Just reallocated? Robots, displacement, and job quality

Liliana Cuccu

Vicente Royuela

University of Barcelona AQR-IREA Research Group

Banco de España-CEMFI-UIMP Conference on the Spanish Economy

July 6, 2023

Motivation

Introduction •O			
Automation	and Labou	r	

• Technological progress allows firms to automate more and more tasks

- "Optimistic view": human labour is not destroyed but rather reallocated
 - Displacement effect is mitigated by several indirect effects (Nakamura and Zeira, 2019; Acemoglu and Restrepo, 2018)

- For industrial robots, there is empirical evidence in support of this view:
 - ▶ Dauth et al. (2021): \downarrow in manufacturing offset by \uparrow in services

Introduction			
This study	1		

- Most studies rely on aggregated measures (Raj and Seamans, 2018)
 - \rightarrow risk of inappropriate policy response
 - Neglect the change in composition of employed workers (Grigoli et al., 2020)
 - Losses of some groups can be covered by gains of others (Kurer and Gallego, 2019)
- We analyse automation's impact from a different perspective:
 - Shift attention from aggregate employment levels to workers' welfare
 - Pocus on (potential) losers

Research questions and findings (preview)

	RQs and findings ●00		
RQ1:	New job of wors	se quality	

- Robots can displace low- and middle-skilled workers in 2 ways:
 - Their firm adopts robots and replaces production workers with skilled ones (Bonfiglioli et al., 2020; Humlum, 2019)
 - They work in a non-adopting firm, which is pushed out of the market (Acemoglu, LeLarge, et al., 2020; Koch et al., 2019)

• Finding a new good match might be hard:

- Shift of labor demand towards a more skilled workforce (Bonfiglioli et al., 2020; Humlum, 2019)
- Geographic mismatch
- Sector reallocation frictions

RQ1: Does robot-exposure increase the probability of being re-employed in a worse job?

 \rightarrow Look at earnings, employment stability and skill-requirement

	RQs and findings ●00		
RQ1:	New job of wors	se quality	

- Robots can displace low- and middle-skilled workers in 2 ways:
 - Their firm adopts robots and replaces production workers with skilled ones (Bonfiglioli et al., 2020; Humlum, 2019)
 - They work in a non-adopting firm, which is pushed out of the market (Acemoglu, LeLarge, et al., 2020; Koch et al., 2019)
- Finding a new good match might be hard:
 - Shift of labor demand towards a more skilled workforce (Bonfiglioli et al., 2020; Humlum, 2019)
 - Geographic mismatch
 - Sector reallocation frictions

RQ1: Does robot-exposure increase the probability of being re-employed in a worse job?

 \rightarrow Look at earnings, employment stability and skill-requirement

	RQs and findings ●00		
RQ1:	New job of wors	se quality	

- Robots can displace low- and middle-skilled workers in 2 ways:
 - Their firm adopts robots and replaces production workers with skilled ones (Bonfiglioli et al., 2020; Humlum, 2019)
 - They work in a non-adopting firm, which is pushed out of the market (Acemoglu, LeLarge, et al., 2020; Koch et al., 2019)
- Finding a new good match might be hard:
 - Shift of labor demand towards a more skilled workforce (Bonfiglioli et al., 2020; Humlum, 2019)
 - Geographic mismatch
 - Sector reallocation frictions
- RQ1: Does robot-exposure increase the probability of being re-employed in a worse job?
 - \rightarrow Look at earnings, employment stability and skill-requirement

00	•••	0000000	
R()2 · A	diustment me	chanisms	

RQ2: Is relocating to a different sector or local labour market an effective adjustment mechanism for automation-exposed displaced workers?

Change of sector

Change of local labor market.

	RQs and findings ●●○		
RQ2:	Adjustment m	iechanisms	

RQ2: Is relocating to a different sector or local labour market an effective adjustment mechanism for automation-exposed displaced workers?

	RQs and findings ●●○		
RQ2:	Adjustment m	iechanisms	

RQ2: Is relocating to a different sector or local labour market an effective adjustment mechanism for automation-exposed displaced workers?

Change of sector

Pros: Benefit from positive effects of automation on other sectors

Cons: Sector reallocation frictions

Change of local labor market

Pros: Expanding labor markets offer more jobs and higher wages

Cons: Shift of labour demand + sector reallocation frictions

	RQs and findings ●●○		
RQ2:	Adjustment me	chanisms	

RQ2: Is relocating to a different sector or local labour market an effective adjustment mechanism for automation-exposed displaced workers?

Change of sector

Pros: Benefit from positive effects of automation on other sectors

Cons: Sector reallocation frictions

Change of local labor market

Pros: Expanding labor markets offer more jobs and higher wages

Cons: Shift of labour demand + sector reallocation frictions

- Exposed middle- and low-skilled workers tend to be re-employed in jobs of lower quality
 - $\rightarrow\,$ Lower pay, skill downgrading, and less stable employment
- Negative effects are quite **persistent** (up to 36 months)
- Reallocation offers little to no advantage
- High-skilled are less affected by exposure

Data and Empirical Approach

Introduction RQs and findings Data and Empirical Approach Conclusion Conclusi

High robot density:

Figure: Robot density in manufacturing - 2019

There is evidence of automation-induced displacement (Koch et al., 2019)

Spanish workers are sensitive to economic factors when it comes to internal migration choices (Alvarez and Royuela, 2020)

	Data and Empirical Approach	
	••000000	

Automation in Spain

Sources: INE and IFR, own calculations.

	Data and Empirical Approach ●●●○○○○○	
Data		

Worker level: Muestra continua de vidas laborales (MCVL)

- Anonymised longitudinal panel from the Spanish social security records
- Each wave includes 4% of the reference population (about 1 million workers)
- We cover the period 2001-2016
- The whole labour history of each worker can be retrieved
- Basic personal characteristics + Detailed info on each work spell

Robots: International Federation of Robots (IFR) dataset

Based on surveys of robot suppliers

What is a robot Descriptives Balancing IFR groups Time series

- Covers roughly 90% of the industrial robots market
- Stock of robots by industry, country and year for the period 1993-2018

	Data and Empirical Approach	
	●●●●0000	

Sample restriction

- Only consider involuntary dismissals
- Keep only transitions to a different employer
- Exclude transitions to/from self-employment
- Drop very short spells (<30 days)
- Keep individuals aged 18-60
- Trim top and bottom daily earnings

$$\begin{aligned} \mathbf{Y}_{iwst\tau} &= c + \mathbf{\Omega} \cdot \mathbf{X}_{i,\tau} + \eta \cdot \theta_{\tau} + \lambda \cdot NUTS2_{i,t} + \psi \cdot Sector_{i,t} + \varphi \cdot Contract_{i,t} + \\ & \kappa \cdot \Delta NUTS3_{i} + \nu \cdot \Delta Sector_{i} + \pi \cdot \Delta Trade_{s,t-1} + \mu \cdot \Delta ICT_{s,t-1} + \iota \cdot \Xi_{w} + \\ & \beta \cdot \Delta Exp_{s,t-1} + \epsilon_{wist\tau} \end{aligned}$$

where, $Y_{iwst\tau}$:

- dummy for whether the new job offers a lower pay
- In the current pay over the previous one
 In the current pay over the previous one
- Output of the second second
- dummy for whether the new job is with a temporary contract
- **o** dummy for whether the new job is with a temporary employment agency (TEA)

		Data and Empirical Approach		
Empirica	al approach (ii) - Controls		
$Y_{iwst\tau}$:	$= c + \Omega \cdot X_{i,\tau} + \eta \cdot \theta$	$\tau + \lambda \cdot NUTS2_{i,t} + \psi \cdot Sector$	$or_{i,t} + \varphi \cdot Contract_{i,t}$	t +

 $\beta \cdot \Delta E_{xp_{s,t-1}} + \epsilon_{wist\tau}$

$X_{i,\tau}$: age, gender, country of birth, weeks unemployed at time $ au$
$ heta_{ au}$: year of re-employment
NUTS2 _{i,t}	: region of previous job
Sector _{i,t}	: 1-digit sector of previous job
Contract _{i,t}	: type of contract of previous job (permanent vs temporary)
$\Delta NUTS3_i$: indicator for new job being in a different NUTS3
$\Delta Sector_i$: indicator for new job being in a different 1-digit sector
$\Delta Trade_{s,t-1}$: change in net imports from China
$\Delta ICT_{s,t-1}$: change in real gross fixed capital formation volume for ICT equipment
Ξ_w	: workers' unobserved ability Mincerian wage regression
	Skill groups

R2 TimeSeries

• Exposure to robots:

$$\Delta Exp_{s,t-1} = \frac{robots_{s,t-1} - robots_{s,t-2}}{emp_{s,1995}}$$

• Follow Autor et al. (2013), Acemoglu and Restrepo (2020), Dauth et al. (2021)

- \rightarrow Instrument adoption in Spain with Germany, Italy, France, UK
- Role of adjustment mechanisms captured by replacing $\Delta Exp_{s,t-1}$ with:
 - $\Delta Exp_{s,t-1} \cdot \Delta NUTS3_i$
 - $\Delta Exp_{s,t-1} \cdot \Delta Sector_i$

Variation in $\overline{\Delta Robots_{s,t-1}}$

Figure: Variation of $\Delta Robots_{s,t-1}$ by sector or year

Source: IFR, own calculations.

Results

		Results ●000000	
2SIS reg	sults (i)		

Pay ratio

.)

 Introduction
 RQs and findings
 Data and Empirical Approach
 Results
 Conclusion

 00
 000
 00000000
 ●●●0000
 0

Results 2SLS - Medium term (i)

Introduction RQs and findings Data and Empirical Approach Results Conclusion 00 000 0000000 000000 0000000 0

Results 2SLS - Medium term (iii)

Results 2SLS - Medium term (iv)

		Results ●●●●●●●	
Robustness	checks		

We perform a wide range of robustness checks. Among them:

- Keep only transitions from manufacturing;
- Exclude transitions from the automotive sector;
- For each individual, keep only transition from longest spell;
- Use more detailed sector fixed effects;
- Use a more stringent definition of migration;
- Consider transitions following (a) the end of temporary contracts;
 (b) collective dismissals;
- Use 5 rather than 2 skill groups.

