# A Structural Model of Interbank Network Formation & Contagion

Jamie Coen Imperial College London Patrick Coen Toulouse School of Economics

BdE - CEMFI June 2023

The views expressed are those of the authors only and do not necessarily reflect those of the Bank of England.

Motivation

**Interbank network**: direct interconnections between banks through lending or derivatives.

Fundamental trade-off:

**1** Surplus creation: liquidity provision, hedging etc.

**Ocontagion**: counterparty risk, systemic risk.

Regulation intended to:

"...preserve the benefits of interconnectedness in financial markets while managing the potentially harmful side effects" (Yellen, 2013)

### Our question

### Key question:

How can we design and test regulation that improves outcomes?

### Network effects?

- How does the network affect systemic risk?
- Which banks are systemically important?

### **2** Network formation?

• Is the network formed efficiently?

### **3** Regulation?

- Is current regulation effective in reducing systemic risk?
- Is current regulation <u>efficient</u> in maintaining surplus creation?
- Can we design better regulation?

# Our findings

### Network effects?

- How? Riskiness of a link varies across pairs.
- Systemic importance? Measures on raw network are biased.

#### **2** Network formation?

• Efficient? No, <u>network externalities</u> mean social planner could increase surplus & decrease systemic risk.

### **3** Regulation?

- Effective? Cap on individual links has limited impact on risk.
- Efficient? Capital requirements inefficient.
- Design better? Novel regulation targeted at market failure:
  - (a) Cap <u>aggregate</u> bank supply.
  - (b) Pairwise capital requirements.

# Data & Summary Statistics

**Exposures**: Bank of England data on counterparty exposures:

- Novel dataset, largest/ most comprehensive measure of total counterparty exposure.
- Derivatives, debt instruments, securities lending and repo.
- Sample of N = 18 international banks from 2011 to 2018 T = 21 (network data size = N(N 1)T = 6,426).

# Dense heterogeneous network



# Model

### Model overview

### **Counterparty risk**

- SAR: Risk  $\leftarrow$  fundamentals, exposures, others' risk.
- Heterogeneous spillover parameter (risk sharing?).

#### **Network formation**

- Banks supply exposures to earn return.
- Cost depends on regulation and bank risk.
- Banks **demand** exposures as heterogeneous inputs to production function.

# Model

#### Notation:

- C<sub>ijt</sub> : Total exposure of *i* to *j* at time *t*.
- $p_{it}$  : Default risk of *i* at time *t*.
- $X_{it}$  : Fundamentals of *i* at time *t*.
- $\Gamma_{ij}$  : Network spillover parameter from *i* to *j*.

Model

**Counterparty risk**: how does  $p^*$  depend on  $C^*$ ?

$$p_{it} = X_{it}\beta + \sum_{j \neq i} \Gamma_{ij}C_{ijt}p_{jt} + e_{it}$$

**Supply**: how does  $C^*$  depend on  $p^*$ ?

$$\Pi_{it}^{S} = \sum_{j} C_{ijt} [r_{ijt} - puc_{ijt}], \quad puc_{ijt} = \operatorname{Reg'n} \times p_{it}(\boldsymbol{C})$$

**Demand**: Linear demand with differentiated products:

$$r_{ijt} = \zeta_{ij} + \delta_{it} - BC_{ijt} - \sum_{k \neq i} \theta_{ik} C_{kjt}$$

# Dense heterogeneous network



# Model: Summary

Comparative statics:  $C_{ijt}^*$ 

- Decreasing in  $\Gamma_{ij}$ ,  $X_{it}$  and  $X_{jt}$ : safe links are big links.
- Increasing in "technological" importance.
- Regulation has direct and indirect (through risk) effects.

Inefficiency:

• Bank *i* takes systemic risk  $(p_{m\neq i})$  as given.

# Estimation & Results

### Estimation

**Data**: exposures  $C_{ijt}$ , CDS premia for  $p_{it}$ , banks' local economic conditions for  $X_{it}$ .

### Procedure

- GMM: match model-implied moments to data.
- Network formation  $\rightarrow$  account for endogeneity of network.
- Parameterisations: e.g.  $\Gamma_{ij} = \tilde{\Gamma}_i + \tilde{\Gamma}_j$

Identifying network spillovers  $\Gamma_{ij}$ :

• From default risk data:

- $cov(p_{it}, X_{jt}) \rightarrow \Gamma_{ij}$ .
- **2** From network data:
  - $cov(C_{ijt}, X_{jt}) \rightarrow \Gamma_{ij}$ .
  - Network structure allows many more FE<sub>ij</sub>, FE<sub>it</sub>.

# Distribution of Contagion



- Contagion substantial & heterogeneous.
- Banks' products imperfectly substitutable. Details

### Our question

### Key question:

How can we design and test regulation that improves outcomes?

### Network effects?

- How does the network affect systemic risk?
- Which banks are systemically important?
- **2** Network formation?
  - Is the network formed efficiently?

### **3** Regulation?

- Is current regulation effective in reducing systemic risk?
- Is current regulation <u>efficient</u> in maintaining surplus creation?
- Can we design better regulation?

Academic & regulatory interest in identifying systemic banks.

Eigenvector centrality:

 $ranking = eig(\mathbf{C})$ 

Heterogeneous  $\Gamma_{ij}$  changes ranking:

$$\mathit{eig}(\mathsf{C}) \ = \ \mathit{eig}(\gamma\mathsf{C}) \ 
eq \ \mathit{eig}(\Gamma \ \circ \ \mathsf{C})$$

Change in ranking not random: safe links are big links.

# Centrality



### Our question

### Key question:

How can we design and test regulation that improves outcomes?

