

Caterina Mendicino (ECB) Kalin Nikolov (ECB) Juan Rubio Ramirez (Emory University) Javier Suarez (CEMFI and CEPR) Dominik Supera (Wharton School)

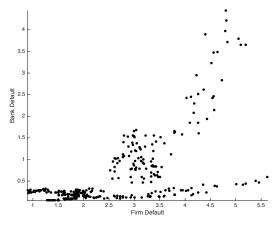
Bank Risk Taking and Twin Defaults*

*The views expressed here are of the authors, not necessarily those of the European Central Bank

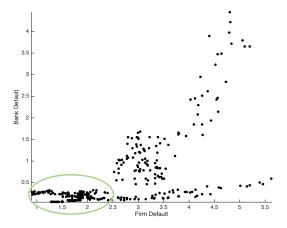
2 Key Facts

- 3 This Paper
- 4 Model
- 5 Estimation and Model Fit
- 6 Bank Risk Taking
- 7 Risk Shocks
- 8 How important are island shocks?
- I...Bank Leverage?
- 10 Policy Insights

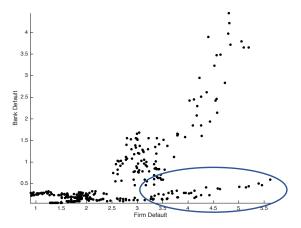
Motivated by the recent financial crisis focus on understanding:


- how banks credit losses translate into rare but severe waves of bank failures (twin defaults)
- the implications of *firm and bank defaults* for **macroeconomic outcomes**
- the role of **bank capital regulation** in the presence of a trade-off between impact in *normal times* and *crisis times* (twin defaults)

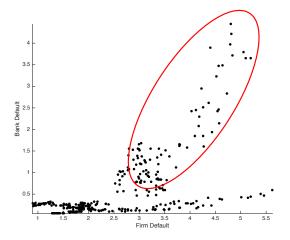
2 Key Facts


- 3 This Paper
- 4 Model
- 5 Estimation and Model Fit
- 6 Bank Risk Taking
- 7 Risk Shocks
- B How important are island shocks?
- I...Bank Leverage?
- 10 Policy Insights

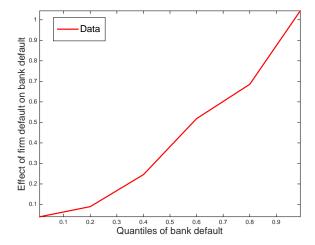
Key Facts: Firms and Banks Default Rates - EA (1992-2016)


Scatter plot of Moody's expected default frequency within one year: non-financial corporations (Firm default) and banks (Bank default).

Key Facts:Firms and Banks Default Rates - EA (1992-2016)


1) Default of both Firms and Banks Low (Low Default)

Key Facts:Firms and Banks Default Rates - EA (1992-2016)


2) Firms default **High** but Banks default **Low** (Firm Default)

Key Facts:Firms and Banks Default Rates - EA (1992-2016)

3) Default of both Firms and Banks High (Twin Defaults)

Higher sensitivity of bank default to firm default in upper Q

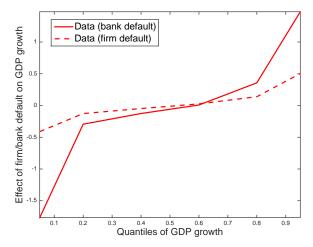


Table: Average Quarterly GDP growth (demeaned)

	High Firm Def.	Twin Defaults
EA	-0.0466	-0.5842
DE	-0.2550	-0.6690
FR	-0.0718	-0.6605
IT	-0.0242	-0.5471
NL	-0.5043	-2.1904
ΒE	-0.3645	-0.4051
US	-0.0781	-0.9790

High default obs.: above the 90th percentile of the corresponding variable. Quarterly GDP growth de-meaned. Sample: US(1940-2016); EA (1992-2016)