Conclusion

			Conclusion •
Conclusion			

- Shift focus from employment levels to quality
- Long-lasting negative impact for middle- and low-skilled workers
- High-skilled workers are less negatively affected by exposure, although they also incur a penalty when changing sector.
- Workers who remain employed in automating sectors benefit from some of its advantages
- Reallocation is not an effective adjustment mechanism

 \rightarrow Active labour market policies might be necessary for a smoother transition

Heterogeneity Robustness checks

liliana.cuccu@ub.edu vroyuela@ub.edu

References I

- Acemoglu, D., LeLarge, C., & Restrepo, P. (2020). Competing with robots: Firm-level evidence from france. AEA Papers and Proceedings, 110, 383–388.
- Acemoglu, D., & Restrepo, P. (2018). The race between man and machine: Implications of technology for growth, factor shares, and employment. *American Economic Review*, 108(6), 1488–1542.
- Acemoglu, D., & Restrepo, P. (2020). Robots and jobs: Evidence from US labor markets. *Journal of political economy.*
- Alvarez, M., & Royuela, V. (2020). A meta-analysis of the labour-market push and pull factors of internal migration in Spain. *Work under review in Regional Science and Urban Economics*.
- Autor, D. H., Dorn, D., & Hanson, G. H. (2013). The china syndrome: Local labor market effects of import competition in the united states. *American Economic Review*, 103(6), 2121–68.
- Bonfiglioli, A., Crinò, R., Fadinger, H., & Gancia, G. (2020). Robot imports and firm-level outcomes. CEPR Discussion Paper No. DP14593.
- Dauth, W., Findeisen, S., Suedekum, J., & Woessner, N. (2021). The adjustment of labor markets to robots. *Accepted: Journal of the European Economic Association*.
- Grigoli, F., Koczan, Z., & Topalova, P. (2020). Automation and labor force participation in advanced economies: Macro and micro evidence. *European Economic Review*, 126. https://doi.org/10.1016/j.euroecorev.2020.103443
- Humlum, A. (2019). Robot adoption and labor market dynamics. *Job Market Paper Princeton University.*
- Koch, M., Manuylov, I., & Smolka, M. (2019). Robots and firms. CESifo Working Paper No. 7608.
- Kurer, T., & Gallego, A. (2019). Distributional consequences of technological change: Worker-level evidence. Research and Politics, 6(1). https://doi.org/10.1177/2053168018822142
- Montiel Olea, J. L., & Pflueger, C. (2013). A robust test for weak instruments. *Journal of Business & Economic Statistics*, 31(3), 358–369.
- Müller, C., & Kutzbach, N. (2020). World robotics 2020 industrial robots. *IFR Statistical Department*, *VDMA Services GmbH*, *Frankfurt am Main*.

- Nakamura, H., & Zeira, J. (2019). Automation and unemployment: Help is on the way. Available at SSRN 3202622.
- Raj, M., & Seamans, R. (2018). Ai, labor, productivity, and the need for firm-level data. *The economics of artificial intelligence: An agenda*. University of Chicago Press.

Flows by sector

Flows by NUTS3

Summary statistics, transition level

Back

Qualitative	ML	MLS		HS		Total	
	%	Corr.	%	Corr.	%	Corr.	
Worse pay	41.19		40.24		40.96		
Worse security	8.25	-0.002	10.92	0.081	8.87	0.019	
Lower skill	10.78	0.069	34.65	0.186	16.36	0.098	
Employed in ETT firm	4.93	0.012	2.40	0.028	4.34	0.016	
Female	36.24	-0.013	53.22	0.025	40.21	-0.005	
Change sector	47.82	0.058	42.07	0.107	46.48	0.070	
Change NUTS3	15.30	0.018	21.43	0.007	16.74	0.015	
Temporary contract (prev.)	83.21	0.046	57.71	0.090	77.25	0.058	
Manufacturing (prev.)	11.98	0.022	5.86	-0.007	10.55	0.017	
Birth Place							
Spain	80.72	-0.010	91.44	-0.012	83.23	-0.012	
Center and South America	8.03	0.009	3.82	0.010	7.05	0.010	
EU28	4.68	-0.000	3.06	0.006	4.31	0.001	
Africa	4.58	0.006	0.71	0.002	3.67	0.006	
Other	1.99	0.004	0.97	0.002	1.75	0.004	
Year of start							
2001 - 2003	18.95	-0.008	16.81	-0.051	18.45	-0.017	
2004 - 2006	25.09	-0.032	21.06	-0.054	24.15	-0.036	
2007 - 2009	23.39	-0.004	22.30	-0.020	23.13	-0.008	
2010 - 2012	18.18	0.032	21.74	0.061	19.01	0.039	
2013 - 2015	9.22	0.021	11.89	0.060	9.84	0.031	
2016 - 2018	5.17	0.002	6.19	0.019	5.41	0.006	
Quantitative							
	ML	S	H	5	Tot	al	
	Mean	Corr.	Mean	Corr.	Mean	Corr.	
Pay ratio	111.307	-0.633	108.243	-0.612	110.591	-0.627	
Δ robots	0.080	0.024	0.030	-0.008	0.068	0.019	
Δ imports from China	0.076	0.004	0.038	-0.001	0.067	0.003	
∆ ICT stock	0.386	-0.002	0.565	0.000	0.428	-0.002	
Age	34.622	-0.011	35.954	-0.046	34.933	-0.019	
Weeks unemployed	33.591	-0.028	28.062	0.056	32.299	-0.010	
Unobs. ability	-0.040	0.038	0.058	0.028	-0.017	0.034	
N	1,065	,361	324,	324,881		1,390,242	

Notes: Summary statistics on the estimation sample. Columns "Corr." report the correlation between each variable and the dummy for "Worse pay". Sources: MCVL, IFR, INE, EU-KLEMS and Eurostat, own calculations.

Balancing analysis, individual level (June 2001)

Back

	Uncondit	ional	Condition	nal
	Coefficient	SE	Coefficient	SE
All workers				
Monthly earnings	16.9943***	0.1613	7.4972***	0.6102
Female	-0.0119***	0.0002	-0.0017***	0.0006
Foreign	-0.0016***	0.0001	0.0002	0.0001
Age	0.0177***	0.0040	-0.0228	0.0188
Middle- and low-skilled	0.0102***	0.0002	0.0036***	0.0004
Permanent contract	0.0160***	0.0002	0.0018**	0.0007
Temporary contract	-0.0029***	0.0002	-0.0000	0.0006
Self employed	-0.0069***	0.0001	-0.0000	0.0001
1-9 Employees	-0.0031***	0.0001	-0.0025***	0.0004
10-49 Employees	0.0007***	0.0001	-0.0046***	0.0006
50-249 Employees	0.0034***	0.0001	-0.0006	0.0006
More than 250 Employees	0.0088***	0.0001	0.0126***	0.0022
N	546,657		546,657	
Manufacturing workers				
Monthly earnings	13.4952***	0.2088	4.8352***	0.4883
Female	-0.0037***	0.0002	-0.0010	0.0007
Foreign	-0.0003***	0.0001	-0.0000	0.0001
Age	0.0192***	0.0054	-0.0437***	0.0165
Middle- and low-skilled	0.0032***	0.0002	0.0024***	0.0004
Permanent contract	0.0064***	0.0002	0.0006	0.0006
Temporary contract	-0.0023***	0.0002	-0.0002	0.0005
Self employed	-0.0037***	0.0001	-0.0000	0.0001
1-9 Employees	-0.0030***	0.0001	-0.0018***	0.0003
10-49 Employees	-0.0038***	0.0002	-0.0031***	0.0005
50-249 Employees	0.0010***	0.0002	-0.0011*	0.0006
More than 250 Employees	0.0148***	0.0002	0.0110***	0.0021
N	96,463		96,463	

Notes: Coefficients from 2SLS regressions of the respective transition characteristics on the change in robots exposure per 1,000 workers between 2001 and 2016 (instrumented with robot installations across industries in other European countries). The sample includes *all* workers with an on-going working spell on June 1, 2001. The "Unconditional" column reports coefficient and standard error when the listed variables are regressed on predicted robot exposure and a constant, while column "Conditional" adds a series of standard control variables. In each regression, all controls that are constructed from the dependent variable are not included in the estimation. Standard errors are clustered by 1-digit sector and NUTS3 area. *Sources:* MCVL, IFR, INE and Eurostat, own calculations.

IFR categories and aggregation schemes

Code	Name	15 Groups	19 Groups
A-B	Agriculture, forestry, fishing	01-03	01-03
С	Mining and quarrying	05-09	05-09
D	Manufacturing		
10-12	Food and beverages	10-12	10-12
13-15	Textiles	13-15	13-15
16	Wood and furniture	16,31	16,31
17-18	Paper	17-18	17-18
19-22	Plastic and chemical products	19-22	10.01
19	Pharmaceuticais, cosmetics	19-22	19-21
20-21	other chemical products n.e.c.	19-22	19-21
22	Rubber and plastic products (non-automotive)	19-22	22
229	Neg metallis mineral and dusts	22	22
23 24 29	Motal	23	25
24-20	Basic metals	24,25,20	24
25	Metal products (non-automotive)	24 25 28	25
28	Industrial machinery	24 25 28	28
289	Metal unspecified	24,25,20	20
26-27	Electrical /electronics	26-27	
275	Household /domestic appliances	20 21	27
271	Electrical machinery n.e.c. (non-automotive)		27
260	Electronic components/devices		26
261	Semiconductors LCD LED		26
262	Computers and peripheral equipment		26
263	Communication equipment		26
265	Medical, precision, optical instruments		26
279	Electrical/electronics unspecified		
29	Automotive	29	29
291	Motor vehicles, engines and bodies		
293	Automotive parts		
2931	Metal (AutoParts)		
2932	Rubber and plastic (AutoParts)		
2933	Electrical/electronic (AutoParts)		
2934	Glass (AutoParts)		
2939	Other (AutoParts)		
2999	Unspecified AutoParts		
299	Automotive unspecified		
30	Other vehicles	30	30
91*	All other manufacturing branches		
E	Electricity, gas, water supply	35-39	35-39
E	Construction	41-43	41-43
P .	Education/research/development	72,85	72,85
90*	All other non-manufacturing branches		
99*	Unspecified		

Notes: "*" indicates residual categories whose robots are excluded from all aggregation schemes.

