Can Stablecoins be Stable?

Adrien d'Avernas

Vincent Maurin

Stockholm School of Economics Stockholm School of Economics Quentin Vandeweyer University of Chicago

BdE-CEMFI Conference on Financial Stability 2023

Stable Coins?

• Stablecoin: crypto pegged to a traditional currency (USD, EUR, ...)

 \rightarrow allegedly combine benefits of blockchains with stability of traditional money

 \bullet Stablecoins' market value grew from \$3B in 2019 to \sim \$125B in 2023

Stable Coins?

• Stablecoin: crypto pegged to a traditional currency (USD, EUR, ...)

 \rightarrow allegedly combine benefits of blockchains with stability of traditional money

- \bullet Stablecoins' market value grew from \$3B in 2019 to \sim \$125B in 2023
- The Terra crash

other stablecoins

• Regulatory initiatives in the US, EU, UK

Old Problem, New Solutions?

- ullet Stablecoin issuers are "making" money \sim central/commercial banks
 - $\triangleright\,$ stablecoins' use as crypto money $\rightarrow\,$ convenience yield
 - $\triangleright\,$ convenience yield $\rightarrow\,$ seigniorage revenues for issuer

Old Problem, New Solutions?

- ullet Stablecoin issuers are "making" money \sim central/commercial banks
 - $\triangleright\,$ stablecoins' use as crypto money $\rightarrow\,$ convenience yield
 - $\triangleright\,$ convenience yield $\rightarrow\,$ seigniorage revenues for issuer
- Earning seigniorage requires credibility: e.g. avoid overprinting.

Old Problem, New Solutions?

- Stablecoin issuers are "making" money \sim central/commercial banks
 - \triangleright stablecoins' use as crypto money \rightarrow convenience yield
 - $\triangleright~$ convenience yield $\rightarrow~$ seigniorage revenues for issuer
- Earning seigniorage requires credibility: e.g. avoid overprinting.
- New tools to reduce monetary policy discretion with stablecoins?
 - blockchain "smart" contracts: programmable decisions
 - b delegated issuance with decentralized model (e.g. DAI)
 - equity-financed open market operations

This Paper

Research Question: Are there designs that can make stablecoins stable?

This Paper

Research Question: Are there designs that can make stablecoins stable? **Model:**

- Demand: users get time-varying liquidity benefits from stablecoins
- Supply: monopolistic platform maximizes seigniorage revenues

Key Friction: Optimal stablecoin monetary policy is time-inconsistent

 \rightarrow platform overissues to dilute past users (\sim Coase) \rightarrow peg is lost

This Paper

Research Question: Are there designs that can make stablecoins stable? **Model:**

- Demand: users get time-varying liquidity benefits from stablecoins
- Supply: monopolistic platform maximizes seigniorage revenues

Key Friction: Optimal stablecoin monetary policy is time-inconsistent

 \rightarrow platform overissues to dilute past users (\sim Coase) \rightarrow peg is lost

Results:

- Commitment: demand fluctuations → issuance and repurchase
 → fragility of algo. stablecoins: peg lost after large demand drop
- No commitment: collateral helps with stability but not commitment **Decentralized issuance** restores commitment

Outline

1 Introduction

2 Model

- Full Commitment
- Overissuance Problem
- 5 Decentralized Issuance

6 Conclusion

Stablecoin Demand

- Continuous time $t \in [0,\infty)$ and common discount rate r
- Stablecoin = ∞ -maturity asset, pays interest δ_t (in stablecoins), price p_t
- Mass 1 of users value consumption x_t and real stablecoin balances $p_t c_t$

$$(x_t + u_t(p_tc_t))dt$$
 (utility flow)

 \rightarrow money in the utility \approx transaction benefits from holding stablecoins

Stablecoin Demand

- Continuous time $t \in [0,\infty)$ and common discount rate r
- Stablecoin = ∞ -maturity asset, pays interest δ_t (in stablecoins), price p_t
- Mass 1 of users value consumption x_t and real stablecoin balances $p_t c_t$

$$(x_t + u_t(p_tc_t))dt$$
 (utility flow)