Higher sensitivity of next period GDP growth to bank default in lower Q

2 Key Facts

4 Model

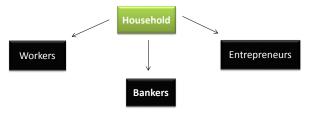
- 5 Estimation and Model Fit
- 6 Bank Risk Taking
- 7 Risk Shocks
- 8 How important are island shocks?
- I...Bank Leverage?
- 10 Policy Insights

- We embed a **structural model of bank default risk** into a quantitative macro framework:
 - captures borrower risk that is *non-diversifiable* at individual bank level \Rightarrow bank default risk
 - takes into account highly non-linear nature of implied bank asset returns.
- We solve it using third-order approximations
- We calibrate it to match unconditional moments of EA data
 - reproduces the **non-linear patterns of correlation** of firm and bank defaults (including rare crisis episodes **twin defaults**)
 - and associated macroeconomics outcomes
- We provide results for optimal bank capital requirements

- We embed a **structural model of bank default risk** into a quantitative macro framework:
 - captures borrower risk that is *non-diversifiable* at individual bank level \Rightarrow bank default risk
 - takes into account highly non-linear nature of implied bank asset returns.
- We solve it using third-order approximations
- We calibrate it to match unconditional moments of EA data
 - reproduces the **non-linear patterns of correlation** of firm and bank defaults (including rare crisis episodes **twin defaults**)
 - and associated macroeconomics outcomes
- We provide results for **optimal** bank capital requirements

- We embed a **structural model of bank default risk** into a quantitative macro framework:
 - captures borrower risk that is *non-diversifiable* at individual bank level \Rightarrow bank default risk
 - takes into account highly non-linear nature of implied bank asset returns.
- We solve it using third-order approximations
- We calibrate it to match unconditional moments of EA data
 - reproduces the **non-linear patterns of correlation** of firm and bank defaults (including rare crisis episodes **twin defaults**)
 - and associated macroeconomics outcomes
- We provide results for optimal bank capital requirements

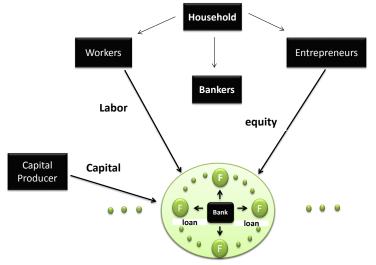
- We embed a **structural model of bank default risk** into a quantitative macro framework:
 - captures borrower risk that is *non-diversifiable* at individual bank level \Rightarrow bank default risk
 - takes into account highly non-linear nature of implied bank asset returns.
- We solve it using third-order approximations
- We calibrate it to match unconditional moments of EA data
 - reproduces the **non-linear patterns of correlation** of firm and bank defaults (including rare crisis episodes **twin defaults**)
 - and associated macroeconomics outcomes
- We provide results for **optimal** bank capital requirements


2 Key Facts

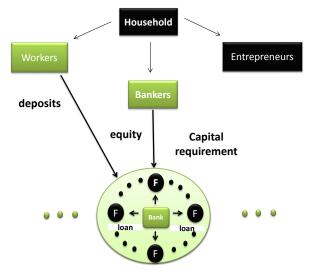
3 This Paper

4 Model

- 5 Estimation and Model Fit
- 6 Bank Risk Taking
- 7 Risk Shocks
- B How important are island shocks?
- I...Bank Leverage?
- Policy Insights


Representative household: 3 different types of household members

Continuum of Islands: each with one bank and a continuum of firms



Firms

Firm produces the final good y; pays input of production using equities and loans

Banks

Bank: use (scarce) equity and (insured) deposits to grant loans to firms in the island

• **defaults** if terminal value of assets $\omega_i \omega_j [q_{t+1} (1-\delta) k_t + y_{t+1}]$

insufficient to repay bank loans $R_{f,t}B_{f,t}$

- **defaults** if terminal value of assets $\omega_i \omega_j [q_{t+1} (1-\delta) k_t + y_{t+1}]$ insufficient to repay bank loans $R_{f,t} B_{f,t}$
- (Non degenerate) firm defaults emerge from
- $\succ \omega_i$ firm-idiosyncratic shock
- $\succ \omega_j$ island-specific shock