Back

Skill groups

Separate estimations for high-skilled versus middle- and low-skilled workers

- **High-skilled** → Previous social security skill-group was:
 - Engineers, graduates and senior management
 - Technical engineers, technicians and assistants
 - Administrative and workshop managers
- Medium-Low skilled → Previous social security skill-group was:
 - Non-graduate assistants
 - Administrative officers
 - Subordinates
 - Administrative assistants
 - First and second officers
 - Third officers and specialists
 - Unskilled (over 18)

Back

• For every job *j* held by worker *w* we estimate:

$$\begin{array}{l} ln(earning_{wj}) \ = \ \alpha \ + \ \Xi' \cdot \zeta_w \ + \\ & \pi \cdot Age_{wj} \ + \ \sigma \cdot Unempl_{wj} \ + \ \xi \cdot Tenure_{wj} \ + \\ & \varphi' \cdot Skill_{wj} \ + \ \omega \cdot FullPart_{wj} \ + \ \nu \cdot Stab_{wj} \ + \ \rho' \cdot YearStart_{wj} \ + \\ & \mu' \cdot Sector_j \ + \ \lambda' \cdot NUTS3_j \ + \ \psi \cdot NumWorkers_j \ + \ \epsilon_{wj} \end{array}$$

• Worker fixed effect ζ_W should capture workers' unobserved ability.

• Hence, we include Ξ as an additional control in the main equation.

Trends in robot density

Instrument choice

	R-squared	Overid.	F-statistic
Year and sector FE	0.273		
All 8 European countries	0.831	0.000	440.9
Italy, France, UK, Germany	0.800	0.000	474.9
Italy, France, UK	0.788	0.000	585.0
Sweden, Denmark, Finland, Norway	0.426	0.000	64.8
Japan	0.280		5.1
Average: all 8 European countries	0.629		356.9
Average: Italy, France, UK, Germany	0.632		374.6
Average: Italy, France, UK	0.662		276.0
Average: Sweden, Denmark, Finland, Norway	0.285		117.3
N	361	1,390,242	1,390,242
Year and sector FE	0.251		
All 8 European countries	0.657	0.000	41.1
All 8 European countries + US	0.657	0.000	37.3
Italy, France, UK, Germany	0.573	0.000	77.4
Italy, France, UK, Germany, US	0.576	0.000	58.5
Italy, France, UK	0.483	0.000	46.6
Sweden, Denmark, Finland, Norway	0.414	0.000	18.8
Japan	0.251		3.2
US	0.296		0.4
Average: all 8 European countries	0.292		333.7
Average: Italy, France, UK, Germany	0.284		274.9
Average: Italy, France, UK	0.277		72.4
Average: Italy, France, UK, Germany, US	0.254		12.9
Average: Sweden, Denmark, Finland, Norway	0.281		57.6
N	209	495,441	495,441

For middle- and low-skilled (high-skilled):

N = 1,095,924 (281,852)

Montiel Olea and Pflueger (2013) F-Stat = 203.6 (165.1)

Back

Heterogeneity (I) - Lower pay

Back

		HS			MLS	
	Group 1	Group 2	Diff	Group 1	Group 2	Diff
Gender						
$\begin{array}{l} \Delta Exp \\ \Delta Exp & (\Delta Sector = 0) \\ \Delta Exp & (\Delta Sector = 1) \\ \Delta Exp & (\Delta NUTS3 = 0) \\ \Delta Exp & (\Delta NUTS3 = 1) \\ N \end{array}$	-0.003 -0.036 ** 0.019 ** 0.001 -0.032 170,552	-0.003 -0.020 *** 0.028 *** -0.001 -0.008 140,459	-0.001 -0.016 -0.009 0.002 -0.023	0.032 *** 0.016 *** 0.040 *** 0.031 *** 0.043 *** 432,886	0.020 * * * 0.003 0.035 * * * 0.019 * * * 0.031 * * * 717,384	0.011 * * * 0.013 * * * 0.006 0.012 * * * 0.012
Age $\begin{array}{l} \Delta Exp \\ \Delta Exp \cdot (\Delta Sector = 0) \\ \Delta Exp \cdot (\Delta Sector = 1) \\ \Delta Exp \cdot (\Delta NUTS3 = 0) \\ \Delta Exp \cdot (\Delta NUTS3 = 1) \\ N \end{array}$	-0.004 -0.018 * * * 0.023 ** -0.004 -0.008 90,922	0.000 -0.024 *** 0.025 *** 0.003 -0.014 220,089	-0.004 0.005 -0.002 -0.006 0.006	0.018 *** 0.004 0.034 *** 0.017 *** 0.023 *** 339,244	0.025 *** 0.007 *** 0.037 *** 0.023 *** 0.037 *** 811,026	-0.007 -0.003 -0.003 -0.006 -0.014
Urbanisation						
$\begin{array}{l} \Delta Exp \\ \Delta Exp \cdot (\Delta Sector = 0) \\ \Delta Exp \cdot (\Delta Sector = 1) \\ \Delta Exp \cdot (\Delta NUTS3 = 0) \\ \Delta Exp \cdot (\Delta NUTS3 = 1) \\ N \end{array}$	0.003 -0.020 * * * 0.030 * * * 0.004 -0.011 128,242	-0.007 -0.025 *** 0.019 ** -0.005 -0.013 182,769	0.009 0.004 0.011 0.009 0.002	0.021 * * * 0.005 * 0.033 * * * 0.020 * * * 0.040 * * * 355,923	0.025 * * * 0.007 ** 0.039 * * * 0.024 * * * 0.032 * * * 794,347	-0.004 -0.002 -0.006 -0.004 0.008
Empl. in Manufacturing						
$\begin{array}{l} \Delta Exp \\ \Delta Exp \cdot (\Delta Sector = 0) \\ \Delta Exp \cdot (\Delta Sector = 1) \\ \Delta Exp \cdot (\Delta NUTS3 = 0) \\ \Delta Exp \cdot (\Delta NUTS3 = 1) \\ N \end{array}$	0.008 -0.010 * 0.029 * * * 0.009 -0.000 73,851	-0.011 * -0.032 * * * 0.021 ** -0.009 -0.017 237,160	0.019 ** 0.022 ** 0.008 0.018 * 0.017	0.025 * * * 0.011 * * * 0.034 * * * 0.023 * * * 0.038 * * * 253,825	0.021 * * * 0.000 0.037 * * * 0.020 * * * 0.028 * * * 896,445	0.004 0.010 * * * -0.003 0.003 0.010

Notes: Group 1 and Group 2 are defined as follows. Gender: (1) Female, (2) Male. Age: (1) \ge 40, (2) < 40. Urbanisation (at least 60% of previous province's population is in municipalities with more than 50.000 inhabitants): (1) yes, (2) no. Employment in Manufacturing (previous province had more than 25% of employment in manufacturing in 2000): (1) yes, (2) no. Sources: MCVL, IFR, INF, EU-KLEMS and Eurostat, own calculations.

Heterogeneity (II) - Pay ratio

Back

		HS			MLS	
	Group 1	Group 2	Diff	Group 1	Group 2	Diff
Gender						
$\begin{array}{l} \Delta E x p \\ \Delta E x p \cdot (\Delta Sector = 0) \\ \Delta E x p \cdot (\Delta Sector = 1) \\ \Delta E x p \cdot (\Delta NUT53 = 0) \\ \Delta E x p \cdot (\Delta NUT53 = 1) \\ N \end{array}$	-0.454 1.034 -1.455 ** -0.282 -1.739 170,552	-0.350 0.583 *** -1.949 *** -0.329 -0.460 140,459	-0.104 0.452 0.495 0.048 -1.280	-3.083 * * * -1.090 * * * -4.166 * * * -2.964 * * * -4.408 * * * 432,886	-1.923 * * * -0.175 -3.348 * * * -1.751 * * * -3.330 * * * 717,384	-1.160 ** * -0.915 ** * -0.819 * -1.213 ** * -1.079
$\begin{array}{l} Age \\ \DeltaExp \\ \DeltaExp \cdot (\DeltaSector = 0) \\ \DeltaExp \cdot (\DeltaSector = 1) \\ \DeltaExp \cdot (\DeltaNUTS3 = 0) \\ \DeltaExp \cdot (\DeltaNUTS3 = 1) \\ N \end{array}$	0.009 0.697 ** -1.320 -0.065 0.454 90,922	-0.727 ** 0.431 -1.931 *** -0.586 * -1.494 * 220,089	0.736 0.267 0.611 0.521 1.949	-1.720 * * * -0.319 -3.304 * * * -1.532 * * * -4.198 * * * 339,244	-2.387 * * * -0.456 ** -3.659 * * * -2.234 * * * -3.635 * * * 811,026	0.666 * 0.138 0.355 0.702 ** -0.563
Urbanisation						
$\begin{array}{l} \Delta Exp \\ \Delta Exp \cdot (\Delta Sector = 0) \\ \Delta Exp \cdot (\Delta Sector = 1) \\ \Delta Exp \cdot (\Delta NUTS3 = 0) \\ \Delta Exp \cdot (\Delta NUTS3 = 1) \\ N \end{array}$	-0.751 ** 0.356 -2.102 * * * -0.725 ** -0.993 128,242	0.055 0.957 * * * -1.296 0.225 -0.567 182,769	-0.807 -0.600 -0.806 -0.949 * -0.426	-2.140 * * * -0.653 * * * -3.171 * * * -2.033 * * * -3.415 * * * 355,923	-2.322 * * * -0.233 -3.930 * * * -2.107 * * * -3.861 * * * 794,347	0.181 -0.420 0.758 0.074 0.445
Empl. in Manufacturing						
$\begin{array}{l} \Delta Exp \\ \Delta Exp \cdot (\Delta Sector = 0) \\ \Delta Exp \cdot (\Delta Sector = 1) \\ \Delta Exp \cdot (\Delta NUTS3 = 0) \\ \Delta Exp \cdot (\Delta NUTS3 = 1) \\ N \end{array}$	-0.887 * * * 0.478 -2.487 * * * -0.866 * * * -1.085 73,851	0.029 0.735 ** -1.033 0.180 -0.578 237,160	-0.917 ** -0.257 -1.454 * -1.047 ** -0.508	-2.280 * * * -0.771 * * * -3.338 * * * -2.160 * * * -3.488 * * * 253,825	-2.086 * * * -0.009 -3.691 * * * -1.907 * * * -3.466 * * * 896,445	-0.194 -0.762 ** 0.353 -0.253 -0.022