 \rightarrow money in the utility \approx transaction benefits from holding stablecoins

• Investors' optimization \Rightarrow competitive stablecoin price

$$p_t = p_t \delta_t dt + p_t u_t'(p_t c_t) dt + (1 - r dt) \mathbb{E}_t[p_{t+dt}]$$

Stablecoin Demand

- Continuous time $t \in [0,\infty)$ and common discount rate r
- Stablecoin = ∞ -maturity asset, pays interest δ_t (in stablecoins), price p_t
- Mass 1 of users value consumption x_t and real stablecoin balances $p_t c_t$

$$(x_t + u_t(p_tc_t))dt$$
 (utility flow)

 \rightarrow money in the utility \approx transaction benefits from holding stablecoins

Investors' optimization ⇒ competitive stablecoin price

$$p_t = p_t \delta_t dt + p_t u'_t(p_t c_t) dt + (1 - r dt) \mathbb{E}_t[p_{t+dt}]$$

• Market clearing $c_t = C_t$ (supply) \rightarrow sufficient statistics for demand is

$$\ell_t = u_t'(p_t C_t)$$

Liquidity Benefit

• Liquidity benefit $\ell_t = \text{flow } \underline{\text{demand function}}$ for stablecoins

Liquidity Benefit

- Liquidity benefit $\ell_t =$ flow demand function for stablecoins
- ℓ_t fluctuates with exogenous demand shock A_t (for given real stock $p_t C_t$)

$$dA_t = \underbrace{\mu A_t dt + \sigma A_t dZ_t}_{\text{geometric brownian motion}} + \underbrace{A_{t^-}(S_t - 1)dN_t}_{\downarrow \text{ jumps}}$$

- $\triangleright\,$ stochastic demand with expected growth rate
- $\triangleright \ \downarrow$ jump: sudden drop in demand

Liquidity Benefit

- Liquidity benefit $\ell_t =$ flow demand function for stablecoins
- ℓ_t fluctuates with exogenous demand shock A_t (for given real stock $p_t C_t$)

$$dA_t = \underbrace{\mu A_t dt + \sigma A_t dZ_t}_{\text{geometric brownian motion}} + \underbrace{A_{t^-}(S_t - 1)dN_t}_{\downarrow \text{ jumps}}$$

▷ stochastic demand with expected growth rate
 ▷ ↓ jump: sudden drop in demand

• Peg assumption: liquidity benefit enjoyed only under price peg

$$\ell_t = \ell(A_t, C_t) \mathbf{1}_{p_t = 1}$$

 \rightarrow captures extreme preference for stability (e.g. coins as means of payment)

Stablecoin Supply: Centralized Case

- Stablecoin platform chooses monetary policies to maximize revenues:
 - $\triangleright~$ Stablecoin issuance and buyback policy $\{d\mathcal{G}_t\}_{t\geq 0}$ at market price p_t
 - $\triangleright~$ Interest flow payment to stablecoin owners $\{\delta_t\}_{t\geq 0}$ in stablecoins

$$\underbrace{dC_t}_{\Delta \text{ stablecoin}} = d\mathcal{G}_t + \delta_t C_t dt$$

Stablecoin Supply: Centralized Case

- Stablecoin platform chooses monetary policies to maximize revenues:
 - $\triangleright~$ Stablecoin issuance and buyback policy $\{d\mathcal{G}_t\}_{t\geq 0}$ at market price p_t
 - $\triangleright\,$ Interest flow payment to stablecoin owners $\{\delta_t\}_{t\geq 0}$ in stablecoins

$$\underbrace{dC_t}_{\Delta \text{ stablecoin}} = d\mathcal{G}_t + \delta_t C_t dt$$

 $\triangleright \ \ {\rm Collateralization \ ratio \ } \varphi \in [0,1]:$

collateral value = φC_t

• Collateral: liquid and safe asset, with return $\mu^k \leq r \rightarrow \text{holding cost}$

