Separating Retail and Investment Banking: Evidence from the UK

Matthieu Chavaz David Elliott

Bank of England

Third Conference on Financial Stability

19 October 2021

Disclaimer

The views expressed here are those of the authors and do not necessarily reflect the views of the Bank of England or any of its committees.

▶ Should retail and investment banking be separated?

- ▶ Should retail and investment banking be separated?
- ► Long-standing policy question
 - ► Glass-Steagall Act of 1933 essentially banned universal banking
 - Largely reversed in 1990s

- ▶ Should retail and investment banking be separated?
- ► Long-standing policy question
 - ► Glass-Steagall Act of 1933 essentially banned universal banking
 - Largely reversed in 1990s
- But consensus remains elusive
 - Major differences in regulation across jursidictions
 - ▶ Prominent US regulators and politicians calling for stricter separation

- ▶ Should retail and investment banking be separated?
- ► Long-standing policy question
 - ► Glass-Steagall Act of 1933 essentially banned universal banking
 - Largely reversed in 1990s
- But consensus remains elusive
 - Major differences in regulation across jursidictions
 - Prominent US regulators and politicians calling for stricter separation
- And important evidence gaps remain
 - Identification difficult because exogenous shocks to universal bank structures are rare

This paper

- ▶ We study major recent UK banking regulation
 - "Ring-fencing"
 - Requires large universal banks to separate retail deposit-taking and investment banking into separate subsidiaries
- ► Focus on novel "deposit funding channel"
 - Universal banks can no longer use retail deposits to fund investment banking
- Direct effects on treated banks:
 - Universal banks rebalance from capital market activities to mortgage lending
- Spillover effects on mortgage market:
 - Increased concentration
 - More risk-taking by smaller competitors

- Large empirical literature debates implications of separating universal banks
 - Kroszner and Rajan (1994), Puri (1994, 1996), Drucker and Puri (2005, 2007), Yasuda (2005), Neuhann and Saidi (2018), etc.

- Large empirical literature debates implications of separating universal banks
 - Kroszner and Rajan (1994), Puri (1994, 1996), Drucker and Puri (2005, 2007), Yasuda (2005), Neuhann and Saidi (2018), etc.
- We document a new mechanism related to universal bank funding structures
 - Existing papers mainly focus on combining lending and underwriting
 - ▶ But recent policy debates emphasise potential for benefits of *deposit* funding to accrue to capital market activities (Vickers 2012, Liikanen 2012, Hoenig 2017)

- Large empirical literature debates implications of separating universal banks
 - Kroszner and Rajan (1994), Puri (1994, 1996), Drucker and Puri (2005, 2007), Yasuda (2005), Neuhann and Saidi (2018), etc.
- We document a new mechanism related to universal bank funding structures
 - Existing papers mainly focus on combining lending and underwriting
 - But recent policy debates emphasise potential for benefits of deposit funding to accrue to capital market activities (Vickers 2012, Liikanen 2012, Hoenig 2017)
- We show impact on both retail and corporate lending
 - Existing papers focus on corporate lending and securities markets
 - ▶ But modern universal banks also play large role in retail markets

- Large empirical literature debates implications of separating universal banks
 - Kroszner and Rajan (1994), Puri (1994, 1996), Drucker and Puri (2005, 2007), Yasuda (2005), Neuhann and Saidi (2018), etc.
- We document a new mechanism related to universal bank funding structures
 - Existing papers mainly focus on combining lending and underwriting
 - But recent policy debates emphasise potential for benefits of deposit funding to accrue to capital market activities (Vickers 2012, Liikanen 2012, Hoenig 2017)
- We show impact on both retail and corporate lending
 - Existing papers focus on corporate lending and securities markets
 - ▶ But modern universal banks also play large role in retail markets
- We estimate both direct effects on universal banks themselves and spillover effects on competitors
 - Existing papers study direct effects only

UK ring-fencing regulation

- ▶ Ring-fencing requires large banking groups to split into subsidiaries:
 - ► Retail deposits in Ring-Fenced Bank (RFB)
 - Investment banking in Non-Ring-Fenced Bank (NRFB)
- ► Restrictions on intragroup exposures prevent banks from circumventing requirements via intragroup contracts
- ▶ Legislation passed in 2013; requirements in force from January 2019
- ► Applies to five large banking groups (retail deposits > £25 billion)
- Motivation:
 - Easier to resolve investment bank separately from retail bank
 - Reduce probability that government bails out investment bank to save retail bank
 - Reduce excessive risk-taking by removing implicit subsidy for investment bank

Stylised example

Before ring-fencing

After ring-fencing

Deposit funding channel

- By design, ring-fencing reduces potential for investment banking risks to 'infect' retail bank
 - E.g. investment bank can more easily be resolved separately
- But new constraints imposed by ring-fencing likely to change banks' incentives to engage in different activities
 - Hence implications for credit conditions in different markets