Notes: Group 1 and Group 2 are defined as follows. Gender: (1) Female, (2) Male. Age: (1) \geq 40, (2) < 40. Urbanisation (at least 60% of previous province's population is in municipalities with more than 50.000 inhabitants): (1) yes, (2) no. Employment in Manufacturing (previous province had more than 25% of employment in manufacturing in 2000): (1) yes, (2) no. Sources: MCVL, IFR, INF, EU-KLEMS and Exclusions.

Heterogeneity (III) - Lower skill

Back

		HS			MIS	
	Group 1	Group 2	Diff	Group 1	Group 2	Diff
Gender ΔExp $\Delta Exp \cdot \langle \Delta Sector = 0 \rangle$	0.013 0.001	0.007 0.005	0.006	0.012 *** 0.010 ***	0.009 * * * 0.002	0.003 0.008_**
$\begin{array}{l} \Delta E \times p \cdot (\Delta Sector = 1) \\ \Delta E \times p \cdot (\Delta NUTS3 = 0) \\ \Delta E \times p \cdot (\Delta NUTS3 = 1) \\ N \end{array}$	0.020 * 0.012 0.014 170,552	0.010 0.006 0.011 140,459	0.010 0.006 0.003	0.013 *** 0.013 *** 0.004 432,886	0.015 * * * 0.009 * * * 0.005 ** 717,384	-0.001 0.003 -0.001
Age $\Delta Exp \cdot (\Delta Sector = 0)$ $\Delta Exp \cdot (\Delta Sector = 1)$ $\Delta Exp \cdot (\Delta NUTS3 = 0)$ $\Delta Exp \cdot (\Delta NUTS3 = 1)$ N	0.005 0.004 0.006 0.003 0.018 90,922	0.011 * 0.004 0.018 ** 0.011 0.009 220,089	-0.006 0.001 -0.012 -0.008 0.010	0.002 -0.000 0.005 0.003 0.000 339,244	0.012 *** 0.004 *** 0.016 *** 0.012 *** 0.006 ** 811,026	-0.009 * * * -0.005 * -0.011 * * * -0.010 * * * -0.005
Urbanisation						
$\begin{array}{l} \Delta Exp \\ \Delta Exp \cdot (\Delta Sector = 0) \\ \Delta Exp \cdot (\Delta Sector = 1) \\ \Delta Exp \cdot (\Delta NUTS3 = 0) \\ \Delta Exp \cdot (\Delta NUTS3 = 1) \\ N \end{array}$	0.007 0.001 0.014 0.008 -0.002 128,242	0.011 * 0.009 0.013 0.008 0.021 * 182,769	-0.004 -0.009 0.001 -0.001 -0.024	0.011 *** 0.000 0.019 *** 0.011 *** 0.007 355,923	0.008 * * * 0.005 * * * 0.010 * * * 0.009 * * * 0.004 794,347	0.003 -0.005 * 0.008 ** 0.003 0.003
Empl. in Manufacturing						
$\begin{array}{l} \Delta Exp \\ \Delta Exp \cdot (\Delta Sector = 0) \\ \Delta Exp \cdot (\Delta Sector = 1) \\ \Delta Exp \cdot (\Delta NUTS3 = 0) \\ \Delta Exp \cdot (\Delta NUTS3 = 1) \\ N \end{array}$	0.005 0.002 0.009 0.004 0.019 73,851	0.011 0.006 0.018 0.011 0.011 237,160	-0.006 -0.005 -0.009 -0.007 0.008	0.012 *** 0.004 * 0.018 *** 0.012 *** 0.011 *** 253,825	0.006 * * * 0.002 0.009 * * * 0.007 * * * -0.000 896,445	0.006 ** 0.002 0.009 ** 0.005 * 0.011 **

Notes: Group 1 and Group 2 are defined as follows. Gender: (1) Female, (2) Male. Age: (1) \geq 40, (2) < 40. Urbanisation (at least 60% of previous province's population is in municipalities with more than 50.000 inhabitants): (1) yes, (2) no. Employment in Manufacturing (previous province had more than 25% of employment in manufacturing in 2000): (1) yes, (2) no. Sources: MCVL, IFR, INF, EU-KLEMS and Euclations.

Heterogeneity (IV) - Temporary contract

Back

		HS			MLS	
	Group 1	Group 2	Diff	Group 1	Group 2	Diff
Gender						
$\begin{array}{l} \Delta E x \rho \\ \Delta E x \rho & (\Delta Sector = 0) \\ \Delta E x \rho & (\Delta Sector = 1) \\ \Delta E x \rho & (\Delta NUTS3 = 0) \\ \Delta E x \rho & (\Delta NUTS3 = 1) \\ N \end{array}$	-0.006 -0.003 -0.010 -0.004 -0.026 44,831	0.002 -0.005 * 0.017 ** 0.002 0.002 52,770	-0.008 0.002 -0.027 * -0.005 -0.028	-0.012 * -0.029 * * * 0.004 -0.015 ** 0.024 ** 84,354	-0.009 * * * -0.019 * * * 0.011 -0.010 * * * -0.004 96,147	-0.002 -0.009 -0.007 -0.005 0.028 **
Age $\begin{array}{l} \Delta Exp \\ \Delta Exp \cdot (\Delta Sector = 0) \\ \Delta Exp \cdot (\Delta Sector = 1) \\ \Delta Exp \cdot (\Delta NUTS3 = 0) \\ \Delta Exp \cdot (\Delta NUTS3 = 1) \\ N \end{array}$	-0.001 -0.003 0.004 0.001 -0.016 41,032	0.002 -0.007 0.016 0.000 0.013 56,569	-0.003 0.004 -0.012 0.001 -0.028	-0.012 *** -0.024 *** 0.015 * -0.011 ** -0.019 74,911	-0.009 ** -0.019 * * * 0.007 -0.011 ** 0.013 ** 105,590	-0.003 -0.005 0.008 -0.001 -0.032 **
Urbanisation						
$\begin{array}{l} \Delta Exp \\ \Delta Exp \cdot (\Delta Sector = 0) \\ \Delta Exp \cdot (\Delta Sector = 1) \\ \Delta Exp \cdot (\Delta NUTS3 = 0) \\ \Delta Exp \cdot (\Delta NUTS3 = 1) \\ N \end{array}$	0.003 -0.003 0.012 0.003 -0.003 49,975	-0.003 -0.006 0.003 -0.003 -0.005 47,626	0.006 0.003 0.009 0.006 0.002	-0.016 * * * -0.024 * * * -0.003 -0.017 * * * -0.005 69,487	-0.002 -0.017 *** 0.026 *** -0.003 0.010 111,014	-0.014 ** -0.007 -0.029 *** -0.014 ** -0.015
Empl. in Manufacturing						
$\begin{array}{l} \Delta Exp \\ \Delta Exp \cdot (\Delta Sector = 0) \\ \Delta Exp \cdot (\Delta Sector = 1) \\ \Delta Exp \cdot (\Delta NUTS3 = 0) \\ \Delta Exp \cdot (\Delta NUTS3 = 1) \\ N \end{array}$	-0.003 -0.005 0.001 -0.003 -0.001 25,983	0.002 -0.004 0.014 0.003 -0.004 71,618	-0.004 -0.002 -0.013 -0.006 0.003	-0.015 * * * -0.022 * * * -0.004 -0.016 * * * 0.001 47,536	-0.006 -0.021 * * * 0.025 * * * -0.007 0.004 132,965	-0.009 -0.001 -0.029 * * * -0.009 -0.003

Notes: Group 1 and Group 2 are defined as follows. Gender: (1) Female, (2) Male. Age: (1) \geq 40, (2) < 40. Urbanisation (at least 60% of previous province's population is in municipalities with more than 50.000 inhabitants): (1) yes, (2) no. Employment in Manufacturing (previous province had more than 25% of employment in manufacturing in 2000): (1) yes, (2) no. Sources: MCVL, IFR, INF, EU-KLEMS and Exclusions.