Stablecoin Supply: Centralized Case

- Stablecoin platform chooses monetary policies to maximize revenues:
 - $\triangleright~$ Stablecoin issuance and buyback policy $\{d\mathcal{G}_t\}_{t\geq 0}$ at market price p_t
 - \triangleright Interest flow payment to stablecoin owners $\{\delta_t\}_{t\geq 0}$ in stablecoins

$$\underbrace{dC_t}_{\Delta \text{ stablecoin}} = d\mathcal{G}_t + \delta_t C_t dt$$

 $\triangleright \ \ {\sf Collateralization \ ratio} \ \varphi \in [0,1]:$

collateral value =
$$\varphi C_t$$

- \bullet Collateral: liquid and safe asset, with return $\mu^k \leq r \rightarrow$ holding cost
- Monopolistic platform internalizes effect of policies on equilibrium price

$$p_t = \mathbb{E}_t \left[\int_t^\infty \left(\ell(A_s, \ C_s) \mathbf{1}_{p_s=1} + \delta_s \right) p_s e^{-r(s-t)} ds \right]$$

Outline

1 Introduction

2 Model

3 Full Commitment

Overissuance Problem

5 Decentralized Issuance

6 Conclusion

Unlimited Commitment Benchmark

• Platform chooses at date 0 policies for all dates $t \geq 0$

 \rightarrow unlimited commitment = unlimited liability (relaxed later)

Unlimited Commitment Benchmark

• Platform chooses at date 0 policies for all dates $t \geq 0$

 \rightarrow unlimited commitment = unlimited liability (relaxed later)

• Monopolistic platform's problem simplifies to:

$$E_0 = \max_{\varphi, \{C_\tau\}_{\tau \ge 0}} \mathbb{E}\left[\int_0^\infty e^{-rt} \Big(\underbrace{\ell(A_t, C_t)C_t \mathbf{1}_{p_t=1}}_{\text{seignoriage revenue flow}} - \underbrace{(r - \mu^k)\varphi C_t}_{\text{collateral cost flow}}\Big) dt\right]$$

Unlimited Commitment Benchmark

• Platform chooses at date 0 policies for all dates $t \geq 0$

 \rightarrow unlimited commitment = unlimited liability (relaxed later)

• Monopolistic platform's problem simplifies to:

$$E_0 = \max_{\varphi, \{C_\tau\}_{\tau \ge 0}} \mathbb{E}\left[\int_0^\infty e^{-rt} \Big(\underbrace{\ell(A_t, C_t)C_t \mathbf{1}_{p_t=1}}_{\text{seignoriage revenue flow}} - \underbrace{(r - \mu^k)\varphi C_t}_{\text{collateral cost flow}} \Big) dt \right]$$

subject to

$$p_t = \mathbb{E}_t \left[\int_t^\infty \left(\ell(A_s, C_s) \mathbf{1}_{p_s=1} + \delta_s \right) p_s e^{-r(s-t)} ds \right]$$
 (Comp. Pricing)

Stable Equilibrium with Unlimited Commitment

The optimal policies that support a stable equilibrium $(p_t = 1 \ \forall t)$ are:

- $\varphi^{\star} = 0$ (no collateral)
- stablecoin stock: $C^{\star}(A_t) = \arg \max_C \ell(A_t, C)C = A_t/a^{\star}$
- interest-rate on stablecoin: $\delta^* = r \ell(A, C^*(A))$

Stable Equilibrium with Unlimited Commitment

The optimal policies that support a stable equilibrium $(p_t = 1 \ \forall t)$ are:

- $\varphi^{\star} = 0$ (no collateral)
- stablecoin stock: $C^{\star}(A_t) = \arg \max_C \ell(A_t, C)C = A_t/a^{\star}$
- interest-rate on stablecoin: $\delta^* = r \ell(A, C^*(A))$

• Implementation with open-market operations

Stable Equilibrium with Unlimited Commitment

The optimal policies that support a stable equilibrium $(p_t = 1 \ \forall t)$ are:

- $\varphi^{\star} = 0$ (no collateral)
- stablecoin stock: $C^{\star}(A_t) = \arg \max_C \ell(A_t, C)C = A_t/a^{\star}$
- interest-rate on stablecoin: $\delta^* = r \ell(A, C^*(A))$

