

Local lending specialization and monetary policy by Alejandro Casado (UC3M) and David Martinez-Miera (UC3M and CEPR)

Discussion by Christian Eufinger (IESE)

Main results

• Findings:

 When Fed funds rate ↓, banks increase mortgage lending growth by more in markets where they are more specialized (where they lent more in the past)

- 2. After decrease in Fed funds rate:
 - a) Markets with more exposure to specialized banks experience higher increase in aggregate mortgage supply and house price growth
 - b) Banks increase their average specialization growth

Theory – Summary 1/2

- Theoretical model based on heterogeneous market-specific lending costs
- Assumptions:
 - Each borrower needs L units to invest in asset that generates Y units
 - Monopolistic bank's funding cost R_0 (monetary policy rate)
 - When lending to borrower *i* with characteristic x_i , bank incurs cost $x_i^{\beta_j}$
 - β_j measures marginal lending cost in market *j* (lower with more information)

Threshold:
$$Y - LR_0 - x_i^{\beta_j} = 0 \rightarrow \hat{x} = (Y - LR_0)^{\frac{1}{\beta_j}}$$

> Bank's loan supply in market $j: L\hat{x}_j$

Theory – Summary 2/2

Main theory result:

When:
$$\beta_A < \beta_B$$
 it holds that $\frac{\frac{dLx_A}{dR_0}}{L\hat{x}_A} < \frac{\frac{dLx_B}{dR_0}}{L\hat{x}_B} < 0$

11 ~

110

Bank increases lending relatively more in market in which it has larger presence in response to decrease in safe rates

Theory – Comments: Alternative mechanism / Risk-shifting 1/4

Alternative mechanism also consistent with empirical results:

Risk-shifting

- How?:
 - Lower interest rates → lower net interest margin (NIM) e.g., Busch & Memmel (2017) and Claessens et al. (2018)
 - Bank's franchise value of unit of deposits (Drechsler et al., 2017):

"expected time to deposit withdrawal" x "average NIM"

- Lower NIM \rightarrow lower franchise value
- Lower franchise value → higher risk-taking e.g., Keeley (1990) and Hellmann, Murdock & Stiglitz (2000)

Theory – Comments: Alternative mechanism / Risk-shifting 2/4

- High franchise value:
 - Invest in <u>Market B</u> to reduce default risk through diversification

Assets	Liasiches
80€	go€
MarketA	Dest
20€	NO€
Market B	Equity

- Low franchise value:
 - Invest in Market A to max. value derived from government guarantee

Theory – Comments: Alternative mechanism / Risk-shifting 3/4

- Authors use physical distance between loan markets and bank's headquarter as proxy for informational distance (i.e., higher marginal lending costs)
- However: Lower physical distance to headquarter likely correlated with bank's pre-existing exposure
 - Difficult to tell apart both mechanisms
- Idea: Focus on mortgages that are originated to sell (rules out risk-shifting)
- Could be informative: Compare changes in composition of mortgages originated to sell versus mortgages originated to hold after rate change

Theory – Comments: Alternative mechanism / Risk-shifting 4/4

- Important to understand driver of bank behavior in response to rate change for policy implications (maybe extend in this direction):
 - o Driven by risk-taking: BAD
 - Driven by lower marginal lending costs: (somewhat) <u>GOOD</u>

Theory – Comments: "Alternative" mechanism / Fixed costs 1/2

- Really information advantage between counties?
 - Standard retail mortgages: how much soft information is involved (fintechs on rise)?
 - Does ability to gather info depend on whether mortgage applicant is from county A or B?
- Differences in fixed vs variable cost structure can also lead to lending cost heterogeneity!
- Consider 2 banks in same market:
 - Bank A: 100 branches; 1000 loan officers; 1000 other staff
 - o Bank B: 10 branches; 100 loan officers; 100 other staff
- When interest rates are higher and demand low, larger branch network might be underutilized → free "capacity"

Theory – Comments: "Alternative" mechanism / Fixed costs 2/2

- When interest rates↓ → mortgage demand↑
- Likely huge economics of scale of having large branch network / → cost discontinuities when scaling up mortgage lending without large branch network
- Bank A can easily scale up (only marginal lending costs), while Bank B would need to open new branches, hire more staff, etc. (high setup costs)