Heterogeneity (V) - TEA

Back

		HS			MLS	
	Group 1	Group 2	Diff	Group 1	Group 2	Diff
Gender						
$\begin{array}{l} \Delta Exp \\ \Delta Exp \cdot (\Delta NUTS3=0) \\ \Delta Exp \cdot (\Delta NUTS3=1) \\ N \end{array}$	0.006 0.011 ** -0.021 ** 73,851	0.003 0.003 -0.001 237,160	0.004 0.007 -0.020 **	0.019 * * * 0.020 * * * 0.018 * * * 253,825	0.012 * * * 0.014 * * * -0.001 896,445	0.007 * 0.006 0.019 ***
Age						
$\begin{array}{l} \Delta E x p \\ \Delta E x p \cdot (\Delta NUTS3 = 0) \\ \Delta E x p \cdot (\Delta NUTS3 = 1) \\ N \end{array}$	0.001 0.001 0.003 73,851	0.005 0.009 ** -0.012 ** 237,160	-0.004 -0.008 * 0.014 *	0.012 * * * 0.012 * * * 0.008 253,825	0.014 * * * 0.016 * * * 0.002 896,445	-0.002 -0.004 0.006
Urbanisation						
$\begin{array}{l} \Delta Exp \\ \Delta Exp \cdot (\Delta NUTS3=0) \\ \Delta Exp \cdot (\Delta NUTS3=1) \\ N \end{array}$	0.007 * 0.008 * -0.004 73,851	-0.000 0.002 -0.006 237,160	0.007 0.007 0.002	0.013 * * * 0.014 * * * 0.005 253,825	0.013 * * * 0.015 * * * 0.002 896,445	0.000 -0.001 0.003
Empl. in Manufacturing						
$ \begin{array}{l} \Delta Exp \\ \Delta Exp \cdot (\Delta NUTS3 = 0) \\ \Delta Exp \cdot (\Delta NUTS3 = 1) \\ N \end{array} $	0.004 0.005 -0.004 73,851	0.002 0.005 * -0.006 237,160	0.002 0.001 0.002	0.013 * * * 0.015 * * * -0.005 * 253,825	0.012 * * * 0.013 * * * 0.008 * 896,445	0.000 0.002 -0.013 **

Notes: Group 1 and Group 2 are defined as follows. Gender: (1) Female, (2) Male. Age: (1) \geq 40, (2) < 40. Urbanisation (at least 60% of previous province's population is in municipalities with more than 50.000 inhabitants): (1) yes, (2) no. Employment in Manufacturing (previous province had more than 25% of employment in manufacturing in 2000): (1) yes, (2) no. Sources: MCVL, IFR, INF, EU-KLEMS and Euclations.

Robustness checks - Lower pay (HS)

	ΔExp	$\Delta Sec = 0$	$\Delta Sec = 1$	$\Delta NUTS = 0$	$\Delta NUTS = 1$	N
Baseline	0.0005	-0.0237***	0.0271***	0.0024	-0.0088	281,
Subsamples						
Manufacturing	0.0018	-0.0114**	0.0161***	0.0029	-0.0035	14.
One transition	0.0001	-0.0171***	0.0257***	0.0007	-0.0036	130
Previous 6 months	0.0002	-0.0179***	0.0235***	0.0019	-0.0086	161
4 months unemployed	0.0086*	-0.0095	0.0153**	0.0152**	-0.0109	162
24 months unemployed	0.0125*	-0.0031	0.0177**	0.0232***	-0.0218	86
Previous permanent	0.0040	-0.0134**	0.0310***	0.0026	0.0114	81
Previous not automotive	0.0212**	-0.0238	0.0433***	0.0324***	-0.0347	281
Only general regime	0.0003	-0.0236***	0.0266***	0.0022	-0.0092	275
IFR aggregation schemes	0.0000	0.0200	0.0200	0.0011	0.0052	210
15 Groups	-0.0078	-0 0332***	0.0262***	-0.0074	-0.0099	281
17 Groups	-0.0038	-0.0313***	0.0264***	-0.0009	-0.0172	281
20 Groups	0.0000	-0.0232***	0.0273***	0.0028	-0.0085	281
Migration	0.0005	0.0202	0.0210	0.0020	0.0000	201
Non-neighbouring NUTS3	0.0006	-0.0237***	0.0272***	0.0012	-0.0046	281
Spell length						
> 180 davs	-0.0069	-0.0207***	0.0123*	-0.0049	-0.0166*	167
> 360 days	-0.0021	-0.0157***	0.0175**	0.0000	-0.0133	103
Controls						
Drop indiv. effect	0.0007	-0.0240***	0.0278***	0.0026	-0.0087	281
Drop ΔICT	0.0005	-0.0237***	0.0271***	0.0024	-0.0088	281
Drop indiv. effect and ΔICT	0.0007	-0.0240***	0.0278***	0.0026	-0.0087	281
Fixed effects						
Add Current spell FE	0.0002	-0.0171***	0.0189***	0.0022	-0.0099	281
Sector						
1-dig ∆1-dig	0.0005	-0.0237***	0.0271***	0.0024	-0.0088	281
1-dig AIER15(2-dig)	-0.0006	-0.0336***	0.0185***	0.0016	-0.0110	281
1-dig AIFR19(2-dig)	-0.0006	-0.0361***	0.0192***	0.0016	-0.0110	281
IFR15(1-dig) Δ 1-dig	0.0045	-0.0231***	0.0287***	0.0065	-0.0055	281
IFR15(1-dig) AIFR15(2-dig)	0.0037	-0.0321***	0.0210***	0.0059	-0.0075	281
IFR15(1-dig) AIFR19(2-dig)	0.0034	-0.0351***	0.0208***	0.0055	-0.0078	281
IFR15(2-dig) A1-dig	0.0047	-0.0220***	0.0281***	0.0065	-0.0046	281
IFR15(2-dig) AIFR15(2-dig)	0.0039	-0.0301***	0.0204***	0.0060	-0.0068	281
IFR15(2-dig) AIFR15(2-dig)	0.0035	-0.0331***	0.0202***	0.0056	-0.0070	281
IFR19(1-dig) A1-dig	-0.0007	-0.0273***	0.0233***	0.0012	-0.0104	281
IER10(1-dig) AIER15(2-dig)	-0.0012	-0.0355***	0.0162**	0.0000	-0.0121	281
IER19(1-dig) AIER15(2-dig)	-0.0016	-0.0385***	0.0161**	0.0005	-0.0124	281
IFR19(2-dig) A1-dig	-0.0005	-0.0262***	0.0227***	0.0013	-0.0095	281
IFR10(2-dig) AIFR15(2-dig)	_0.0000	-0.0334***	0.0155**	0.0011	-0.0113	201
IER10(2-dig) AIER15(2-dig)	-0.0014	-0.0365***	0.0154**	0.0006	-0.0117	201

Robustness checks - Lower pay (MLS)

	. =					
	ΔExp	$\Delta Sec = 0$	$\Delta Sec = 1$	$\Delta NUTS = 0$	$\Delta NUTS = 1$	
Baseline	0.0242***	0.0066***	0.0361***	0.0228***	0.0357***	1.09
Subsamples						
Manufacturing	0.0221***	0.0109***	0.0298***	0.0206***	0.0345***	12
One transition	0.0242***	0.0062*	0.0393***	0.0227***	0.0370***	39
Previous 6 months	0.0276***	0.0091***	0.0429***	0.0258***	0.0426***	44
4 months unemployed	0.0301***	0.0220***	0.0331***	0.0294***	0.0350***	72
24 months unemployed	0.0321***	0.0236***	0.0346***	0.0317***	0.0350***	37
Previous permanent	0.0076*	-0.0055	0.0300***	0.0055	0.0398***	16
Previous not automotive	0.0242***	-0.0026	0.0384***	0.0239***	0.0263***	1.09
Only general regime	0.0238***	0.0063**	0.0360***	0.0225***	0.0349***	1.02
IFR aggregation schemes						-,
15 Groups	0.0280***	0.0077***	0.0426***	0.0263***	0.0427***	1.09
17 Groups	0.0248***	0.0067***	0.0372***	0.0233***	0.0376***	1.09
20 Groups	0.0241***	0.0067***	0.0359***	0.0227***	0.0355***	1 09
Migration	0.02.11	0.0001	0.0000	0.0227	0.0000	1,00
Non-neighbouring NUTS3	0.0242***	0.0067***	0.0362***	0.0240***	0.0289***	1.09
Spell length						-,
> 180 days	0.0270***	0.0136***	0.0420***	0.0254***	0.0396***	43
> 360 days	0.0242***	0.0115**	0.0416***	0.0219***	0.0483***	20
Controls						
Drop indiv. effect	0.0241***	0.0065***	0.0361***	0.0227***	0.0356***	1.09
Drop ΔICT	0.0242***	0.0066***	0.0361***	0.0228***	0.0357***	1.09
Drop indiv. effect and ΔICT	0.0241***	0.0065***	0.0361***	0.0227***	0.0356***	1.09
Fixed effects						-,
Add Current spell FE	0.0230***	0.0134***	0.0295***	0.0215***	0.0353***	1.09
Sector						,
1-dig ∆1-dig	0.0242***	0.0066***	0.0361***	0.0228***	0.0357***	1.09
1-dig ∆IFR15(2-dig)	0.0236***	-0.0043	0.0318***	0.0221***	0.0357***	1.09
1-dig ∆IFR19(2-dig)	0.0238***	-0.0042	0.0316***	0.0224***	0.0360***	1,09
IFR15(1-dig) Δ 1-dig	0.0046*	-0.0127***	0.0158***	0.0029	0.0165***	1,09
IFR15(1-dig) Δ IFR15(2-dig)	0.0046*	-0.0221***	0.0129***	0.0029	0.0171***	1.09
IFR15(1-dig) Δ IFR19(2-dig)	0.0048*	-0.0233***	0.0124***	0.0031	0.0175***	1.09
IFR15(2-dig) Δ 1-dig	0.0044*	-0.0129***	0.0157***	0.0028	0.0166***	1.09
IER15(2-dig) AIER15(2-dig)	0.0044*	-0.0224***	0.0129***	0.0027	0.0171***	1.09
IER15(2-dig) AIER15(2-dig)	0.0047*	-0.0236***	0.0124***	0.0029	0.0175***	1.09
IFR19(1-dig) A1-dig	0.0056**	-0.0117***	0.0169***	0.0039	0.0179***	1.09
IFR19(1-dig) AIFR15(2-dig)	0.0056**	-0.0210***	0.0140***	0.0039	0.0185***	1.09
IFR19(1-dig) AIFR15(2-dig)	0.0056**	-0.0225***	0.0133***	0.0038	0.0185***	1.09
IFR19(2-dig) Δ 1-dig	0.0055*	-0.0119***	0.0168***	0.0038	0.0179***	1.09
IFR19(2-dig) AIFR15(2-dig)	0.0055*	-0.0213***	0.0139***	0.0037	0.0185***	1.09
IER10(2-dig) AIER15(2-dig)	0.0054*	-0.0228***	0.0132***	0.0037	0.0185***	1 09