### Network effects?

- How does the network affect systemic risk?
- Which banks are systemically important?

### **2** Network formation?

• Is the network formed efficiently?

### **3** Regulation?

- Is current regulation effective in reducing systemic risk?
- Is current regulation <u>efficient</u> in maintaining surplus creation?
- Can we design better regulation?

# Efficiency

Challenge: what are the social planner's preferences?

- Bank risk about more than bank cost!
- "Outside" surplus =  $f(\mathbf{p})$ : hard to measure.
- Assumption: decreasing in **p**.

# Efficiency



#### Interbank Network Formation & Contagion

### Our question

### Key question:

How can we design and test regulation that improves outcomes?

### Network effects?

- How does the network affect systemic risk?
- Which banks are systemically important?

### **2** Network formation?

• Is the network formed efficiently?

### **3** Regulation?

- Is current regulation effective in reducing systemic risk?
- Is current regulation <u>efficient</u> in maintaining surplus creation?
- Can we design better regulation?

### Bilateral vs aggregate exposure caps



Details

#### Interbank Network Formation & Contagion

# Homogeneous vs heterogeneous capital regulation



Detail

# Conclusion

- Network spillovers are pairwise  $\rightarrow$  implications for reg'n
- Large network links may be large for a reason
- Some progress respecting wider externalities possible

# Conclusion

- Network spillovers are pairwise  $\rightarrow$  implications for reg'n
- Large network links may be large for a reason
- Some progress respecting wider externalities possible

Thank you

patrick.coen@tse-fr.eu w.coen@imperial.ac.uk Variation in default risk



### Variation in exposures

|                 |      | Dep  | endent v | ariable: | Exposur | e C <sub>ijt</sub> |      |
|-----------------|------|------|----------|----------|---------|--------------------|------|
| Dummy Variables | i    | j    | t        | it       | jt      | it+jt              | ij   |
| R-squared       | 0.27 | 0.12 | 0.01     | 0.39     | 0.15    | 0.54               | 0.61 |
| No. obs         | 6426 | 6426 | 6426     | 6426     | 6426    | 6426               | 6426 |

# Model details Contagion



$$\Pi_{jt}^{D} = \sum_{i} \zeta_{ijt} C_{ijt} - \frac{1}{2} \left( \sum_{i} C_{ijt}^{2} + 2 \sum_{i} \sum_{k \neq i} \theta_{ik} C_{ijt} C_{kjt} \right) - \sum_{i} r_{ijt} C_{ijt}$$

## Results

|                                    | Min   | Mean        | Max         |  |
|------------------------------------|-------|-------------|-------------|--|
| Contagion $\tilde{\Gamma}_i$       | 0.00  | 0.71        | 5.83        |  |
|                                    | [0,0] | [0.27,0.85] | [1.09,7.63] |  |
| Characteristics $\tilde{\theta}_l$ | 0.00  | 0.41        | 2.24        |  |
|                                    | [0,0] | [0.35,0.45] | [1.5,2.75]  |  |
| Scaling a <sub>i</sub>             | 1.00  | 3.09        | 8.83        |  |
|                                    | [1,1] | [2.31,4.02] | [5.1,10]    |  |
| Hedging $\omega$                   |       | 0.00        |             |  |
|                                    |       | [0,0.02]    |             |  |
| Fundamentals $\beta_1$             |       | -0.09       |             |  |
|                                    |       | [-0.12,-    |             |  |
|                                    |       | 0.04]       |             |  |
| Network                            |       |             |             |  |
| Fixed effects                      |       | it, ij      |             |  |
| Observations                       |       | 6426        |             |  |
|                                    |       |             |             |  |
| Default risk                       |       |             |             |  |
| Fixed effects                      |       | t           |             |  |
| Observations                       |       | 378         |             |  |

Key parameter distributions



- Contagion substantial & heterogeneous.
- Banks' products imperfectly substitutable. ٠

Contagion through time



# The network in a stress



# Efficiency: identification

|                 | Baseline | ↓ Γ̃ <sub>ij</sub> | $\downarrow \tilde{	heta}_I$ | $\uparrow \omega$ | $\downarrow V(\tilde{\Gamma}_{ij})$ |
|-----------------|----------|--------------------|------------------------------|-------------------|-------------------------------------|
| TS inefficiency | 79%      | 80%                | 49%                          | 82%               | 69%                                 |
| p inefficiency  | 51%      | 31%                | 55%                          | 54%               | 80%                                 |

# Efficiency: network

|                       | Change vs equilibrium (%) |                  |  |  |
|-----------------------|---------------------------|------------------|--|--|
|                       | Surplus improvement       | Risk improvement |  |  |
| Mean exposures        | -33                       | -50              |  |  |
| Exposures variance    | 55                        | 16               |  |  |
| HHI: aggregate        | 166                       | 244              |  |  |
| HHI: exposures supply | 90                        | 157              |  |  |
| HHI: exposures demand | 156                       | 131              |  |  |

Caps

### **Bilateral cap**

$$C_{ijt}^{\mathcal{C}} \leq \mathsf{cap} imes \max_{j} C_{ijt}$$

Aggregate cap

$$\sum_{j} \textit{C}_{ijt}^\textit{C} \leq \textsf{cap} \times \sum_{j} \textit{C}_{ijt}$$

# Capital regulation

#### Homogeneous

• Increase marginal cost of *C<sub>ijt</sub>* in increments of *x*, homogeneously across all *ij*.

#### Heterogeneous

• Increase marginal cost for high-risk links by *x*, decrease it for low-risk links by *x*.

#### $\mathsf{Back}$