Financial Stability Governance and Central Bank Communications

Discussion: Londono, Stijn & Correa

Oren Sussman

Saïd Business School, University of Oxford

Madrid, BDE-CEMFI 3rd FS Conference, 19 October, 2021

Framework: structure, conduct, performance (by LCC)

- Structure:
 - CB is member of FS committee
 - Comittee has power to implement policy
 - CB has FS mandate
 - CB regulates domestic banks
- Conduct:
 - a policy function
 f: (structe, state_t, information) ⇒ communication, instruments
- Performance:
 - objective function: $g: f(\cdot) \Rightarrow state_{t+1}$
- Research question: does f maximize g?

Narrowing down the question

Message space (an index of pessimism)

$$\textit{FSS} = \frac{\#\textit{negatives} - \#\textit{positives}}{\#\textit{total}}$$

- dictionary: 391 words, 96 positives, 295 negatives
- Greenspan: "If I've made myself too clear, you must have misunderstood me"
- Main interest

$$\left. \frac{\partial \left(\frac{\partial \text{ state}}{\partial \text{ instrument}} \right)}{\partial \text{ FSS}} \right|_{\text{structure, state, information}}$$

• Draghi's (2015): the "within our mandate, the ECB is ready to do whatever it takes ... believe me it will be enough"

Optimism and pessimism, CB vs. NS, over cycle (I)

CB vs. NS (II)

• Table 11:

$$FSS_{i,t+1} = \alpha_i + (\beta_1 + \beta_2 D_{i,t-1}) NS_{i,t} + e_{i,t+4}$$

	Committee	Official committee
Constant	0.65***	0.65***
	(0.04)	(0.05)
NS (β_1)	0.57***	0.56***
	(0.06)	(0.06)
D*NS (β_2)	-0.20*	-0.27**
	(0.08)	(0.08)
$\beta_1 + \beta_2$	0.33***	0.28***
	(0.04)	(0.04)
\mathbb{R}^2	0.17	0.18
N	1660.00	1660.00

"...which would provide support to the strategic use of communication by central banks"

- Because the CBs know that they will take action and soften the effect?
 - unlikely: the newspapers know the what powers the CBs have and incorporate their policies into their NS chatter
- Alternatively, the CBs worry that high FSS would trigger a crisis
 - if they talk about crisis they will be blamed for it
 - the Greenspan strategy

News effect and blame

Who do you think is most to blame for petrol stations running out of fuel?

All adults (3361 GB adults - Sep 28, 2021)

YouGov What the world thinks

yougov.co.uk

Weak FS-FSS correlations (I)

• Table 6:

$$\mathit{FS}_{\mathit{i},\mathit{t}+4} = \alpha_{\mathit{i}} + \alpha + (\beta_1 + \beta_2 D_{\mathit{i},\mathit{t}-1}) \, \mathit{FSS}_{\mathit{i},\mathit{t}} + \gamma \mathit{FS}_{\mathit{i},\mathit{t}} + e_{\mathit{i},\mathit{t}+4}$$

Panel A. Credit-to-GDP gap		
	Homogeneous	
AR coefficient	0.91***	
	(0.03)	
Constant	0.01	
	(0.48)	
FSS (β_1)	-0.45	
	(0.47)	
D*FSS (β_2)		
$\beta_1 + \beta_2$		
\mathbb{R}^2	0.82	
N	1594.00	

Weak FS-FSS correlations (II)

• Table 9:

$$Pr[TP_{i,t+4} = 1] = \Phi[X_{i,t}\beta]$$

Committee

	Yes	No
Constant	-1.71***	-1.67***
	0.09	0.09
FSS	0.05	0.26**
	0.13	0.10
\mathbb{R}^2	0.00	0.03
N	1140.00	906.00

The missing regressions

• Some light can be shed by the regression

$$FS_{i,t+4} = \alpha_i + \alpha + (\beta_1 + \beta_2 D_{i,t-1}) NS_{i,t} + \gamma FS_{i,t} + e_{i,t+4}$$

and

$$Pr[TP_{i,t+4} = 1] = \Phi[X_{i,t}\beta]$$

where NS replaces FSS in X

Hypothesis: NS predicts FS equally well across Ds

BOE poor predictive power - beyond a 1Y horizon

More policy controls (I)

• Table 14:

$$\mathit{FS}_{\mathit{i},\mathit{t}+4} = \alpha_{\mathit{i}} + \alpha + (\beta_1 + \beta_2 D_{\mathit{i},\mathit{t}-1}) \, \mathit{FSS}_{\mathit{i},\mathit{t}} + \beta_3 \mathit{MP}_{\mathit{i},\mathit{t}} + \beta_4 \mathit{IR}_{\mathit{i},\mathit{t}} + \gamma \mathit{FS}_{\mathit{i},\mathit{t}} + e_{\mathit{i},\mathit{t}}$$

	Credit-to-GDP gap	Credit Growth	Debt service ratio
AR coefficient	0.92***	0.17**	0.59***
	(0.06)	(0.05)	(0.09)
Constant	-3.60**	0.09	4.95**
	(1.28)	(1.15)	(1.30)
FSS (β_1)	0.81	0.42	0.23
	(0.60)	(0.38)	(0.12)
D*FSS (β_2)	-1.52*	-1.38*	-0.22*
	(0.57)	(0.50)	(0.09)

More policy controls (II)

• Table 16:

$$Pr[TP_{i,t+4} = 1] = \Phi[X_{i,t}\beta]$$

Committee

	Yes	No
Constant	-1.45***	-1.69***
	0.11	0.10
FSS	-0.05	0.29**
	0.14	0.09
MP	0.05**	0.03
	0.02	0.04
IR	0.00	0.05**
	0.01	0.02
\mathbb{R}^2	0.02	0.05
N	500.00	496.00