Robustness checks - Pay ratio (HS)

	ΔExp	$\Delta Sec = 0$	$\Delta Sec = 1$	$\Delta NUTS = 0$	$\Delta NUTS = 1$	Ν
Baseline	-0.4582	0.7175**	-1.7492***	-0.4174	-0.6581	281
Subsamples						,
Manufacturing	-0.5571**	0.1552	-1.3241**	-0.5986**	-0.3505	14
One transition	-0.4005	0.6536**	-1.9785***	-0.3609	-0.6182	130
Previous 6 months	-0.4112	0.6318**	-1.7589***	-0.4802	-0.0626	161
4 months unemployed	-0.9065*	1.2995	-1.7281***	-1.1918**	-0.0674	162
24 months unemployed	-1.3216**	0.2636	-1.8433***	-1.9471***	0.6878	86
Previous permanent	-0.3954	0.4843**	-1.7617***	-0.2744	-1.0697*	81
Previous not automotive	-1.0694*	1.0129	-2.0922***	-1.0168	-1.3321	281
Only general regime	-0.4065	0.7152**	-1.6462***	-0.3662	-0.6049	275
IFR aggregation schemes						
15 Groups	-0.1944	1.3435***	-2.2627***	-0.2868	0.2078	281
17 Groups	-0.2969	0.9139***	-1.6247***	-0.5269	0.7759	281
20 Groups	-0.5263*	0.6366**	-1.8026***	-0.4681	-0.8118	281
Migration						
Non-neighbouring NUTS3	-0.4601	0.7208**	-1.7569***	-0.5529*	0.3211	281
Spell length						
> 180 days	-0.0821	0.6914**	-1.1589**	-0.0499	-0.2372	167
> 360 days	-0.3715	0.5341	-1.6762***	-0.3286	-0.6022	103
Controls						
Drop indiv. effect	-0.4501	0.7014**	-1.7144***	-0.4092	-0.6508	281
Drop $\Delta IC I$	-0.4598	0.7133**	-1.7481***	-0.4189	-0.6610	281
Drop indiv. effect and ΔICI	-0.4518	0.6970**	-1.7132***	-0.4107	-0.6538	281
Fixed effects						
Add Current spell FE	-0.4100	0.1457	-1.0138*	-0.3860	-0.5274	281
Sector	0.4500	0.7175**	1 7400***	0.4174	0.0001	0.01
	-0.4562	0.7175	-1.7492	-0.4174	-0.0561	201
1-dig AIFR15(2-dig)	-0.4450	0.8050***	-1.2008***	-0.4087	-0.6270	281
1-dig //iFR19(2-dig)	-0.4455	0.9240***	-1.2079***	-0.4085	-0.0272	281
	-0.0012	0.4000	-2.0030	-0.0534	-1.0241	201
IFR15(1-dig) ΔIFR15(2-dig)	-0.8732*	0.5078	-1.5700****	-0.8492*	-0.9900	281
IFR15(1-dig) ΔIFR19(2-dig)	-0.8082*	0.0220	-1.5447***	-0.8438*	-0.9940	281
	-0.9010*	0.3424	-1.9900	-0.0010	-1.1004	201
IFR15(2-dig) AIFR15(2-dig)	-0.8920*	0.3093	-1.5018***	-0.8588*	-1.0029	281
IFR15(2-dig) ΔIFR15(2-dig)	-0.0041	0.4234	1 7564***	-0.0501	-1.0500	201
IFD10(1 J:-) AFD1F(2 J:-)	-0.5075	0.7107	1.0640**	-0.5555	-0.1333	201
IED10(1 dia) AIED16(2 dig)	-0.5634	0.7020	1 2472**	-0.5550	-0.7302	281
IER10(2 dig) A1 dig	-0.5773	0.0102	-1.24/3***	-0.3465	-0.7204	281
IFD10(2 J:=) AFD1F(2 J:=)	-0.0105	0.5022	1.0042	-0.5004	-0.0309	201
IFR19(2-01g) ΔIFR15(2-01g)	-0.0078	0.5014	-1.2000**	-0.5702	-0.0025	281
IFK19(2-dig) ∆IFK15(2-dig)	-0.5981	0.0182	-1.1820**	-0.5599	-0.7962	- 28

Robustness checks - Pay ratio (MLS)

ck						
	ΔExp	$\Delta Sec = 0$	$\Delta Sec = 1$	$\Delta NUTS = 0$	$\Delta NUTS = 1$	N
Baseline	-2.2805***	-0.3955**	-3.5677***	-2.1045***	-3.7693***	1.095.924
Subsamples						1
Manufacturing	-2.0387***	-0.8433***	-2.8667***	-1.8684***	-3.4816***	120.189
One transition	-2.4289***	-0.4196**	-4.1103***	-2.2530***	-3.9145***	393.620
Previous 6 months	-2.5219***	-0.3580*	-4.3200***	-2.2916***	-4.4186***	440.058
4 months unemployed	-3.0283***	-1.2288***	-3.6989***	-2.8839***	-3.9816***	727.763
24 months unemployed	-3.3412***	-1.1650***	-3.9917***	-3.2625***	-3.8649***	379.546
Previous permanent	-0.9537***	0.2785	-3.0565***	-0.7666***	-3.7844***	162.694
Previous not automotive	-1.5998***	2.1023***	-3.5649***	-1.2920***	-3.4770***	1.090.528
Only general regime	-2.2410***	-0.4030**	-3.5168***	-2.0805***	-3.6327***	1.025.150
IFR aggregation schemes						
15 Groups	-2.7692***	-0.4194**	-4.4433***	-2.5783***	-4.3995***	1,095,924
17 Groups	-2.3606***	-0.4214**	-3.6947***	-2.1920***	-3.7914***	1,095,924
20 Groups	-2.2725***	-0.4068**	-3.5461***	-2.0962***	-3.7637***	1,095,924
Migration						
Non-neighbouring NUTS3	-2.2780***	-0.3939**	-3.5646***	-2.2202***	-3.6103***	1,095,924
Spell length						
> 180 days	-2.5298***	-0.7306***	-4.5426***	-2.2826***	-4.4799***	435,709
> 360 days	-2.4713***	-0.7612**	-4.8254***	-2.1907***	-5.4042***	204,360
Controls						
Drop indiv. effect	-2.1735***	-0.2277	-3.5030***	-1.9938***	-3.6937***	1,095,924
Drop ΔICI	-2.2803***	-0.3955**	-3.5674***	-2.1043***	-3.7690***	1,095,924
Drop indiv. effect and ΔICT	-2.1734***	-0.2277	-3.5028***	-1.9937***	-3.6935***	1,095,924
Fixed effects						
Add Current spell FE	-2.1625***	-0.9147***	-3.0209***	-1.9766***	-3.7340***	1,095,924
Sector	0.0005***	0.0055**	0.000	0.4045***	0.7000***	
I-dig ∆I-dig	-2.2805***	-0.3955**	-3.5677***	-2.1045***	-3.7693***	1,095,924
1-dig ∆IFR15(2-dig)	-2.2757***	0.4283**	-3.0752***	-2.0987***	-3.7731***	1,095,924
1-dig ∆IFR19(2-dig)	-2.2791***	0.3750*	-3.0130***	-2.1022***	-3.7762***	1,095,924
IFR15(1-dig) Δ 1-dig	-0.2908	1.5940***	-1.5128***	-0.0832	-1.8099***	1,095,924
IFR15(1-dig) Δ IFR15(2-dig)	-0.2882	2.2905***	-1.0966***	-0.0796	-1.8141***	1,095,924
IFR15(1-dig) Δ IFR19(2-dig)	-0.2898	2.3531***	-1.0076***	-0.0811	-1.8168***	1,095,924
IFR15(2-dig) Δ 1-dig	-0.2773	1.6018***	-1.4955***	-0.0697	-1.7962***	1,095,924
IFR15(2-dig) Δ IFR15(2-dig)	-0.2744	2.3083***	-1.0840***	-0.0659	-1.7998***	1,095,924
IFR15(2-dig) Δ IFR15(2-dig)	-0.2759	2.3705***	-0.9945***	-0.0673	-1.8024***	1,095,924
IFR19(1-dig) Δ 1-dig	-0.4312*	1.4539***	-1.0028***	-0.2225	-1.9888***	1,095,924
IFR19(1-dig) ∆IFR15(2-dig)	-0.4290*	2.1437***	-1.2371***	-0.2195	-1.9934***	1,095,924
IFR19(1-dig) AIFR15(2-dig)	-0.4283*	2.2148***	-1.1527***	-0.2187	-1.9932***	1,095,924
IFR19(2-dig) Δ 1-dig	-0.4183*	1.4612***	-1.0460***	-0.2096	-1.9759***	1,095,924
IFR19(2-dig) Δ IFR15(2-dig)	-0.4159	2.1607***	-1.2251***	-0.2063	-1.9799***	1,095,924
IFR19(2-dig) Δ IFR15(2-dig)	-0.4152	2.2314***	-1.1404***	-0.2056	-1.9797***	1,095,924

Robustness checks - Lower skill (HS)