• Implementation with open-market operations

Stable Equilibrium with Unlimited Commitment

The optimal policies that support a stable equilibrium $(p_t = 1 \ \forall t)$ are:

- $\varphi^{\star} = 0$ (no collateral)
- stablecoin stock: $C^{\star}(A_t) = \arg \max_C \ell(A_t, C)C = A_t/a^{\star}$
- interest-rate on stablecoin: $\delta^* = r \ell(A, C^*(A))$

• Implementation with open-market operations

Stable Equilibrium with Unlimited Commitment

The optimal policies that support a stable equilibrium $(p_t = 1 \ \forall t)$ are:

- $\varphi^{\star} = 0$ (no collateral)
- stablecoin stock: $C^{\star}(A_t) = \arg \max_C \ell(A_t, C)C = A_t/a^{\star}$
- interest-rate on stablecoin: $\delta^* = r \ell(A, C^*(A))$

- Implementation with open-market operations
- What if repurchases must be financed with plaftorm's wealth?

Stablecoin Repurchases

• Limited liability constraint: equity value $E_t \ge 0$ at all times t

Stablecoin Repurchases

• Limited liability constraint: equity value $E_t \ge 0$ at all times t

Stablecoin Repurchases

• Limited liability constraint: equity value $E_t \ge 0$ at all times t

- Algo. implementation of policy in "normal" times (e.g. Terra):
 - \triangleright Demand $A \uparrow$ sell stablecoins, pay dividends (buy back equity tokens)
 - $\triangleright~$ Demand $A\downarrow$ buy back stablecoins by selling equity tokens
- Large $\downarrow \downarrow$ shock to demand \rightarrow devaluation is unavoidable: $p_t < 1$

Algorithmic Stablecoins under Limited Liability

- Optimal issuance-buyback policy is such that:
 - $\triangleright\,$ target demand ratio $a^{\star}=\frac{A}{C}$ unless demand shock too negative
 - \triangleright low demand-ratio region $[0, \overline{a}]$: no issuance nor repurchase

Details

Algorithmic Stablecoins under Limited Liability

- Optimal issuance-buyback policy is such that:
 - \triangleright target demand ratio $a^{\star} = \frac{A}{C}$ unless demand shock too negative
 - \triangleright low demand-ratio region $[0, \overline{a}]$: no issuance nor repurchase
- Numerical illustration: unlimited liability vs. limited liability

Algorithmic Stablecoins under Limited Liability

- Optimal issuance-buyback policy is such that:
 - \triangleright target demand ratio $a^{\star}=\frac{A}{C}$ unless demand shock too negative
 - ▷ low demand-ratio region $[0, \overline{a}]$: no issuance nor repurchase
- Numerical illustration: unlimited liability vs. limited liability

- When peg is lost, p(a) > 0 because demand recovers in expectation
- Interest payment in peg region $\approx r \ell(a^*) + \mathbb{E}[\text{stablecoin devaluation}]$
- Uncollateralized platform exists only if stablecoin demand grows: $\mu \geq \frac{\lambda}{\ell-1}$

Details

• Collateral relaxes limited liability constraint, $E_t \ge 0$

$$E_t = \mathbb{E}\left[\int_t^\tau e^{-r(s-t)} \left(\ell(A_s, C_s)C_s - (r-\mu^k)\varphi C_s\right) ds \middle| A_t\right] - (p_t - \varphi)C_t$$

• Collateral relaxes limited liability constraint, $E_t \ge 0$

$$E_t = \mathbb{E}\left[\int_t^\tau e^{-r(s-t)} \left(\ell(A_s, C_s)C_s - (r - \mu^k)\varphi C_s\right) ds \middle| A_t\right] - (p_t - \varphi)C_t$$

• Optimal φ^* trades off collateral cost with stability benefits

• Collateral relaxes limited liability constraint, $E_t \ge 0$

$$E_t = \mathbb{E}\left[\int_t^\tau e^{-r(s-t)} \left(\ell(A_s, C_s)C_s - (r - \mu^k)\varphi C_s\right) ds \middle| A_t\right] - (p_t - \varphi)C_t^{-1}$$

• Optimal φ^* trades off collateral cost with stability benefits

Narrow Stablecoin ($\varphi^{\star} = 1$) under Commitment

A fully collateralized stablecoin is stable. It is profitable if $\mu^k \ge r - \ell(a^\star)$.

