Credit Allocation and Macroeconomic Fluctuations

Karsten Müller NUS Business School Emil Verner MIT

Banco de España-CEMFI Third Conference on Financial Stability 19 October 2021

Motivation

Rapid credit expansions are often, *but not always*, followed by economic downturns (Schularick-Taylor, 2012; Mian et al. 2017; Greenwood et al., 2020)

Motivation

Rapid credit expansions are often, *but not always*, followed by economic downturns (Schularick-Taylor, 2012; Mian et al. 2017; Greenwood et al., 2020)

But how credit interacts with business cycles remains poorly understood

- Why do some credit expansions end badly, while others are linked to growth spurts?
- How can we tell apart "good" from "bad" booms (Gorton & Ordoñez, 2020)?
- Does it matter who gets the borrowed money during credit booms?

Motivation

Rapid credit expansions are often, *but not always*, followed by economic downturns (Schularick-Taylor, 2012; Mian et al. 2017; Greenwood et al., 2020)

But how credit interacts with business cycles remains poorly understood

- Why do some credit expansions end badly, while others are linked to growth spurts?
- How can we tell apart "good" from "bad" booms (Gorton & Ordoñez, 2020)?
- Does it matter who gets the borrowed money during credit booms?

This paper: role of sectoral allocation of credit for understanding linkages between credit booms, macroeconomic fluctuations, and financial crises

Why focus on the allocation of credit across sectors?

Motivated by models of credit cycles with sectoral heterogeneity (e.g. Schneider-Tornell, 2004)

- Main distinction: tradable (T) vs. non-tradable (NT) and household sectors
- Key frictions: (1) sensitivity to credit supply shocks; (2) sensitivity to household demand

Why focus on the allocation of credit across sectors?

Motivated by models of credit cycles with sectoral heterogeneity (e.g. Schneider-Tornell, 2004)

- Main distinction: tradable (T) vs. non-tradable (NT) and household sectors
- Key frictions: (1) sensitivity to credit supply shocks; (2) sensitivity to household demand

Channels linking NT and HH credit to economic downturns

- Fueling unsustainable demand booms (e.g. Schmitt-Grohé-Uribe, 2016; Mian-Sufi-Verner, 2020)
- Contributing to financial fragility (e.g. Schneider-Tornell, 2004; Kalantzis, 2015)
- Contributing to intersectoral misallocation (e.g. Reis, 2013; Benigno-Fornaro, 2014)

Why focus on the allocation of credit across sectors?

Motivated by models of credit cycles with sectoral heterogeneity (e.g. Schneider-Tornell, 2004)

- Main distinction: tradable (T) vs. non-tradable (NT) and household sectors
- Key frictions: (1) sensitivity to credit supply shocks; (2) sensitivity to household demand

Channels linking NT and HH credit to economic downturns

- Fueling unsustainable demand booms (e.g. Schmitt-Grohé-Uribe, 2016; Mian-Sufi-Verner, 2020)
- Contributing to financial fragility (e.g. Schneider-Tornell, 2004; Kalantzis, 2015)
- Contributing to intersectoral misallocation (e.g. Reis, 2013; Benigno-Fornaro, 2014)

Yet prominent theories of credit cycles do not emphasize borrower heterogeneity (e.g. Brunnermeier-Sannikov, 2014; Bordalo-Gennaioli-Shleifer, 2016)

• Whether the allocation of credit matters empirically is an open question

To test for a role of sectoral credit allocation, we construct a new cross-country panel database from more than 600 individual sources, many newly digitized

Dataset	Start	Countries	Sectors
BIS	1940	43	2
IMF GDD	1950	83	2
Jordà et al. (2016)	1870	17	3
Müller and Verner (2020)	1940	116	2–60 (mean=16)

Comparison with Existing Data Sources on Private Credit

To test for a role of sectoral credit allocation, we construct a new cross-country panel database from more than 600 individual sources, many newly digitized

Dataset	Start	Countries	Sectors
BIS	1940	43	2
IMF GDD	1950	83	2
Jordà et al. (2016)	1870	17	3
Müller and Verner (2020)	1940	116	2–60 (mean=16)

