#### Discussion on

#### "Banking dynamics, market discipline and capital regulations"

by Jose-Victor Rios-Rull, Tamon Takamura & Yaz Terajima

Javier Suarez CEMFI

Fourth BdE-CEMFI Conference on Financial Stability Madrid, 29-30 June 2023

## **Overview & positioning of the paper**

- This paper proposes and calibrates ambitious industry equilibrium model aimed to jointly study the effects of

   (i) a countercyclical capital buffer
  - (ii) market discipline
  - on banks in Canada.
- The model features bank heterogeneity, bank default, and distributional dynamics but
  - (i) no interactions between banks
  - (ii) no other source of feedback
- Its core is made of banks' individual dynamic optimization problems:
  (i) aggregate outcomes are just the sum of individual outcomes
  (ii) in response to common and idiosyncratic shocks
  (iii) "industry equilibrium part" is minimal
  - (iii) "industry equilibrium part" is minimal

# • Shocks:

- Two exogenous aggregate states
- Two exogenous individual bank states
- Continuous idiosyncratic shocks to loan defaults
- Industry equilibrium part:
  - Exiting banks are just replaced by equal number of entering banks
  - Only endogenous price is that of wholesale funding (WSF), which is determined purely individually for each bank
  - Instead of market/bank level demands for loans, deposits, etc. banks face
    - \* exogenous bank-specific inelastic demand of unremunerated deposits
    - \* "convex enough" costs of loan origination and issuance of WSF to generate interior solutions

- My take on the approach:
  - I see loan origination & issuance costs (partly) as a short-cut to a fuller specification of the other side of the market
  - This approach neglects potentially relevant interactions between banks
    - $\rightarrow$  "partial, partial equilibrium" model
    - $\rightarrow$  more in "industry equilibrium" than "macro-banking" tradition
- Heterogeneity:
  - Authors highlight the significance of capturing bank heterogeneity
  - Exogenously evolving states & shocks + banks' decisions produce endogenously evolving (i) funding needs (a) & (ii) existing loans (l)[endogenous state variables]
    - $\rightarrow$  very ambitious aspect of the formulation  $\checkmark$
    - $\rightarrow$  but not sure current results extract enough from it

#### Model & structure of the analysis

- Bank owners derive utility from dividends & dynamically optimize choosing:
  - dividends [if negative, extra "equity issuance cost" incurred]
  - short-term WSF [if uninsured = source of market discipline]
  - new loan origination [loans are long-lived  $\checkmark$ ]

subject to capital regulation with two levels of stringency:

- minimum requirement ( $\underline{\theta}$ ) [bank cannot operate below it  $\checkmark$ ]
- minimum plus combined buffer requirement  $(\theta(z))$  [if operating below it, dividends cannot be positive  $\checkmark$ ]
- The soft requirement  $\theta(z)$  is contingent on the aggregate state, capturing presence or release of a two-level version of the Domestic Stability Buffer (Canadian version of the CCyB)

- Baseline calibration of  $\theta(z)$  and  $\underline{\theta}$ 
  - $-\theta(G) = 13\%$  vs  $\theta(B) = 11.5\%$  (= 8% + 2.5 CCoB + 1% DSIB  $\Rightarrow$  DSB=1.5pp)
  - Surprisingly, however,  $\underline{\theta} = 0$  [why not 8%?]
- The analysis considers
  - Stationary economy (state reached after sufficiently many z = G periods) \* across baseline vs.  $\theta(G) = \theta(B)$  cases
    - \* with vs without market discipline (uninsured vs. insured WSF)
  - Impulse-response functions (from shift to z = B for two years) \* for  $\theta(G) = 13\%$ , with and without market discipline \* for  $\theta(G) = 16.5\%$  (DSB=5pp)
  - Transition resulting from announced at  $t{=}2$  permanent upward shift in  $\theta(G)$  to 16.5% after  $t{=}3$

#### Model & structure of the analysis

- Main results (mean IRFs, mean transitional paths for key outcome variables) are reported for three groups of banks: (i) top decile by capital ratio, (ii) all banks, (iii) bottom decile by capital ratios
- The key findings are well summarized by the authors:
  - $-\,\text{DSB}$  smooths credit supply & bank default
    - \* But quantitative impact under  $\theta(G) \theta(B) = 1.5$ pp is small
    - \* Impact is larger for low capitalized banks
    - \* Impacts are bigger when  $\theta(G) \theta(B) = 5pp$
  - Market discipline drives normal capital ratios up
    - \* On average softens the impact of a crisis
    - \* But increases funding vulnerability of large & well-cap banks [which rely more on WSF]

#### Main comments

- Interesting and ambitious paper, with promising first results
- I am a bit nervous about the black-box approach to the demand side
- I would avoid (i) having convoluted non-linearities in cost of loan origination, and (ii) provide additional quantitative discipline to calibration of origination & issuance costs
- Readers would need extra arguments to be convinced about current treatment of bank heterogeneity
- How do you validate the current calibration along this dimension?
  - Said to match data from largest Canadian banks
  - How many banks are in this group?
  - -I think you match means and coefficients of variation of key variables
  - How to assess capacity to reproduce the entire empirical distribution?

- Is the current partition of results (top & bottom capitalization deciles + average) the most relevant? Why?
- I think the capacity of the model to capture well bank behavior regarding capital ratios (management buffers) and dividends/equity issuance is key:
  - Should be main advantage of model with dynamically optimizing banks
  - But current calibration does not perform very well along these dimensions:
     "Overall, they match very well, except for a few moments on dividends"
     (p. 12, on Table 4)

| Equity/Deposit           | 0.24              | 0.29              |
|--------------------------|-------------------|-------------------|
| Dividend/Deposit         | <mark>0.04</mark> | <mark>0.09</mark> |
| CV(New Loans/Deposit)    | 0.49              | 0.35              |
| CV(Loan Balance/Deposit) | 0.23              | 0.27              |
| CV(WSF/Deposit)          | 0.26              | 0.25              |
| CV(Equity/Deposit)       | 0.23              | 0.20              |
| CV(Dividend/Deposit)     | <mark>0.26</mark> | <mark>0.81</mark> |
| CV(Capital Ratio)        | <mark>0.03</mark> | <mark>0.06</mark> |

• This may affect the results and their practical relevance/plausibility

- Illustration: Impulse Responses of New and Existing Loans by Initial Capital Ratio: 5-p.p. CCyB vs Non-State Contingent (Figures 11, 13, 14)
  - Buffer release does not have very large effects on new loans



#### - But the released capital is very much "used"...



 $-\dots$  it is mostly used in **reducing** dividends cuts / equity issuance!



## To conclude

- Nice paper, very interesting to read
- Ambitious and promising model setup
- There are aspects of the modeling and calibration that could be reconsidered, polished or better justified
- I think dynamic optimization by banks should be more strongly aimed to replicate capital and dividend payment responses when banks are hit by negative shocks

#### THANK YOU VERY MUCH