Deposit funding channel

- By design, ring-fencing reduces potential for investment banking risks to 'infect' retail bank
 - E.g. investment bank can more easily be resolved separately
- But new constraints imposed by ring-fencing likely to change banks' incentives to engage in different activities
 - Hence implications for credit conditions in different markets
- ▶ We highlight previously-undocumented **deposit funding channel**
 - Retail deposits might provide benefits relative to wholesale funding
 - Household preferences for liquidity (Stein 2012)
 - Deposit insurance (Stein 1998; Hanson et al 2015)
 - Market power (Drechsler, Savov and Schnabl 2017)
 - Ring-fencing implies that retail deposits can only fund RFB and cannot fund NRFB
 - ▶ ⇒lower RFB funding costs & higher NRFB funding costs
 - → incentive to rebalance from NRFB (capital markets) to RFB (retail lending)

Industry commentary

UK's 15 biggest mortgage lenders hit by price war

Legislation designed to cut risk in the banking sector has flooded the market with capital

Financial Times, 2019

The continued compression in mortgage rates may have been driven in part by the impact of ring-fencing on mortgage competition. Ring-fenced banks (RFBs) are subject to

Bank of England Financial Stability Report, 2019

 $LONDON, Sept\ 29\ (Reuters)\ -\ Ring\ -fencing\ regulation\ is\ increasing\ the\ cost$ and cutting the profitability of syndicated lending for UK banks, which is

Reuters, 2017

Empirical strategy

- Loan-level data for two markets:
 - RFB: Domestic retail mortgages (PSD)
 - NRFB: Global syndicated lending (DealScan)
- ► Sample period: run-up to ring-fencing implementation (2010 2019)
- ► Main loan-level regression specification:

$$\mathsf{Loan}_{i,l,t} = \beta \left(\Delta \mathsf{Retail} \; \mathsf{funding}_i \times \% \left(\mathsf{Post} \right)_{l,t} \right) + \mathsf{Controls}_{i,l,t} + \varepsilon_{i,l,t}$$

- ▶ Loan_{i,l,t} = price or volume of loan *l* originated by bank *i* at time t
- ΔRetail funding_i = change in retail funding ratio as a result of ring-fencing
 - Between-bank variation
- % (Post)_{I,t} = proportion of loan maturity that falls after implementation
 - Within-bank variation
- Controls include bank-time fixed effects (among others)

Δ Retail funding_i

$% (Post)_{I,t}$

Impact on mortgage spreads

- Does ring-fencing cause affected banks to cut mortgage spreads?
- ► Loan-level regressions:

$$\mathsf{Spread}_{i,l,t} = \beta \left(\Delta \mathsf{Retail} \; \mathsf{funding}_i^{\mathit{RFB}} \times \% \left(\mathsf{Post} \right)_{l,t} \right) + \mathsf{Controls}_{i,l,t} + \varepsilon_{i,l,t}$$

where i = bank, l = loan, t = month

- Fixed effects
 - ► Bank-month
 - Product-month (product = maturity & LTV)
 - Bank-product
 - Location-month
- Loan-level controls
 - LTI, loan size, credit history, etc.
- ► Bank-level controls
 - Size, RoA, cash ratio, capital ratio, wholesale funding ratio
 - ▶ Lagged and interacted with % (Post)_{I,t}

Ring-fencing reduces mortgage spreads

$$\mathsf{Spread}_{i,l,t} = \beta \left(\Delta \mathsf{Retail} \; \mathsf{funding}_i^{\mathit{RFB}} \times \% \left(\mathsf{Post} \right)_{l,t} \right) + \mathsf{Controls}_{i,l,t} + \varepsilon_{i,l,t}$$

Dependent variable:	Interest rate spread $_{i,l,t}$							
	(1)	(2)	(3)	(4)	(5)	(6)		
	OLS	OLS	OLS	OLS	IV	IV		
Δ Retail funding ^{RFB} _i × %(Post) _{I,t}	-0.461***	-1.011***	-0.859***	-0.817***	-0.955***	-0.938***		
	(0.157)	(0.163)	(0.136)	(0.137)	(0.184)	(0.184)		
Loan-level controls	No	No	Yes	Yes	Yes	Yes		
Bank-level controls	No	Yes	Yes	Yes	Yes	Yes		
Bank-month fixed effects	Yes	Yes	Yes	Yes	Yes	Yes		
Maturity-LTV-month fixed effects	Yes	Yes	Yes	Yes	Yes	Yes		
Bank-maturity-LTV fixed effects	Yes	Yes	Yes	Yes	Yes	Yes		
Location-month fixed effects	No	No	No	Yes	No	Yes		
Observations	4,570,771	4,528,616	4,518,056	4,324,803	4,518,056	4,324,803		
R^2	0.824	0.820	0.846	0.867	-	-		
First-stage F-statistic	-	-	-	-	43.3	46.0		