Comparison with Existing Data Sources on Private Credit

We use these data to study the link between sectoral credit, business cycles, and crises

Main results

1. Stark differences in macro outcomes across sectoral credit expansions

- Credit to non-tradable and household sectors predict slower medium-run growth
- Credit to tradable sector predicts stable or even stronger growth

Main results

1. Stark differences in macro outcomes across sectoral credit expansions

- Credit to non-tradable and household sectors predict slower medium-run growth
- Credit to tradable sector predicts stable or even stronger growth

2. Mechanisms consistent with role of NT and HH credit in multi-sector credit cycle models

- NT and HH credit predict demand booms and busts
- NT and HH credit predict higher risk of financial crises
- NT and HH credit predict lower productivity growth, could suggest intersectoral misallocation

Main results

1. Stark differences in macro outcomes across sectoral credit expansions

- Credit to non-tradable and household sectors predict slower medium-run growth
- Credit to tradable sector predicts stable or even stronger growth

2. Mechanisms consistent with role of NT and HH credit in multi-sector credit cycle models

- NT and HH credit predict demand booms and busts
- NT and HH credit predict higher risk of financial crises
- NT and HH credit predict lower productivity growth, could suggest intersectoral misallocation

Takeaway: whether credit booms are "good" or "bad" depends on what credit is used for

• Distinguishing varieties of firm credit expansions is important

A new database on sectoral credit

> 600 sources, $1/_3$ newly digitized Mainly: statistical yearbooks, central banks

Previously unpublished data provided by central banks and regulators

Systematic coding of classification changes help from 150 employees of national authorities

Extensive documentation data appendix, spreadsheets, code routines

Sectoral credit database

116 countries1940-2014Sector classification: ISIC Rev. 4Covers all domestic credit

Forthcoming

More countries Update until 2021 Website to explore data Data and code

New facts about allocation of credit

(a) Booming household, stalling firm credit

Sample: 51 advanced and 46 emerging economies.

New facts about allocation of credit

(a) Booming household, stalling firm credit

(b) Structural change in corporate credit

The 1980s credit boom in Japan

Similar pattern across most credit booms and crises in advanced and emerging economies

Credit variables

- Tradable sector: agriculture; mining; manufacturing
- Non-tradable sector: construction/real estate; retail and wholesale trade/accom./food; transport/comm.
- Households

Credit variables

- Tradable sector: agriculture; mining; manufacturing
- Non-tradable sector: construction/real estate; retail and wholesale trade/accom./food; transport/comm.
- Households

	Tradable Non-tradal		
1) Sensitivity to demand:			
Proximity to final demand	0.15	0.36	
Exports/value added	0.78	0.11	

What are key differences between T and NT sectors?

Credit variables

- Tradable sector: agriculture; mining; manufacturing
- Non-tradable sector: construction/real estate; retail and wholesale trade/accom./food; transport/comm.
- Households

	Tradable Non-tradal			
1) Sensitivity to demand:				
Proximity to final demand	0.15	0.36		
Exports/value added	0.78	0.11		
2) Financing constraints:				
Small firm share	0.79	0.90		
Mortgage share	0.45	0.61		

What are key differences between T and NT sectors?

Credit variables

- Tradable sector: agriculture; mining; manufacturing
- Non-tradable sector: construction/real estate; retail and wholesale trade/accom./food; transport/comm.
- Households

What are key differences between T and NT sectors?

	Tradable	Non-tradable
1) Sensitivity to demand:		
Proximity to final demand	0.15	0.36
Exports/value added	0.78	0.11
2) Financing constraints:		
Small firm share	0.79	0.90
Mortgage share	0.45	0.61
3) Productivity:		
Labor productivity	\$56,263	\$43,406
Labor productivity growth	3.2%	1.0%

Sources: WIOT, Eurostat, various central banks, Mano & Castillo (2015)

Impulse responses from Jordà (2005) local projections:

$$\Delta_h y_{it+h} = \alpha_i^h + \sum_{j=0}^J \boldsymbol{\beta}_{h,j}^{NT} \Delta d_{it-j}^{NT} + \sum_{j=0}^J \boldsymbol{\beta}_{h,j}^{T} \Delta d_{it-j}^{T} + \sum_{j=0}^J \boldsymbol{\beta}_{h,j}^{HH} \Delta d_{it-j}^{HH}$$
$$+ \sum_{j=0}^J \gamma_{h,j} \Delta y_{it-j} + \epsilon_{it+h}, \qquad h = 1, \dots, 10 \qquad J = 5$$

