(b_{t+1}^{j},\mu_{t+1}^{j})\right] \,. \end{split}$$

- FOC for debt

$$egin{aligned} rac{\partial q(b_{t+1}^j,\mu_t^j)}{\partial b}\left(b_{t+1}^j-(1-\pi)b_t^j
ight)+q(b_{t+1}^j,\mu_t^j)\ &=eta\left(\pi(1-\mathcal{F}(b_{t+1}^j))+(1-\pi)\mathbb{E}_t\left[q_{t+1}
ight]
ight) \end{aligned}$$

- Derivative of the bond price

$$\frac{\partial q(b_{t+1}^j, \mu_t^j)}{\partial b_{t+1}^j} = \begin{cases} -F'(b_{t+1}^j)\pi \frac{1}{1+r^{r\bar{r}}} , & \text{if } F_{t+1}^j > \overline{F} \\ -F'(b_{t+1}^j)\pi \frac{1+L}{1+r^{r\bar{r}}} , & \text{if } F_{t+1}^j \le \overline{F} \end{cases}.$$

Full Parameterization **Dark**

Parameter	Value	Source
Bank discount rate <i>r^{rf}</i>	0.0035	EURIBOR-HCPI
Borrower discount factor eta	0.995	Standard
Coupon Rate κ	0.01	<i>Markit</i> iBoxx
Maturity Parameter π	0.0625	<i>Markit</i> iBoxx
Eligibility premium <i>L</i>	0.004	Calibrated
Bankruptcy costs <i>m</i>	0.2	Calibrated
Revenue persistence $ ho_{\mu}$	0.93	Calibrated
Revenue shock std. dev. σ_{μ}	0.0375	Calibrated
A-eligibility threshold \overline{F}^A	1.4%	Calibrated
BBB-eligibility threshold \overline{F}^{BBB}	18.5%	Calibrated

Reconciling Micro-Evidence

- Using the model-implied firm cross-section, we run the following regression

$$x^{j}=eta_{0}+eta_{1} extsf{Eligible}_{t}^{j}+eta_{2} extsf{Eligible}_{t}^{j}rac{b_{t}^{j}}{\mu_{t}^{j}}+\epsilon^{j}$$
 .

- We use the yield reaction, debt issuance, and dividend reaction to surprise eligibility as outcome variables.
- Coefficient signs:

		Data			Model	
Control	$r_t^{j,0} - r_t^j$	$\mathcal{B}_{t+1}^j - b_{t+1}^{j,1}$	$\mathcal{D}_t^j - d_t^{j,1}$	$r_t^{j,0} - r_t^j$	$\mathcal{B}_{t+1}^j - \mathit{b}_{t+1}^{j,1}$	$\mathcal{D}_t^j - d_t^{j,1}$
Eligibility	+	+	+	+	+	+
$Leverage\timesEligibility$	-	-	-	-	-	-

Collateral Easing in Equilibrium 🔤

The change in collateral supply $\Delta(\overline{B})$ can be decomposed into

$$\begin{split} \overline{B}^{BBB} - \overline{B}^A &\equiv \int \mathbbm{1} \{F^{BBB} < \overline{F}^{BBB} \} q^{BBB} b^{BBB} dG^{BBB}(\mu, b) - \int \mathbbm{1} \{F^A < \overline{F}^A \} q^A b^A dG^A(\mu, b) \\ &= \underbrace{\int \mathbbm{1} \{F^{BBB} < \overline{F}^{BBB} \} q^{BBB} b^{BBB} dG^{BBB}(\mu, b) - \int \mathbbm{1} \{F^A < \overline{F}^{BBB} \} q^A b^A dG^A(\mu, b)}_{\text{Firm response}} \\ &+ \underbrace{\int \mathbbm{1} \{F^A < \overline{F}^{BBB} \} q^A b^A dG^A(\mu, b) - \int \mathbbm{1} \{F^A < \overline{F}^A \} q^A b^A dG^A(\mu, b)}_{\text{Response}} \,. \end{split}$$

Mechanical effect

Macroeconomic Aggregates: High Fundamental Risk 🚥

	Total Effect	Mechanical Effect
Collateral Supply \overline{B} Default Costs ${\cal M}$	+58% +7%	+67%
Firm Responses	Disciplining	Risk-Taking
Tight (A) Lenient (BBB)	16% 0%	52% 77%

Macroeconomic Aggregates: Endogenous Premia 🔤

	Total Effect	Mechanical Effect
Collateral Supply \overline{B} Default Costs ${\cal M}$	+53% -2%	+66%
Firm Responses	Disciplining	Risk-Taking
Tight (A) Lenient (BBB)	17% 0%	51% 82%