	ΔExp	$\Delta Sec = 0$	$\Delta Sec = 1$	$\Delta NUTS = 0$	$\Delta NUTS = 1$	N
Baseline	0.0131**	0.0087	0.0179**	0.0121*	0.0179**	281.
Subsamples						
Manufacturing	0.0070	-0.0051	0.0200***	0.0074	0.0047	14.
One transition	0.0056	0.0034	0.0090	0.0046	0.0117	130.
Previous 6 months	0.0090	0.0079	0.0104	0.0079	0.0147	161
4 months unemployed	0.0040	0.0332**	-0.0068	0.0021	0.0097	162
24 months unemployed	0.0038	0.0296*	-0.0047	0.0050	-0.0001	86
Previous permanent	0.0018	-0.0025	0.0085	0.0011	0.0058	81
Previous not automotive	0.0495***	0.0720***	0.0385***	0.0550***	0.0223	281
Only general regime	0.0131**	0.0088	0.0179**	0.0119*	0.0192**	275
IFR aggregation schemes						
15 Groups	-0.0010	0.0042	-0.0079	-0.0054	0.0186*	281
17 Groups	0.0072	0.0038	0.0108	0.0068	0.0087	281
20 Groups	0.0131**	0.0086	0.0180**	0.0121*	0.0182**	281
Migration						
Non-neighbouring NUTS3	0.0130**	0.0089	0.0175*	0.0124*	0.0182*	281
Spell length						
> 180 days	0.0050	0.0060	0.0037	0.0033	0.0133	167
> 360 days	0.0021	0.0036	0.0001	0.0032	-0.0037	103
Controls						
Drop indiv. effect	0.0140**	0.0070	0.0217**	0.0130	0.0187**	281
$Drop \Delta ICT$	0.0131**	0.0088	0.0179**	0.0121*	0.0179**	281
Drop indiv. effect and ΔICT	0.0140**	0.0070	0.0217**	0.0130	0.0187**	281
Fixed effects						
Add Current spell FE	0.0126**	0.0050	0.0209**	0.0116*	0.0178**	281
Sector						
1-dig ∆1-dig	0.0131**	0.0087	0.0179**	0.0121*	0.0179**	281
1-dig ΔIFR15(2-dig)	0.0099*	0.0029	0.0139*	0.0096	0.0115	281
1-dig ΔIFR19(2-dig)	0.0099*	0.0001	0.0153**	0.0095	0.0116	281
IFR15(1-dig) Δ 1-dig	0.0217***	0.0180**	0.0249***	0.0209**	0.0259***	281
IER15(1-dig) AIER15(2-dig)	0.0191***	0.0125**	0.0223***	0.0190**	0.0200**	281
IER15(1-dig) AIER19(2-dig)	0.0181***	0.0085	0.0225***	0.0178**	0.0194*	281
IER15(2-dig) A1-dig	0.0216***	0.0163**	0.0262***	0.0209**	0.0247**	281
IER15(2-dig) AIER15(2-dig)	0.0191***	0.0111*	0.0230***	0.0192**	0.0189*	281
IER15(2-dig) AIER15(2-dig)	0.0181***	0.0071	0.0231***	0.0181**	0.0184*	281
IFR19(1-dig) A1-dig	0.0161**	0.0132*	0.0187*	0.0153*	0.0204**	281
IFR19(1-dig) AIFR15(2-dig)	0.0144**	0.0088	0.0172**	0.0142*	0.0155	281
IER19(1-dig) AIER15(2-dig)	0.0132*	0.0046	0.0173**	0.0129*	0.0147	281
IFR19(2-dig) A1-dig	0.0159**	0.0114	0.0200**	0.0153*	0.0193*	281
IFR19(2-dig) AIFR15(2-dig)	0.0144**	0.0074	0.0179**	0.0144*	0.0145	281
IEP10(2 dig) AIEP15(2 dig)	0.0122*	0.0022	0.0170**	0.0121*	0.0126	201

Robustness checks - Lower skill (MLS)

7	ΔΕχρ	$\Delta Sec = 0$	$\Delta Sec = 1$	$\Delta NUTS = 0$	$\Delta NUTS = 1$	
Baseline	0.0107***	0.0041***	0.0152***	0.0114***	0.0048**	1,09
Subsamples						
Manufacturing	0.0099***	0.0039***	0.0140***	0.0099***	0.0100***	12
One transition	0.0091***	0.0002	0.0165***	0.0096***	0.0047	39
Previous 6 months	0.0109***	0.0017	0.0185***	0.0113***	0.0076**	44
4 months unemployed	0.0136***	0.0135***	0.0137***	0.0150***	0.0043	72
24 months unemployed	0.0139***	0.0168***	0.0131***	0.0150***	0.0066	37
Previous permanent	-0.0017	-0.0063***	0.0061*	-0.0019	0.0006	16
Previous not automotive	0.0019	0.0004	0.0027	0.0039*	-0.0102**	1,09
Only general regime	0.0109***	0.0035**	0.0160***	0.0115***	0.0057**	1,02
IFR aggregation schemes						
15 Groups	0.0104***	0.0032**	0.0155***	0.0113***	0.0024	1.09
17 Groups	0.0106***	0.0036**	0.0154***	0.0113***	0.0047*	1.09
20 Groups	0.0107***	0.0041***	0.0152***	0.0114***	0.0049**	1.09
Migration						,
Non-neighbouring NUTS3	0.0107***	0.0041***	0.0152***	0.0112***	-0.0004	1.09
Spell length						,
> 180 days	0.0063***	0.0047***	0.0080***	0.0067***	0.0033	43
> 360 davs	0.0033**	0.0010	0.0064**	0.0031**	0.0053	20
Controls						
Drop indiv. effect	0.0105***	0.0037**	0.0151***	0.0111***	0.0047*	1.09
$Drop \Delta ICT$	0.0107***	0.0041***	0.0153***	0.0114***	0.0048**	1.09
Drop indiv. effect and ΔICT	0.0105***	0.0037**	0.0151***	0.0111***	0.0047*	1.09
Fixed effects						,
Add Current spell FE	0.0095***	0.0057***	0.0122***	0.0101***	0.0048**	1.09
Sector						,
1-dig ∆1-dig	0.0107***	0.0041***	0.0152***	0.0114***	0.0048**	1.09
1-dig ∆IFR15(2-dig)	0.0101***	-0.0058***	0.0149***	0.0108***	0.0049**	1.09
1-dig ΔIFR19(2-dig)	0.0104***	-0.0057***	0.0149***	0.0110***	0.0051**	1.09
IFR15(1-dig) Δ 1-dig	0.0016	-0.0048**	0.0058***	0.0023	-0.0034	1.09
IER15(1-dig) AIER15(2-dig)	0.0016	-0.0129***	0.0062***	0.0023	-0.0028	1.09
IER15(1-dig) AIER19(2-dig)	0.0019	-0.0133***	0.0060***	0.0025	-0.0025	1.09
IFR15(2-dig) A1-dig	0.0017	-0.0048***	0.0059***	0.0023	-0.0032	1.09
IER15(2-dig) AIER15(2-dig)	0.0017	-0.0129***	0.0062***	0.0023	-0.0027	1 09
IER15(2-dig) AIER15(2-dig)	0.0019	-0.0134***	0.0061***	0.0025	-0.0023	1 09
IER19(1-dig) A1-dig	0.0007	-0.0056***	0.0049**	0.0014	-0.0043	1 09
IER19(1-dig) AIER15(2-dig)	0.0008	-0.0136***	0.0053**	0.0014	-0.0038	1 00
IFR19(1-dig) AIFR15(2-dig)	0.0007	-0 0144***	0.0049**	0.0013	-0.0037	1 00
IER10(2-dig) A1-dig	0.0008	-0.0057***	0.0050**	0.0014	-0.0041	1 00
IED10(2 dig) AIED15(2 dig)	0.0000	0.0126***	0.0052***	0.0014	0.0026	1.09
IFD10(2 dis) AIFR15(2 dis)	0.0000	-0.0130	0.0035	0.0014	-0.0030	1,09
IFR19(2-01g) //IFR15(2-01g)	0.0007	-0.0144	0.0049***	0.0013	-0.0055	1,09

Robustness checks - Temporary contract (HS)

		-

	ΔExp	$\Delta Sec = 0$	$\Delta Sec = 1$	$\Delta NUTS = 0$	$\Delta NUTS = 1$	N
Baseline	0.0018	-0.0039	0.0107	0.0036	-0.0080	81.197
Subsamples						
Manufacturing	0.0003	-0.0074*	0.0116	0.0026	-0.0131	7.378
One transition	-0.0005	-0.0061	0.0101	0.0014	-0.0122	59,307
Previous 6 months	-0.0007	-0.0041	0.0051	0.0019	-0.0163*	67,544
4 months unemployed	-0.0135*	-0.0009	-0.0179**	-0.0085	-0.0258**	38,153
24 months unemployed	-0.0220**	-0.0149	-0.0240**	-0.0134	-0.0458***	23,832
Previous permanent	0.0018	-0.0039	0.0107	0.0036	-0.0080	81,197
Previous not automotive	0.0337***	0.0319***	0.0347**	0.0358***	0.0204	80,924
Only general regime	0.0021	-0.0037	0.0111	0.0036	-0.0063	79,745
IFR aggregation schemes						
15 Groups	-0.0117***	-0.0104**	-0.0141	-0.0106**	-0.0167*	81,197
17 Groups	-0.0050	-0.0102**	0.0029	-0.0028	-0.0168*	81,197
20 Groups	0.0020	-0.0040	0.0115	0.0039	-0.0082	81,197
Migration		0.0040			0.0100*	04 407
Non-neighbouring NUTS3	0.0018	-0.0040	0.0108	0.0038	-0.0139*	81,197
Spell length	0.0027	0.0029	0.0024	0.0005	0.0105	60 560
> 100 days	-0.0037	-0.0030	-0.0034	-0.0025	-0.0105	6,509
> 500 days	-0.0019	-0.0012	-0.0032	-0.0020	-0.0010	50,005
Drop indiv effect	0.0018	-0.0039	0.0107	0.0036	-0.0080	81 197
Drop AICT	0.0018	-0.0039	0.0107	0.0036	-0.0080	81 197
Drop indiv effect and AICT	0.0018	-0.0039	0.0107	0.0036	-0.0080	81 197
Fixed effects						,
Add Current spell FE	0.0040	-0.0037	0.0158	0.0060	-0.0071	81,197
Sector						
1-dig ∆1-dig	0.0018	-0.0039	0.0107	0.0036	-0.0080	81,197
1-dig ∆IFR15(2-dig)	0.0001	-0.0062**	0.0057	0.0020	-0.0109	81,197
1-dig ∆IFR19(2-dig)	-0.0001	-0.0060*	0.0051	0.0019	-0.0110	81,197
IFR15(1-dig) ∆1-dig	0.0071	-0.0005	0.0163	0.0088	-0.0036	81,197
IFR15(1-dig) ∆IFR15(2-dig)	0.0055	-0.0025	0.0113	0.0074	-0.0067	81,197
IFR15(1-dig) ∆IFR19(2-dig)	0.0043	-0.0031	0.0095	0.0062	-0.0075	81,197
IFR15(2-dig) ∆1-dig	0.0070	-0.0011	0.0167	0.0087	-0.0035	81,197
IFR15(2-dig) ∆IFR15(2-dig)	0.0056	-0.0023	0.0114	0.0076	-0.0065	81,197
IFR15(2-dig) ∆IFR15(2-dig)	0.0045	-0.0030	0.0097	0.0064	-0.0074	81,197
IFR19(1-dig) ∆1-dig	0.0015	-0.0052	0.0099	0.0031	-0.0084	81,197
IFR19(1-dig) ∆IFR15(2-dig)	0.0007	-0.0059	0.0060	0.0026	-0.0106	81,197
IFR19(1-dig) ∆IFR15(2-dig)	-0.0005	-0.0066	0.0042	0.0013	-0.0115	81,197
IFR19(2-dig) ∆1-dig	0.0015	-0.0057	0.0104	0.0030	-0.0082	81,197
IFR19(2-dig) ∆IFR15(2-dig)	0.0009	-0.0057	0.0062	0.0028	-0.0104	81,197
IFR19(2-dig) ∆IFR15(2-dig)	-0.0003	-0.0065	0.0044	0.0015	-0.0113	81,197