Outline

1 Introduction

2 Model

Full Commitment

Overissuance Problem

5 Decentralized Issuance

6 Conclusion

Discretionary Issuance

- Discretionary issuance/repurchase: $d\mathcal{G}_t$ now decided sequentially
- Motivation: difficulty to implement commitment rule with smart contract
 - \triangleright smart contract = automatic rule executed on blockchain
 - distinction on-chain info vs. off-chain info (harder to embed)
 - \triangleright commitment rule depends on stablecoin outstanding C_{t-} and demand A_t

- Commitment to other policies chosen at date 0 is maintained:
 - \triangleright interest rate δ
 - $\triangleright~$ collateralization ratio $\varphi~$

• Next: intuition for commitment problem + decentralized issuance model

- Consider fully collateralized platform ($\varphi = 1$)
- Full commitment: policy maximizes date-0 value of platform

$$C_t = C^*(A_t) = \arg \max_C \left[\ell(A_t, C) - (r - \mu^k) \right] C$$
$$\delta_t = \delta^* = r - \ell(A, C^*(A))$$

- Consider fully collateralized platform ($\varphi = 1$)
- Full commitment: policy maximizes date-0 value of platform

$$C_t = C^*(A_t) = \arg\max_C \left[\ell(A_t, C) - (r - \mu^k) \right] C$$
$$\delta_t = \delta^* = r - \ell(A, C^*(A))$$

• Platform with C_{t-dt} stablecoins outstanding can reoptimize at date t

$$E_t = \underbrace{C_{t-dt}}_{\text{collateral}} + \underbrace{\int_{s=t}^{\infty} e^{-r(s-t)} \left[\ell(A_s, C_s) \mathbf{1}_{p_s=1} - (r-\mu^k) \right] C_s dt}_{\text{PV seigniorage}} - \underbrace{\underbrace{p_t C_{t-dt}}_{\text{MV debt}}}_{\text{MV debt}}$$

- Consider fully collateralized platform ($\varphi = 1$)
- Full commitment: policy maximizes date-0 value of platform

$$C_t = C^*(A_t) = \arg\max_C \left[\ell(A_t, C) - (r - \mu^k) \right] C$$
$$\delta_t = \delta^* = r - \ell(A, C^*(A))$$

• Platform with C_{t-dt} stablecoins outstanding can reoptimize at date t

$$E_t = \underbrace{C_{t-dt}}_{\text{collateral}} + \underbrace{\int_{s=t}^{\infty} e^{-r(s-t)} \Big[\ell(A_s, C_s) \mathbf{1}_{p_s=1} - (r-\mu^k) \Big] C_s dt}_{\text{PV seigniorage}} - \underbrace{\underbrace{p_t C_{t-dt}}_{\text{MV debt}}}_{\text{NV debt}}$$

subject to $p_t = \ell(A_t, C_t) \mathbf{1}_{p_t=1} dt + \delta^* dt + (1 - rdt) \mathbb{E}_t[p_{t+dt}]$

- Consider fully collateralized platform ($\varphi = 1$)
- Full commitment: policy maximizes date-0 value of platform

$$C_t = C^*(A_t) = \arg \max_C \left[\ell(A_t, C) - (r - \mu^k) \right] C$$
$$\delta_t = \delta^* = r - \ell(A, C^*(A))$$

• Platform with C_{t-dt} stablecoins outstanding can reoptimize at date t

$$E_t = \underbrace{C_{t-dt}}_{\text{collateral}} + \underbrace{\int_{s=t}^{\infty} e^{-r(s-t)} \Big[\ell(A_s, C_s) \mathbf{1}_{p_s=1} - (r-\mu^k) \Big] C_s dt}_{\text{PV seigniorage}} - \underbrace{\underbrace{p_t C_{t-dt}}_{\text{MV debt}}}_{\text{PV seigniorage}}$$

subject to $p_t = \ell(A_t, C_t) \mathbf{1}_{p_t=1} dt + \delta^* dt + (1 - rdt) \mathbb{E}_t[p_{t+dt}]$