- **defaults** if terminal value of assets $\omega_i \omega_j [q_{t+1} (1-\delta) k_t + y_{t+1}]$ insufficient to repay bank loans $R_{f,t} B_{f,t}$
- (Non degenerate) firm defaults emerge from
- $\succ \omega_i$ firm-idiosyncratic shock \Rightarrow diversifiab
- $\succ \omega_j$ island-specific shock

- diversifiable at bank/island
- NOT diversifiable at bank/island

- **defaults** if terminal value of assets $\omega_i \omega_i [q_{t+1} (1-\delta) k_t + y_{t+1}]$ insufficient to repay bank loans $R_{f,t}B_{f,t}$
- (Non degenerate) firm defaults emerge from
- $\succ \omega_i$ firm-idiosyncratic shock \Rightarrow diversifiable at bank/island
- $\succ \omega_i$ island-specific shock

- NOT diversifiable at bank/island
- **Bank asset returns** are a highly **non-linear** function of ω_i
- Banks defaults when a large fraction of their borrowers default and ٠ have not enough equity buffers to cover the losses

Firms:

 Contracting problem between Bank and Firm (participation constraint of the bank)
 ↓
 firms internalize expected cost of default!

Banks:

- operate under safety net guarantees (insured deposits)
- individual risk profile of the Bank not priced by depositors

(encessive bank net laking)

Firms:

 Contracting problem between Bank and Firm (participation constraint of the bank)
 ↓
 firms internalize expected cost of default!

Banks:

- operate under safety net guarantees (insured deposits)
- individual risk profile of the Bank not priced by depositors

incentives to under-price risk!! (excessive bank risk taking)

Firms:

 Contracting problem between Bank and Firm (participation constraint of the bank)
 ↓
 firms internalize expected cost of default!

Banks:

- operate under safety net guarantees (insured deposits)
- individual risk profile of the Bank not priced by depositors

incentives to under-price risk!! (excessive bank risk taking)

Firms:

 Contracting problem between Bank and Firm (participation constraint of the bank)
 ↓
 firms internalize expected cost of default!

Banks:

- operate under safety net guarantees (insured deposits)
- individual risk profile of the Bank not priced by depositors

incentives to under-price risk!! (excessive bank risk taking)

Firms:

 Contracting problem between Bank and Firm (participation constraint of the bank)
 ↓
 firms internalize expected cost of default!

Banks:

- operate under safety net guarantees (insured deposits)
- individual risk profile of the Bank not priced by depositors

↓ incentives to under-price risk!! (excessive bank risk taking)

2 Key Facts

- 3 This Paper
- 4 Model
- 5 Estimation and Model Fit
 - 6 Bank Risk Taking
- 7 Risk Shocks
- 8 How important are island shocks?
- I...Bank Leverage?
- 10 Policy Insights

Targeted: Unconditional Moments

- Solution: Third-order approximate solution with pruning (Andreasen, Fernandez-Villaverde and Rubio-Ramirez, 2017)
- Estimation: SMM
- Data: Quarterly data for the Euro area (1992:1-2016:4)

Variable	Data	Model	Variable	Data	Model
MEAN GDP gr.	0.3301	0.3313	STD GDP gr.	0.6877	0.6222
MEAN Loans/GDP	2.442	1.7374	STD Loan gr.	1.1965	0.7234
MEAN Loan spr.	1.2443	1.3084	STD Loan spr.	0.6828	0.8217
MEAN Firm def.	2.6469	2.0990	STD Firm def.	1.0989	2.1386
MEAN Bank def.	0.6646	0.5282	STD Bank gr.	0.8438	1.1753
MEAN ROE banks	6.4154	6.2137	STD ROE gr.	4.1273	2.9301
CORR (B & F def.)	0.6421	0.7396	STD Inv. gr.	1.3908	2.0631

Note: Interest rates, equity returns, default rates, and spreads are reported in annualized percentage points. The standard deviation of GDP growth, Capital Investment and Loan growth is in quarterly percentage points.