Robustness checks - Temporary contract (MLS)

	ΔExp	$\Delta Sec = 0$	$\Delta Sec = 1$	$\Delta NUTS = 0$	$\Delta NUTS = 1$	N
Baseline	-0.0115***	-0.0236***	0.0092	-0.0123***	0.0015	162.
Subsamples						,
Manufacturing	-0.0094***	-0.0218***	0.0109	-0.0102***	0.0026	25.
One transition	-0.0127***	-0.0265***	0.0107*	-0.0133***	-0.0042	123.
Previous 6 months	-0.0118***	-0.0229***	0.0074	-0.0126***	0.0001	128.
4 months unemployed	-0.0007	0.0050	-0.0031	-0.0005	-0.0020	91.
24 months unemployed	-0.0010	0.0026	-0.0020	-0.0007	-0.0027	56.
Previous permanent	-0.0115***	-0.0236***	0.0092	-0.0123***	0.0015	162
Previous not automotive	0.0091	-0.0187**	0.0287***	0.0119	-0.0154	161
Only general regime	-0.0102***	-0.0227***	0.0115*	-0.0114***	0.0083	154
IFR aggregation schemes						
15 Groups	-0.0166***	-0.0243***	-0.0016	-0.0180***	0.0053	162.
17 Groups	-0.0125***	-0.0249***	0.0091	-0.0136***	0.0042	162
20 Groups	-0.0113***	-0.0233***	0.0093	-0.0121***	0.0014	162
Migration						,
Non-neighbouring NUTS3	-0.0115***	-0.0238***	0.0094	-0.0116***	-0.0087	162.
Spell length						,
> 180 davs	-0.0090***	-0.0162***	0.0060	-0.0100***	0.0108	122.
> 360 days	-0.0081***	-0.0112***	-0.0017	-0.0076**	-0.0170	91
Controls						
Drop indiv. effect	-0.0115***	-0.0236***	0.0092	-0.0123***	0.0015	162
Drop ΔICT	-0.0115***	-0.0236***	0.0092	-0.0123***	0.0015	162
Drop indiv. effect and ΔICT	-0.0115***	-0.0236***	0.0092	-0.0123***	0.0015	162
Fixed effects						
Add Current spell FF	-0.0103***	-0.0203***	0.0066	-0.0109***	-0.0006	162
Sector						,
1-dig A1-dig	-0.0115***	-0.0236***	0.0092	-0.0123***	0.0015	162
1-dig AIFR15(2-dig)	-0.0127***	-0.0354***	0.0074	-0.0134***	-0.0006	162
1-dig ∆IFR19(2-dig)	-0.0121***	-0.0352***	0.0074	-0.0130***	0.0012	162
IFR15(1-dig) A1-dig	0.0025	-0.0121***	0.0228***	0.0014	0.0162**	162
IFR15(1-dig) AIFR15(2-dig)	0.0024	-0.0226***	0.0215***	0.0014	0.0151**	162
IER15(1-dig) AIER19(2-dig)	0.0030	-0.0228***	0.0211***	0.0019	0.0179**	162
IER15(2-dig) A1-dig	0.0027	-0.0125***	0.0239***	0.0015	0.0177**	162
IER15(2-dig) AIER15(2-dig)	0.0027	-0.0227***	0.0220***	0.0016	0.0162**	162
IER15(2-dig) AIER15(2-dig)	0.0033	-0.0229***	0.0216***	0.0021	0.0190***	162
IER19(1-dig) A1-dig	-0.0021	-0.0156***	0.0178**	-0.0030	0.0104	162
IFR19(1-dig) AIFR15(2-dig)	-0.0022	-0.0261***	0.0169***	-0.0031	0.0094	162
IER19(1-dig) AIER15(2-dig)	-0.0023	-0.0266***	0.0158**	-0.0033	0.0113	162
IER10(2-dig) A1-dig	-0.0020	-0.0160***	0.0188**	-0.0030	0.0117	162
IFR10(2-dig) AIFR15(2-dig)	-0.0020	-0.0100	0.0173***	-0.0030	0.0104	162
IED10(2 dig) AIED15(2 dig)	-0.0020	-0.0202	0.0162**	-0.0029	0.0103*	162

Robustness checks - TEA (HS)

Back

	$\Delta E \times p$	$\Delta NUTS = 0$	$\Delta NUTS = 1$	N
Baseline	0.0037	0.0058**	-0.0063	278,770
Subsamples				
Manufacturing	0.0042*	0.0055**	-0.0020	14,079
One transition	0.0008	0.0020	-0.0059	130,907
Previous 6 months	0.0022	0.0037	-0.0053*	161,118
4 months unemployed	0.0022	0.0063	-0.0100*	162,925
24 months unemployed	0.0072	0.0117*	-0.0073*	86,975
Previous permanent	0.0009	0.0011	0.0001	81,197
Previous not automotive	0.0097**	0.0142***	-0.0127	281.383
Only general regime	0.0036	0.0056**	-0.0063	275,414
IFR aggregation schemes				
15 Groups	0.0012	0.0032	-0.0074**	281.852
17 Groups	0.0020	0.0043	-0.0086**	281,852
20 Groups	0.0033	0.0051**	-0.0060	281.852
Migration				
Non-neighbouring NUTS3	0.0037	0.0052**	-0.0091**	281,852
Spell length				
> 180 days	0.0006	0.0004	0.0015	167,473
> 360 days	0.0002	0.0001	0.0008	103,398
Controls				
Drop indiv. effect	0.0037	0.0057**	-0.0062	281,852
Drop ΔICT	0.0037	0.0057**	-0.0062	281,852
Drop indiv. effect and ΔICT	0.0037	0.0057**	-0.0062	281,852
Fixed effects				
Add Current spell FE	0.0014	0.0033*	-0.0081**	281,852
Sector				
IFR15(1-dig)	0.0002	0.0021	-0.0097**	281,852
IFR15(2-dig)	0.0002	0.0021	-0.0097**	281,852
IFR19(1-dig)	-0.0008	0.0011	-0.0108**	281,852
IFR19(2-dig)	-0.0008	0.0011	-0.0108**	281,852

Robustness checks - TEA (MLS)

Back

	ΔExp	$\Delta NUTS = 0$	$\Delta NUTS = 1$	N
Baseline	0.0141***	0.0154***	0.0033	1.025.572
Subsamples				
Manufacturing	0.0114***	0.0120***	0.0064**	120,189
One transition	0.0125***	0.0136***	0.0034	393,620
Previous 6 months	0.0141***	0.0150***	0.0065	440,058
4 months unemployed	0.0170***	0.0188***	0.0052*	727,763
24 months unemployed	0.0160***	0.0180***	0.0025	379.546
Previous permanent	0.0021	0.0016	0.0099	162,694
Previous not automotive	0.0101***	0.0123***	-0.0037	1.090.528
Only general regime	0.0142***	0.0154***	0.0037	1.025.150
IFR aggregation schemes				
15 Groups	0.0157***	0.0174***	0.0018	1.095.924
17 Groups	0.0147***	0.0161***	0.0028	1.095.924
20 Groups	0.0140***	0.0153***	0.0029	1,095,924
Migration				
Non-neighbouring NUTS3	0.0142***	0.0150***	-0.0050*	1,095,924
Spell length				
> 180 days	0.0038***	0.0040***	0.0022	435,709
> 360 davs	0.0006	0.0009*	-0.0032	204.360
Controls				
Drop indiv. effect	0.0146***	0.0159***	0.0033	1,095,924
$Drop \Delta ICT$	0.0142***	0.0156***	0.0031	1.095.924
Drop indiv. effect and ΔICT	0.0146***	0.0159***	0.0033	1.095.924
Fixed effects				
Add Current spell FE	0.0080***	0.0090***	-0.0006	1.095.924
Sector				
IFR15(1-dig)	0.0002	0.0017	-0.0102***	1,095,924
IFR15(2-dig)	0.0001	0.0015	-0.0103***	1,095,924
IFR19(1-dig)	0.0006	0.0020	-0.0098***	1,095,924
IFR19(2-dig)	0.0005	0.0018	-0.0100***	1.095.924