Suggestions:

- Employ data on banks' branches by county (could still be information advantage, not cost structure)
- Use information on fintechs; online lenders without physical presence; cost structure should not differ across counties, nor should soft information depend on county

Empirics – Identification strategy 1/2

- Data: Mortgage data from FFIEC HMDA database
- Main identification strategy:
 - 1. Comparing new mortgage lending growth originated by different banks facing different levels of local specialization in same market and year

11

Empirics – Identification strategy 2/2

- Data: Mortgage data from FFIEC HMDA database
- Main identification strategy:
 - 2. Comparing new mortgage lending growth originated by same bank in different markets where it faces different levels of local specialization

Empirics - Comments: "Forbidden comparisons"

Chaisemartin & D'Haultfoeuille (2022) (and others): When treatment effects are heterogeneous, and

- 1. when units are treated at different points in times and/or
- 2. when treatment is continuous

...coefficients may not represent weighted average of unit-level treatment effects

- Problem comes from "forbidden" comparisons:
 - 1. between units who are both already-treated (in your setting treatments occur frequently)
 - 2. between unit whose treatment increases more to unit whose treatment increases less (in your setting treatment is continuous)
- These comparisons have significant drawbacks: e.g., potentially lead to coefficients having opposite sign of all individual-level treatment effects

Empirics – Comments: Size of county 1/2

- Population of U.S. counties varies between 10mn and 57
- Effects of interest rate changes on mortgage demand/supply could be different in urban versus rural counties
 - e.g., houses in rural counties cheaper and mortgage demand less sensitive to cost of debt

Empirics – Comments: Size of county 2/2

 Main measure in county-level analysis: counties' exposure to banks that are specialized in that market calculated as weighted average of

$$Spec_{bct} = \frac{A_{bct}}{A_{bt}}$$

Spec_{bct} likely higher for larger counties

- Thus, you are (maybe) comparing effect of interest rates on mortgage supply between urban and rural counties
- Potential remedy: Control for county size and its interaction with interest rate change

Empirics – Comments: Magnitude / Joint effects 1/4

	New mortgage lending growth			
	(1)	(2)	(3)	(4)
$\Delta \mathrm{FF} imes \mathrm{Spec}$	-0.0283***	-0.0323***	-0.0692***	-0.0749^{***}
	(0.00293)	(0.00253)	(0.0136)	(0.0148)
Spec	-0.0465***	-0.0545***	0.0412^{***}	0.0363^{***}
	(0.00632)	(0.00666)	(0.00932)	(0.00960)
Observations	$1,\!557,\!766$	1,562,955	$1,\!594,\!588$	$1,\!599,\!605$
R-squared	0.424	0.383	0.177	0.131
Bank-Year FE	Υ	Υ	Ν	Ν
County-Year FE	Υ	Ν	Υ	Ν
Bank FE	Ν	Ν	Υ	Υ
County FE	Ν	Ν	Ν	Υ
Year FE	Ν	Ν	Ν	Υ
Fipszero FE	Ν	Y	Ν	Υ
Cluster s.e.	${\rm Bank}\&{\rm County}$	${\rm Bank}\&{\rm County}$	${\rm Bank}\&{\rm County}$	Bank&County

Table 2: Lending, Local Specialization, and Monetary Policy

Why is coefficient for Spec_{bct} significant? Economic rationale?

Empirics – Comments: Magnitude / Joint effects 2/4

	New mortgage lending growth			
	(1)	(2)	(3)	(4)
$\Delta FF \times Spec$	-0.0283***	-0.0323***	-0.0692***	-0.0749***
	(0.00293)	(0.00253)	(0.0136)	(0.0148)
Spec	-0.0465***	-0.0545***	0.0412^{***}	0.0363^{***}
	(0.00632)	(0.00666)	(0.00932)	(0.00960)
Observations	$1,\!557,\!766$	1,562,955	$1,\!594,\!588$	$1,\!599,\!605$
R-squared	0.424	0.383	0.177	0.131
Bank-Year FE	Υ	Υ	Ν	Ν
County-Year FE	Υ	Ν	Υ	Ν
Bank FE	Ν	Ν	Υ	Υ
County FE	Ν	Ν	Ν	Υ
Year FE	Ν	Ν	Ν	Υ
Fipszero FE	Ν	Υ	Ν	Υ
Cluster s.e.	${\rm Bank}\&{\rm County}$	Bank&County	${\rm Bank}\&{\rm County}$	Bank&County