• Choosing $C_t > C^{\star}(A_t)$ lowers price of new and **past** stablecoins issued \rightarrow past stablecoins = platform debt \Rightarrow incentives to dilute with inflation ($\downarrow p_t$)

Outline

1 Introduction

2 Model

Full Commitment

Overissuance Problem

5 Decentralized Issuance

6 Conclusion

Decentralized Issuance

• Centralized: issuance $d\mathcal{G}_t$ chosen directly by the platform

Decentralized Issuance

- Centralized: issuance $d\mathcal{G}_t$ chosen directly by the platform
- Decentralized: issuance delegated to small (atomistic) vault owners
 > anyone can open a vault subject to collateral requirement φ/stablecoin
 - \triangleright platform's income: fee $s_t dt$ per coin outstanding charged to vault owners

Decentralized Issuance

- Centralized: issuance $d\mathcal{G}_t$ chosen directly by the platform
- Decentralized: issuance delegated to small (atomistic) vault owners
 ▷ anyone can open a vault subject to collateral requirement φ/stablecoin
 ▷ platform's income: fee stdt per coin outstanding charged to vault owners
- Platform uses fee s_t to pay interest rate $\delta_t \rightarrow \text{profit flow } (s_t \delta_t) p_t C_t dt$

Why Decentralization Works?

• Decentralized issuance changes the way platform earns income:

- \triangleright Centralized: profit flow \propto new issuance $p_t(C_t C_{t-dt})$
- \triangleright Decentralized: profit flow \propto total stablecoin stock C_t :

$$(s_t - \delta_t)p_t C_t = \ell(A_t, C_t)p_t C_t \mathbf{1}_{p_t = 1} - (r - \mu^k)C_t$$

Why Decentralization Works?

• Decentralized issuance changes the way platform earns income:

- \triangleright Centralized: profit flow \propto new issuance $p_t(C_t C_{t-dt})$
- \triangleright Decentralized: profit flow \propto total stablecoin stock C_t :

$$(s_t - \delta_t)p_tC_t = \ell(A_t, C_t)p_tC_t\mathbf{1}_{p_t=1} - (r - \mu^k)C_t$$

 \rightarrow Rental solution for Coase's monopolist

• Only commitment to collateralization ratio $\varphi = 1$ is required

 \rightarrow easy to implement with smart contract

Decentralized Issuance

A stablecoin platform with decentralized issuance can implement the full-commitment outcome under full collateralization.

Coase

Conclusion

• We provide a general framework to analyze stablecoin stability

 Stablecoin's peg undermined by large negative demand shocks incentives to overissue

• Collateral improves stability but does not mitigate overissuance incentives

Decentralized design ties platform's hand via fee-based model
 → dominant stablecoins (USDT, USDC, BUSD) have instead centralized design

APPENDIX

Mixed Success

• Model: centralized platform issues and repurchases at market price p_t .

- Model: centralized platform issues and repurchases at market price p_t .
 - \rightarrow What if users could redeem stablecoins with the platform at $e_t?$

- Model: centralized platform issues and repurchases at market price p_t .
 - \rightarrow What if users could redeem stablecoins with the platform at $e_t?$

• Platform could set $e_t \Rightarrow$ stock C_t adjusts by user arbitrage $p_t = e_t$

 \rightarrow Monopolistic platform effectively controls market price.