Impulse responses from Jordà (2005) local projections:

$$\Delta_{h} y_{it+h} = \alpha_{i}^{h} + \sum_{j=0}^{J} \boldsymbol{\beta}_{h,j}^{NT} \Delta d_{it-j}^{NT} + \sum_{j=0}^{J} \boldsymbol{\beta}_{h,j}^{T} \Delta d_{it-j}^{T} + \sum_{j=0}^{J} \boldsymbol{\beta}_{h,j}^{HH} \Delta d_{it-j}^{HH}$$
$$+ \sum_{j=0}^{J} \gamma_{h,j} \Delta y_{it-j} + \epsilon_{it+h}, \qquad h = 1, \dots, 10 \qquad J = 5$$
$$\boldsymbol{y} = \text{Log(real GDP)}$$

Impulse responses from Jordà (2005) local projections:

$$\Delta_{h} y_{it+h} = \alpha_{i}^{h} + \sum_{j=0}^{J} \beta_{h,j}^{NT} \Delta d_{it-j}^{NT} + \sum_{j=0}^{J} \beta_{h,j}^{T} \Delta d_{it-j}^{T} + \sum_{j=0}^{J} \beta_{h,j}^{HH} \Delta d_{it-j}^{HH} + \sum_{j=0}^{J} \gamma_{h,j} \Delta y_{it-j} + \epsilon_{it+h}, \qquad h = 1, ..., 10 \qquad J = 5$$

Country fixed effects

Impulse responses from Jordà (2005) local projections:

$$\Delta_{h} y_{it+h} = \alpha_{i}^{h} + \sum_{j=0}^{J} \beta_{h,j}^{NT} \Delta d_{it-j}^{NT} + \sum_{j=0}^{J} \beta_{h,j}^{T} \Delta d_{it-j}^{T} + \sum_{j=0}^{J} \beta_{h,j}^{HH} \Delta d_{it-j}^{HH} + \sum_{j=0}^{J} \gamma_{h,j} \Delta y_{it-j} + \epsilon_{it+h}, \qquad h = 1, ..., 10 \qquad J = 5$$

 d^{NT} = Credit to the non-tradable sector / GDP

Impulse responses from Jordà (2005) local projections:

$$\Delta_{h} y_{it+h} = \alpha_{i}^{h} + \sum_{j=0}^{J} \beta_{h,j}^{NT} \Delta d_{it-j}^{NT} + \sum_{j=0}^{J} \beta_{h,j}^{T} \Delta d_{it-j}^{T} + \sum_{j=0}^{J} \beta_{h,j}^{HH} \Delta d_{it-j}^{HH} + \sum_{j=0}^{J} \gamma_{h,j} \Delta y_{it-j} + \epsilon_{it+h}, \qquad h = 1, ..., 10 \qquad J = 5$$

 d^{T} = Credit to the tradable sector / GDP

Impulse responses from Jordà (2005) local projections:

$$\Delta_{h} y_{it+h} = \alpha_{i}^{h} + \sum_{j=0}^{J} \beta_{h,j}^{NT} \Delta d_{it-j}^{NT} + \sum_{j=0}^{J} \beta_{h,j}^{T} \Delta d_{it-j}^{T} + \sum_{j=0}^{J} \beta_{h,j}^{HH} \Delta d_{it-j}^{HH} + \sum_{j=0}^{J} \gamma_{h,j} \Delta y_{it-j} + \epsilon_{it+h}, \qquad h = 1, ..., 10 \qquad J = 5$$

 d^{HH} = Credit to households / GDP

Impulse responses from Jordà (2005) local projections:

$$\Delta_{h} y_{it+h} = \alpha_{i}^{h} + \sum_{j=0}^{J} \boldsymbol{\beta}_{h,j}^{NT} \Delta d_{it-j}^{NT} + \sum_{j=0}^{J} \boldsymbol{\beta}_{h,j}^{T} \Delta d_{it-j}^{T} + \sum_{j=0}^{J} \boldsymbol{\beta}_{h,j}^{HH} \Delta d_{it-j}^{HH}$$
$$+ \sum_{j=0}^{J} \gamma_{h,j} \Delta y_{it-j} + \epsilon_{it+h}, \qquad h = 1, \dots, 10 \qquad J = 5$$