Targeted: Unconditional Moments

- Solution: Third-order approximate solution with pruning (Andreasen, Fernandez-Villaverde and Rubio-Ramirez, 2017)
- Estimation: SMM
- Data: Quarterly data for the Euro area (1992:1-2016:4)

Variable	Data	Model	Variable	Data	Model
MEAN GDP gr.	0.3301	0.3313	STD GDP gr.	0.6877	0.6222
MEAN Loans/GDP	2.442	1.7374	STD Loan gr.	1.1965	0.7234
MEAN Loan spr.	1.2443	1.3084	STD Loan spr.	0.6828	0.8217
MEAN Firm def.	2.6469	2.0990	STD Firm def.	1.0989	2.1386
MEAN Bank def.	0.6646	0.5282	STD Bank gr.	0.8438	1.1753
MEAN ROE banks	6.4154	6.2137	STD ROE gr.	4.1273	2.9301
CORR (B & F def.)	0.6421	0.7396	STD Inv. gr.	1.3908	2.0631

Note: Interest rates, equity returns, default rates, and spreads are reported in annualized percentage points. The standard deviation of GDP growth, Capital Investment and Loan growth is in quarterly percentage points.

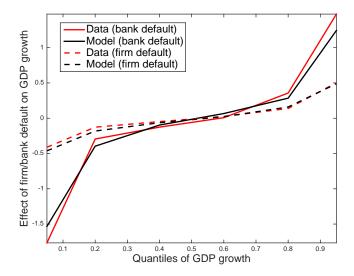
	Frequency	GDP growth	Bank default	Firm default		
	Low Default					
Data	0.844	0.0923	0.4346	2.3480		
Model	0.857	0.0392	0.196	1.4409		
Firm Default						
Data	0.038	-0.0466	0.4033	4.8500		
Model	0.042	-0.0863	0.814	6.3371		
Twin Defaults						
Data	0.058	-0.5842	3.2294	4.6688		
Model	0.057	-0.4048	3.8718	7.6206		

High level of defaults is above 90th percentile.

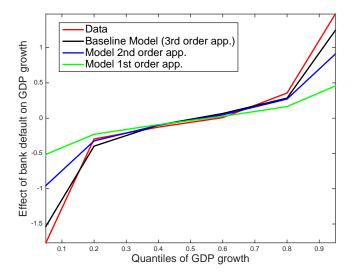
based on 1.000.000 simulations.

	Frequency	GDP growth	Bank default	Firm default		
	Low Default					
Data	0.844	0.0923	0.4346	2.3480		
Model	0.857	0.0392	0.196	1.4409		
	Firm Defaults					
Data	0.038	-0.0466	0.4033	4.8500		
Model	0.042	-0.0863	0.814	6.3371		
Twin Defaults						
Data	0.058	-0.5842	3.2294	4.6688		
Model	0.057	-0.4048	3.8718	7.6206		

High level of defaults is above 90th percentile.

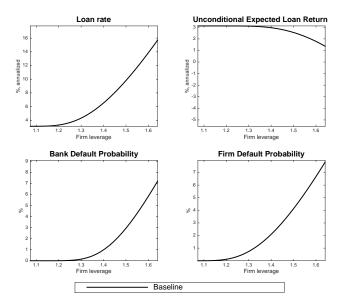

based on 1.000.000 simulations.

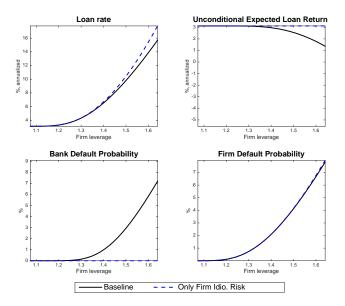
	Frequency	GDP growth	Bank default	Firm default		
Low default						
Data	0.844	0.0923	0.4346	2.3480		
Model	0.857	0.0392	0.196	1.4409		
	Firm default					
Data	0.038	-0.0466	0.4033	4.8500		
Model	0.042	-0.0863	0.814	6.3371		
Twin defaults						
Data	0.058	-0.5842	3.2294	4.6688		
Model	0.057	-0.4048	3.8718	7.6206		


High level of defaults is above 90th percentile.