Impact on mortgage quantities

- ▶ Do cheaper mortgages lead to larger market shares?
- ► Define product = maturity & LTV
- For each bank, compute quarterly market share for each product
- ▶ Bank-product-quarter level regressions:

```
\begin{split} \text{Market share}_{i,j,t} &= \beta \left( \Delta \text{Retail funding}_i^{\textit{RFB}} \times \% \left( \text{Post} \right)_{j,t} \right) + \text{Controls}_{i,j,t} + \varepsilon_{i,j,t} \end{split} where i = \text{bank}, j = \text{product}, t = \text{quarter}
```

Ring-fencing increases mortgage quantities

$$\mathsf{Market\ share}_{i,j,t} = \beta\left(\Delta\mathsf{Retail\ funding}_i^{\mathit{RFB}} \times \%\left(\mathsf{Post}\right)_{j,t}\right) + \mathsf{Controls}_{i,j,t} + \varepsilon_{i,j,t}$$

Dependent variable:	Market share $_{i,j,t}$						
	(1)	(2)	(3)	(4)	(5)		
	OLS	OLS	IV	WLS	W2SLS		
Δ Retail funding ^{RFB} _i × %(Post) _{j,t}	0.149***	0.216***	0.249***	0.133**	0.168*		
	(0.043)	(0.033)	(0.053)	(0.061)	(880.0)		
Bank-level controls	No	Yes	Yes	Yes	Yes		
Bank-quarter fixed effects	Yes	Yes	Yes	Yes	Yes		
Bank-maturity-LTV fixed effects	Yes	Yes	Yes	Yes	Yes		
Observations	241,009	204,086	204,086	204,086	204,086		
R^2	0.721	0.721	-	0.901	-		
First-stage F-statistic	-	-	20.4	-	19.1		

Impact on syndicated lending

- Syndicated loan = loan extended to one borrower by multiple lenders
- ► Borrowers typically large corporates
- ► Intensive margin regressions:

$$\label{eq:log-log-log-log-log-log-log-log} \begin{split} & \operatorname{Log}(\operatorname{Loan \ size})_{i,l,t} = \beta \left(\Delta \operatorname{Retail \ funding}_i^{\mathit{NRFB}} \times \% \left(\operatorname{Post} \right)_{l,t} \right) + \alpha_{i,t} + \delta_l + \varepsilon_{i,l,t} \end{split} \\ & \text{where } i = \operatorname{bank}, \ l = \operatorname{loan \ facility}, \ t = \operatorname{month} \end{split}$$

- ▶ Loan fixed effects δ_l control for borrower demand (Khwaja and Mian 2008)
- Results:
 - ► More affected banks provide smaller loan quantities Results
 - And participate in fewer loans Pesults
 - Effect is larger for loans to foreign borrowers

Spillover effects on mortgage market

Concentration

- Do increased market shares of large universal banks lead to increase in market concentration?
- We construct district-level measure of exposure to ring-fencing based on historical lending footprints of treated banks
- Result: Local markets with greater historical exposure to treated banks become more concentrated (HHI)

Spillover effects on mortgage market

Concentration

- Do increased market shares of large universal banks lead to increase in market concentration?
- ► We construct district-level measure of exposure to ring-fencing based on historical lending footprints of treated banks
- Result: Local markets with greater historical exposure to treated banks become more concentrated (HHI)

Risk-taking

- How do smaller (untreated) banks respond to increased competitive pressure from treated banks?
- We construct bank-level measure of (indirect) exposure to ring-fencing for untreated banks, based on historical lending footprints
- Result: Untreated banks more exposed to increased competitive pressure increase risky lending
- ► Consistent with Keeley (1990) franchise value model

- ▶ Evidence for new "deposit funding channel" of structural separation
 - ▶ Banks unable to use retail deposits to fund capital market activities
 - This incentivises rebalancing from capital markets to retail lending

- ► Evidence for new "deposit funding channel" of structural separation
 - Banks unable to use retail deposits to fund capital market activities

 This in particular unbalancing from a point products to vetail leading
 - ▶ This incentivises rebalancing from capital markets to retail lending
- Structural separation reduces cost of credit for consumers
 - ► This is *not* concentrated in high-risk segment

- ▶ Evidence for new "deposit funding channel" of structural separation
 - Banks unable to use retail deposits to fund capital market activities
 - This incentivises rebalancing from capital markets to retail lending
- Structural separation reduces cost of credit for consumers
 - ▶ This is *not* concentrated in high-risk segment
- Expansion of consumer credit mirrored by reduction in credit supply to large corporates
 - But this is mainly focused on foreign borrowers