Prediction horizon: 10 years

Impulse responses from Jordà (2005) local projections:

$$\Delta_{h} y_{it+h} = \alpha_{i}^{h} + \sum_{j=0}^{J} \boldsymbol{\beta}_{h,j}^{NT} \Delta d_{it-j}^{NT} + \sum_{j=0}^{J} \boldsymbol{\beta}_{h,j}^{T} \Delta d_{it-j}^{T} + \sum_{j=0}^{J} \boldsymbol{\beta}_{h,j}^{HH} \Delta d_{it-j}^{HH}$$
$$+ \sum_{j=0}^{J} \gamma_{h,j} \Delta y_{it-j} + \epsilon_{it+h}, \qquad h = 1, \dots, 10 \qquad J = 5$$
$$Lag \text{ length: 5 years}$$

Impulse responses from Jordà (2005) local projections:

$$\Delta_h y_{it+h} = \alpha_i^h + \sum_{j=0}^J \boldsymbol{\beta}_{h,j}^{NT} \Delta d_{it-j}^{NT} + \sum_{j=0}^J \boldsymbol{\beta}_{h,j}^T \Delta d_{it-j}^T + \sum_{j=0}^J \boldsymbol{\beta}_{h,j}^{HH} \Delta d_{it-j}^{HH}$$
$$+ \sum_{j=0}^J \gamma_{h,j} \Delta y_{it-j} + \epsilon_{it+h}, \qquad h = 1, \dots, 10 \qquad J = 5$$

Inference: Driscoll-Kraay or two-way clustered standard errors (country and year)

Note on interpretation: Impulse responses *≠* causal effects

• Conditional on seeing a credit expansion, what happens to GDP (on average)?

Real GDP and T vs. NT sector firm credit expansions

In the paper, we show these patterns are robust and hold when controlling for output shares

Similar when controlling for household debt expansion

$$\Delta_{h} y_{it+h} = \alpha_{i}^{h} + \sum_{j=0}^{5} \beta_{h,j}^{NT} \Delta d_{it-j}^{NT} + \sum_{j=0}^{5} \beta_{h,j}^{T} \Delta d_{it-j}^{T} + \sum_{j=0}^{5} \beta_{h,j}^{HH} \Delta d_{it-j}^{HH} + \sum_{j=0}^{5} \gamma_{h,j} \Delta y_{it-j} + \epsilon_{it+h} + \epsilon_{it+h$$

Unemployment spikes following NT credit expansions

$$\Delta_{h} y_{it+h} = \alpha_{i}^{h} + \sum_{j=0}^{5} \beta_{h,j}^{NT} \Delta d_{it-j}^{NT} + \sum_{j=0}^{5} \beta_{h,j}^{T} \Delta d_{it-j}^{T} + \sum_{j=0}^{5} \beta_{h,j}^{HH} \Delta d_{it-j}^{HH} + \sum_{j=0}^{5} \gamma_{h,j} \Delta y_{it-j} + \epsilon_{it+h} + \sum_{j=0}^{5} \beta_{h,j}^{HH} \Delta d_{it-j}^{HH} + \sum_{j=0}^{5} \beta_{h,j}^{HH} \Delta d_{j}^{HH} + \sum_{j=0}^{5} \beta_{h$$