- Model: centralized platform issues and repurchases at market price p_t .
 - \rightarrow What if users could redeem stablecoins with the platform at $e_t?$

- Platform could set et ⇒ stock Ct adjusts by user arbitrage pt = et → Monopolistic platform effectively controls market price.
- Difficulty: full redemption rights ⇒ self-fulfilling runs are possible
 → Only fully collateralized platforms can credibly redeem 1:1 all stablecoins

Limited Liability: Analysis

• We solve for the optimal issuance policy in the following class

$$d\mathcal{G}_t = \begin{cases} G(A_t, C_{t^-})dt & \text{if } 0 \leq a_t < \overline{a}, \\ \frac{A_t}{a^\star} - C_{t^-} & \text{if } a_t \geq \overline{a} \end{cases}$$

- Steps to characterize optimal policy:
 - **(**) Conjecture equilibrium price: p(a) = 1 for $a \ge \overline{a}$ and p(a) < 1 otherwise

2
$$e(a) = 0$$
 for $a \leq \overline{a} \Rightarrow G = 0$ and $\delta = 0$ for $a \leq \overline{a}$

- **③** Solve for p(a) in smooth region $[0, \overline{a}]$
- **9** Derive optimal values of thresholds $(\overline{a}, a^{\star})$ that maximize platform value:

$$\frac{e(a^{\star}) + p(a^{\star})}{a^{\star}} = \max_{\overline{a}, a^{\star}} \underbrace{\frac{e(a^{\star}) + p(a^{\star})}{r - \underbrace{\left(\mu - \frac{\lambda}{\xi + 1}\right)}_{\mathbb{E}\left[\frac{dA}{Adt}\right]}} + \underbrace{\left(\frac{\lambda\xi}{\xi + 1} - \frac{\lambda\xi}{\xi - \gamma}\right) \left(\frac{a^{\star}}{\overline{a}}\right)^{-(\xi + 1)}}_{\propto \Pr[\text{lose peg}]}$$

subject to $e(\overline{a}) = \left[e(a^{\star}) + p(a^{\star})\right] \frac{\overline{a}}{a^{\star}} - 1 = 0.$

Decentralized Issuance: Problem

• Platform chooses δ_t, s_t sequentially given state $(\delta_{t-\Delta t}, s_{t-\Delta t}, A_t)$

$$\Pi(\delta_{t-\Delta t}, s_{t-\Delta t}, A_t) = \max_{(s_t, \delta_t)} (s_{t-\Delta t} - \delta_{t-\Delta t}) \Delta_t p_t C_{t-\Delta t} + (1 - r\Delta t) \mathbb{E} \left[\Pi(\delta_t, s_t, A_{t+\Delta t}) \right]$$

s. to
$$p_t = l(A_t, C_t) p_t \Delta t \mathbf{1}_{p_t = 1} + (1 - r\Delta t) \mathbb{E} \left[p_{t + \Delta t} (1 + \delta_t \Delta t) \right]$$
 (U)

$$1 - p_t = (1 - r\Delta t)\mathbb{E}\left[1 + \mu^k \Delta t - p_{t+\Delta t}(1 + s_t\Delta t)\right]$$
(V)

• Guess Markov equilibrium implements commitment solution:

• Policies:
$$(s_t, \delta_t) = (\mu^k, \delta^*)$$

 $\triangleright p^{eq}(\delta_{t-\Delta t}, s_{t-\Delta t}, A_t) = 1$
 $\triangleright C^{eq}(\delta_{t-\Delta t}, s_{t-\Delta t}, A_t) = C^*(A_t) = \arg \max_C \left[\ell(A, C) - r + \mu^k\right]C$

• Verify Given $p_{t+\Delta t} = 1$ and $C_{t+\Delta t} = C^*(A_{t+\Delta t})$, optimize over s_t, δ_t

Back

Decentralized Issuance: Markov Equilibrium

• Platform's profit given $C_{t-\Delta t}, s_{t-\delta_t}, \delta_{t-\Delta t}, A_t$

$$V(\delta, s) = (s_{t-\Delta t} - \delta_{t-\Delta t})\Delta_t p_t C_{t-\Delta t} + (1 - r\Delta t)\mathbb{E}[(s_t - \delta_t)\Delta t] + K_1$$
$$= -(1 - p_t)(s_{t-\Delta t} - \delta_{t-\Delta t})\Delta_t C_{t-\Delta t} + \underbrace{\left[\ell(A_t, C_t)\mathbf{1}_{p_t=1} + \mu^k - r\right]C_t}_{\text{maximized for } p_t=1, C_t=C^*(A_t)} \Delta t + K_2$$