- ▶ Evidence for new "deposit funding channel" of structural separation
 - ▶ Banks unable to use retail deposits to fund capital market activities
 - ► This incentivises rebalancing from capital markets to retail lending
- Structural separation reduces cost of credit for consumers
 - ▶ This is *not* concentrated in high-risk segment
- Expansion of consumer credit mirrored by reduction in credit supply to large corporates
 - But this is mainly focused on foreign borrowers
- Ambiguous longer-term impacts on retail credit market
 - Increased market power for large banks
 - Increased risk-taking by small banks

ADDITIONAL SLIDES

Mortgage spreads

Changes in balance sheet allocation

Affected banks

Unaffected banks

Syndicated lending: intensive margin

Dependent variable:	$Log(Loan size)_{i,l,t}$						
	(1)	(2)	(3)	(4)	(5)		
	OLS	OLS	OLS	OLS	OLS		
Δ Retail funding $_i^{NRFB} \times \%(Post)_{i,t}$	-0.520***						
	(0.186)						
Δ Retail funding ^{NRFB} _i × %(Post) _{I,t} × Term loan _I		-0.367**					
		(0.171)					
Δ Retail funding $_i^{NRFB} \times \%(Post)_{I,t} \times Non-term loan_I$		-0.584***					
		(0.172)					
Δ Retail funding $_i^{NRFB} \times \%(Post)_{I,t} \times Leveraged loan_I$			-0.416**				
			(0.185)				
Δ Retail funding $_i^{NRFB} \times \%(Post)_{I,t} \times Non-leveraged loan_I$			-0.550**				
			(0.220)				
Δ Retail funding ^{NRFB} _i × %(Post) _{I,t} × Lead arranger _{i,I}				-0.420***			
				(0.158)			
Δ Retail funding ^{NRFB} _i × %(Post) _{I,t} × Participant _{i,I}				-0.717***			
				(0.197)			
Δ Retail funding $_i^{NRFB} \times \%(Post)_{I,t} \times UK borrower_I$					-0.185		
					(0.204)		
Δ Retail funding ^{NRFB} _i × %(Post) _{I,t} × Foreign borrower _I					-0.606***		
					(0.208)		
Difference between coefficients		-0.217*	-0.135	-0.297**	-0.421**		
		(0.114)	(0.229)	(0.132)	(0.192)		
Bank-month fixed effects	Yes	Yes	Yes	Yes	Yes		
Loan facility fixed effects	Yes	Yes	Yes	Yes	Yes		
Bank-category fixed effects	-	Yes	Yes	Yes	Yes		
Observations	139,779	139,157	139,602	139,653	139,710		
R^2	0.968	0.968	0.968	0.974	0.968		

Syndicated lending: extensive margin

Dependent variable:	$Log(Number loans)_{i,j,c,t}$						
	(1)	(2)	(3)	(4)	(5)		
	OLS	OLS	OLS	OLS	OLS		
Δ Retail funding ^{NRFB} _i × %(Post) _{j,t}	-1.359***						
	(0.486)						
Δ Retail funding ^{NRFB} _i × %(Post) _{j,t} × Term loan _c		-0.651**					
		(0.263)					
Δ Retail funding $_{i}^{NRFB} \times \%(Post)_{j,t} \times Non-term loan_{c}$		-1.114***					
		(0.415)					
Δ Retail funding _i ^{NRFB} × %(Post) _{j,t} × Leveraged loan _c			-0.419**				
			(0.195)				
Δ Retail funding _i ^{NRFB} × %(Post) _{j,t} × Non-leveraged loan _c			-1.239***				
			(0.435)				
Δ Retail funding $_{i}^{NRFB} \times \%(Post)_{j,t} \times Lead arranger_{c}$				-0.958***			
				(0.331)			
Δ Retail funding ^{NRFB} \times %(Post) _{j,t} \times Participant _c				-0.935**			
				(0.415)			
Δ Retail funding ^{NRFB} _i × %(Post) _{j,t} × UK borrower _c					-0.735**		
					(0.272)		
Δ Retail funding, NRFB \times %(Post) _{j,t} \times Foreign borrower _c					-1.005**		
					(0.354)		
Difference between coefficients		-0.463***	-0.820***	0.023	-0.270*		
		(0.175)	(0.275)	(0.162)	(0.160)		
Bank-quarter fixed effects	Yes	Yes	Yes	Yes	Yes		
Maturity-quarter fixed effects	Yes	-	-	-	-		
Maturity-quarter-category fixed effects	-	Yes	Yes	Yes	Yes		
Bank-category fixed effects	-	Yes	Yes	Yes	Yes		
Observations	1,168,600	2,337,200	2,337,200	2,337,200	2,337,20		
R^2	0.411	0.335	0.340	0.332	0.404		