Splitting firm credit along sector characteristics

$A_3 y_{it+h} = \alpha_i^h + \beta_h^{HI}$	${}^{GH}\Delta_3 d_{it}^{HI}$	$^{GH} + \beta_h^{LC}$	$^{W}\Delta_{3}d_{it}^{LOV}$	$W + \epsilon_{it+i}$	_h , h =	• 0, 1, , !
		Depen	dent var.: (GDP grow	th over	
$\Delta_3 d_{it}^k$	(1)	(2)	(3)	(4)	(5)	(6)
	(t-3,t)	(t-2,t+1)	(t-1,t+2)	(t,t+3)	(t+1,t+4)	(t+2,t+5)
Panel A: Sorting by proximity to household demand						
High proximity to HH	0.23*	-0.0097	-0.23*	-0.35**	-0.39**	-0.33**
	(0.100)	(0.11)	(0.10)	(0.083)	(0.075)	(0.077)
Low proximity to HH	0.39**	0.30**	0.20	0.19	0.22	0.26*
	(0.094)	(0.11)	(0.13)	(0.14)	(0.15)	(0.12)
	Panel B:	Sorting by	y small firi	m share		
High small firm share	0.21*	-0.048	-0.27*	-0.40**	-0.43**	-0.38*
	(0.087)	(0.099)	(0.11)	(0.13)	(0.15)	(0.15)
Low small firm share	0.38**	0.29*	0.17	0.16	0.15	0.17
	(0.083)	(0.11)	(0.15)	(0.17)	(0.19)	(0.19)

Similar patterns when splitting along: export/VA, housing input share, or mortgage debt share

Mechanisms

Recap: potential channels linking NT and HH credit to lower medium-run growth

- 1. Credit-driven demand boom and bust (e.g. Schmitt-Grohé-Uribe, 2016)
- → NT/HH credit predict reallocation toward NT sector, real exchange rate appreciation
- 2. Differences in financial fragility across sectors (e.g. Schneider-Tornell, 2004)
- \rightarrow NT/HH credit predict financial crises, sectoral losses
- 3. Lower productivity growth through misallocation across sectors (e.g. Reis, 2013)
- \rightarrow NT/HH credit predict sluggish productivity growth
- \rightarrow T credit predicts higher productivity growth

1. Sectoral credit and demand booms

$$\Delta_3 y_{it} = \alpha_i^h + \boldsymbol{\beta}_h^{NT} \Delta_3 d_{it}^{NT} + \boldsymbol{\beta}_h^T \Delta_3 d_{it}^T + \boldsymbol{\beta}_h^{HH} \Delta_3 d_{it}^{HH} + \epsilon_{it}$$

	$\Delta_3 \ln \left(\frac{E^{NT}}{E^T}\right)$	$\Delta_3 \ln (RER)$
$\Delta_3 d_{it}^k$	(1)	(2)
Tradables	-0.18 (0.16)	-0.27 (0.30)
Non-tradables	0.44** (0.073)	0.43 ⁺ (0.22)
Households	0.44** (0.048)	0.30* (0.12)
Observations # Countries R ²	992 45 0.14	1,755 73 0.03

• NT and HH sector credit associated with reallocation of real activity towards NT, real appreciation, boom-bust in housing prices: consistent with credit boosting demand (Mian-Sufi-Verner, 2020)

Established finding: total credit/GDP expands before crises

Note: Crisis dates from BVX (2020) and LV (2018).

Household debt expands earlier than firm debt

Note: Crisis dates from BVX (2020) and LV (2018).

Household debt expands earlier than firm debt

Note: Crisis dates from BVX (2020) and LV (2018).

Firm credit expansions mainly driven by NT sector

Note: Crisis dates from BVX (2020) and LV (2018).

Firm credit expansions mainly driven by NT sector

Note: Crisis dates from BVX (2020) and LV (2018).

Firm credit expansions mainly driven by NT sector

Note: Crisis dates from BVX (2020) and LV (2018).

Note: Crisis dates from BVX (2020) and LV (2018).

Note: Crisis dates from BVX (2020) and LV (2018).

Note: Crisis dates from BVX (2020) and LV (2018).

Note: Crisis dates from BVX (2020) and LV (2018).

T sector credit growth muted before crises

Note: Crisis dates from BVX (2020) and LV (2018).

T sector credit growth muted before crises

Note: Crisis dates from BVX (2020) and LV (2018).