- Given $(s_{t-\Delta t}, \delta_{t-\Delta t}) = (\mu^k, \delta^*)$ and $p_t \leq 1$, first term is negative
- Hence, $(s,\delta)=(\mu^k,\delta^\star)$ is optimal as it implements $p_t=1$, $C_t=C^\star(A_t)$
- Platform lost price-setting power and thus ability to deviate

Proposition 2: Optimal Policy with Nonprogrammable Issuance

For $\varphi=1$ (full collateralization), an interest rule can implement the commitment outcome:

$$\delta(A,C) = r - \ell(A,C)$$

• Intuition: smart interest rule neutralizes price impact and avoids dilution:

$$p_t = \ell(A_t, C_t) \mathbf{1}_{p_t = 1} dt + \delta(A_t, C_t) dt + (1 - rdt) \mathbb{E}_t[\underbrace{p_{t+dt}}_{=1}]$$

• Ex-post, platform affects only the rental rate of stablecoin stock $\ell(A,C)$ \rightarrow rental solution to Coase's durable good monopolist problem

• Limitation: "smart" contract still require off-chain info. about demand A_t .

- 2 period model with durable real good. Stock $\{C_t\}_{t=1,2}$
 - $\triangleright\,$ decreasing liquidity benefit $\ell(C),$ no demand shock
 - ▷ Good price is given by

$$p_1 = \ell(C_1) + \beta p_2$$

$$p_2 = \ell(C_2)$$

Issuer profit

$$\Pi_1 = p_1 C_1 + \beta \Pi_2$$
$$\Pi_2 = p_2 (C_2 - C_1)$$

- 2 period model with durable real good. Stock $\{C_t\}_{t=1,2}$
 - $\triangleright\,$ decreasing liquidity benefit $\ell(C),$ no demand shock
 - \triangleright Good price is given by

$$p_1 = \ell(C_1) + \beta p_2$$

$$p_2 = \ell(C_2)$$

▷ Issuer profit

$$\Pi_1 = p_1 C_1 + \beta \Pi_2 = \ell(C_1) C_1 + \beta \ell(C_2) C_2$$
$$\Pi_2 = p_2 (C_2 - C_1)$$

• **Commitment**: Issuer chooses $C_1 = C_2 = \arg \max_C \ell(C)C$

- 2 period model with durable real good. Stock $\{C_t\}_{t=1,2}$
 - $\triangleright\,$ decreasing liquidity benefit $\ell(C),$ no demand shock
 - \triangleright Good price is given by

$$p_1 = \ell(C_1) + \beta p_2$$

$$p_2 = \ell(C_2)$$

Issuer profit

$$\Pi_1 = p_1 C_1 + \beta \Pi_2 = \ell(C_1) C_1 + \beta \ell(C_2) C_2$$
$$\Pi_2 = p_2 (C_2 - C_1) = \ell(C_2) (C_2 - C_1)$$

- Commitment: Issuer chooses $C_1 = C_2 = \arg \max_C \ell(C)C$
- No Commitment: $\forall C_1$, issuer chooses $C_2 > C_1 \Rightarrow p_2^{nc} < p_2^c$

- 2 period model with durable real good. Stock $\{C_t\}_{t=1,2}$
 - $\triangleright\,$ decreasing liquidity benefit $\ell(C),$ no demand shock
 - Good price is given by

$$p_1 = \ell(C_1) + \beta p_2$$

$$p_2 = \ell(C_2)$$

Issuer profit

$$\Pi_1 = p_1 C_1 + \beta \Pi_2 = \ell(C_1) C_1 + \beta \ell(C_2) C_2$$
$$\Pi_2 = p_2 (C_2 - C_1) = \ell(C_2) (C_2 - C_1)$$

- **Commitment**: Issuer chooses $C_1 = C_2 = \arg \max_C \ell(C)C$
- No Commitment: $\forall C_1$, issuer chooses $C_2 > C_1 \Rightarrow p_2^{nc} < p_2^c$
- **Rental**: chooses rental rate $r_t \stackrel{eq.}{=} \ell(C_t)$ every period.

 \rightarrow issuer internalizes Δ value of total stock (no commitment problem)