Table 2: Lending, Local Specialization, and Monetary Policy

 From paper: "A one standard deviation increase in Spec (0.192) increases lending by 54.3 bps per 100 bps decrease in the Fed funds target rate"

54.3 = 0.543% = 0.192 × (-0.0283) × (-100)

Empirics – Comments: Magnitude / Joint effects 3/4

Table 1: Summary Statistics

	Ν	mean	sd
Panel A: Bank-county-level mortgage lending (HMDA and FDIC)			
New mortgage lending (mill. \$)	1,600,174	17.298	126.663
New mortgage lending growth	$1,\!600,\!174$	-0.115	0.710
Number of new mortgages	$1,\!600,\!174$	89.169	40 5.9 81
(ΔFF)	$1,\!600,\!174$	-0.154	(1.534)
Spec	$1,\!600,\!174$	0.079	0.192
MktSh	$1,\!600,\!174$	0.035	0.070
Bank-HHI-Dep	1,025,741	0.226	0.083
C-HHI-Dep	$1,\!599,\!973$	0.239	0.131
Dist (miles)	$1,\!391,\!438$	524.286	631.917
Dist (\log)	$1,\!391,\!438$	5.144	1.980

• From paper: "A one standard deviation increase in Spec (0.192) increases lending by 54.3 bps per 100 bps decrease in the Fed funds target rate"

 $54.3 = 0.543\% = 0.192 \times (-0.0283) \times (-100)$

Empirics – Comments: Magnitude / Joint effects 4/4

	New mortgage lending growth			
	(1)	(2)	(3)	(4)
$\Delta \mathrm{FF} imes \mathrm{Spec}$	-0.0283***	-0.0323***	-0.0692***	-0.0749***
	(0.00293)	(0.00253)	(0.0136)	(0.0148)
Spec	-0.0465***	-0.0545***	0.0412^{***}	0.0363^{***}
	(0.00632)	(0.00666)	(0.00932)	(0.00960)
Observations	$1,\!557,\!766$	$1,\!562,\!955$	$1,\!594,\!588$	$1,\!599,\!605$
R-squared	0.424	0.383	0.177	0.131
Bank-Year FE	Υ	Υ	Ν	Ν
County-Year FE	Υ	Ν	Υ	Ν
Bank FE	Ν	Ν	Υ	Y
County FE	Ν	Ν	Ν	Y
Year FE	Ν	Ν	Ν	Y
Fipszero FE	Ν	Υ	Ν	Y
Cluster s.e.	${\rm Bank}\&{\rm County}$	Bank&County	${\rm Bank}\&{\rm County}$	${\rm Bank}\&{\rm County}$

Table 2: Lending, Local Specialization, and Monetary Policy

> Joint effect positive when
$$\Delta FF < -\frac{0.0465}{0.0283} = -1.6431$$

~ ~

Minor comments

- Setting allows to add Bank-county FE: absorbs all time invariant bankcounty relationship heterogeneity
- How did bank specialization change over last decades? Does your paper help us understanding changes in pass-through of monetary policy?
- Paper related to Granja, Leuz, and Rajan (2022) JF
 - "Small distant loans are harder to make, so loan quality deteriorated. Surprisingly, such lending intensified as the Fed raised interest rates from 2004. Why?"
 - Higher rates → bank deposits shift into competitive counties → banks recycle inflows into risky loans to distant uncompetitive counties

Final thoughts...

- Very good and interesting paper! Enjoyed reading it a lot
- Lending to riskier borrowers main focus when it comes to studying risktaking in empirical banking, less so banks' portfolio concentration
- We need more papers like this; risk coming from concentrated exposures more important (in my view) than idiosyncratic lending to risky borrowers
 - see Silicon Valley Bank, Signature Bank, etc.; investments in subprime mortgages, investments in periphery Euro sovereign bonds