 $Crisis_{it\ to\ it+h} = \alpha_i^h + \beta_h^{NT} \Delta_3 d_{it}^{NT} + \beta_h^T \Delta_3 d_{it}^T + \beta_h^{HH} \Delta_3 d_{it}^{HH} + \epsilon_{it+h}, \qquad h = 1, \dots, 4$

	Dependent variable: Crisis within				
	1 year	2 years	3 years	4 years	
Tradables	-0.006	-0.009	-0.008	-0.005	
	(0.004)	(0.005)	(0.005)	(0.005)	
Non-tradables	0.013**	0.017**	0.017**	0.015**	
	(0.003)	(0.002)	(0.003)	(0.004)	
Households	0.006*	0.009**	0.011**	0.013**	
	(0.003)	(0.003)	(0.003)	(0.003)	
Observations	1,527	1,531	1,534	1,536	
# Countries	70	70	70	70	
# Crises	46	45	45	44	
AUC	0.74	0.72	0.70	0.68	
SE of AUC	0.03	0.03	0.02	0.02	

• 1 SD higher non-tradable sector credit \rightarrow crisis probability 0.063 pp higher (baseline: \approx 0.03)

3. Lower productivity growth

$\Delta_3 Labor \ Productivity_{it+h} = \alpha_i + \beta^{NT} \Delta_3 d_{it}^{NT} + \beta^T \Delta_3 d_{it}^T + \beta^{HH} \Delta_3 d_{it}^{HH} + \epsilon_{it}, \qquad h = 0, \dots, 5$

	Dep	Dependent variable: Labor productivity growth over				
$\Delta_3 d_{it}^k$	(1)	(2)	(3)	(4)	(5)	(6)
	(t-3,t)	(t-2,t+1)	(t-1,t+2)	(t,t+3)	(t+1,t+4)	(t+2,t+5)
Tradables	0.188 ⁺	0.177*	0.216*	0.219 ⁺	0.183	0.141
	(0.094)	(0.075)	(0.088)	(0.119)	(0.148)	(0.169)
Non-tradables	0.098	-0.049	-0.162 ⁺	-0.146 ⁺	-0.073	0.002
	(0.141)	(0.127)	(0.090)	(0.075)	(0.057)	(0.059)
Households	-0.137*	-0.158*	-0.191**	-0.229**	-0.291**	-0.302**
	(0.064)	(0.066)	(0.055)	(0.061)	(0.074)	(0.067)
Observations	1,423	1,423	1,423	1,423	1,423	1,423
# Countries	67	67	67	67	67	67
R ²	0.01	0.01	0.02	0.03	0.03	0.03

- 1 SD higher NT credit growth \rightarrow 0.5% lower productivity growth, similar for estimated TFP growth
- Could reflect misallocation of resources across sectors (e.g. Reis, 2013; Benigno-Fornaro, 2014)

Conclusion

Sectoral allocation of credit matters for understanding macro-financial linkages

- Credit to non-tradable/household sector \rightarrow lower growth
- Credit to tradable sectors \rightarrow stable/higher growth
- Channels: (1) credit-driven demand boom and bust; (2) financial fragility; (3) lower productivity

Conclusion

Sectoral allocation of credit matters for understanding macro-financial linkages

- Credit to non-tradable/household sector \rightarrow lower growth
- Credit to tradable sectors \rightarrow stable/higher growth
- Channels: (1) credit-driven demand boom and bust; (2) financial fragility; (3) lower productivity

New perspective on "finance-growth" and "credit booms gone bust" views

• What credit is used for matters for whether booms end badly

Conclusion

Sectoral allocation of credit matters for understanding macro-financial linkages

- Credit to non-tradable/household sector \rightarrow lower growth
- Credit to tradable sectors \rightarrow stable/higher growth
- Channels: (1) credit-driven demand boom and bust; (2) financial fragility; (3) lower productivity

New perspective on "finance-growth" and "credit booms gone bust" views

• What credit is used for matters for whether booms end badly

Implications

- Heterogeneity in firm credit matters for understanding credit cycles
- Housing and household debt important but not the entire story; other firm sectors also important
- Taken at face value suggests role for stronger sectoral regulations (caveats apply)

Credit Allocation and Macroeconomic Fluctuations

Karsten Müller NUS Business School Emil Verner MIT

Banco de España-CEMFI Third Conference on Financial Stability 19 October 2021