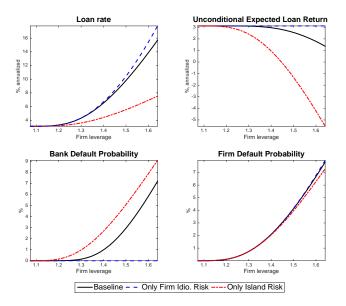
based on 1.000.000 simulations.

Quantile Regression Coefficients (baseline)


Quantile Regression Coefficients (Approx. order)

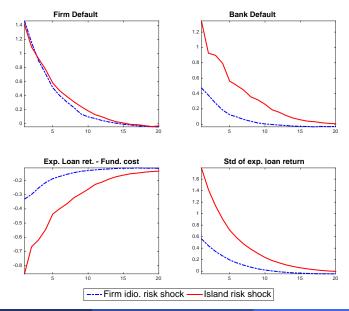


- 2 Key Facts
- 3 This Paper
- 4 Model
- 5 Estimation and Model Fit
- 6 Bank Risk Taking
- 7 Risk Shocks
- 8 How important are island shocks?
- I...Bank Leverage?
- 10 Policy Insights

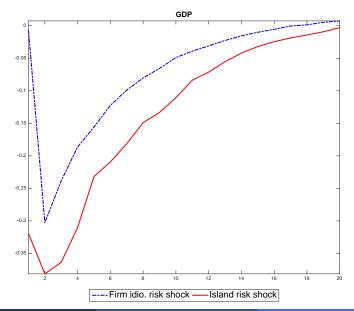

Bank Loan Pricing: diversifiable vs non-diversifiable Risk

Bank Loan Pricing: diversifiable vs non-diversifiable Risk

Bank Loan Pricing: diversifiable vs non-diversifiable Risk


- 2 Key Facts
- 3 This Paper
- 4 Model
- 5 Estimation and Model Fit
- 6 Bank Risk Taking
- Risk Shocks
- 8 How important are island shocks?
- I...Bank Leverage?
- 10 Policy Insights

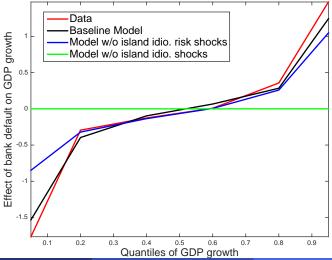
Conditional on the same effect on aggregate borrowers riskness, a shock to non-diversifiable risk


- Increases bank risk taking and banks default...
- and depresses economic activity

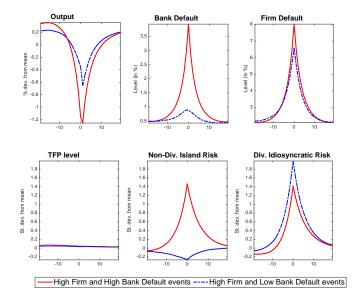
by more than a shock to diversifiable risk!

Diversifiable and Non-diversifiable Risk Shocks

Diversifiable and Non-diversifiable Risk Shocks



June 3, 2019 37 / 54

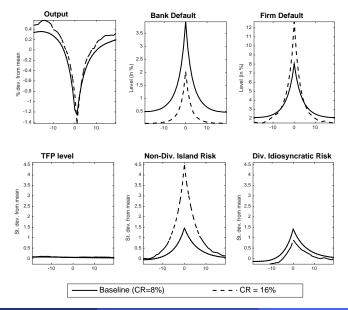

- 2 Key Facts
- 3 This Paper
- 4 Model
- 5 Estimation and Model Fit
- 6 Bank Risk Taking
- 7 Risk Shocks
- 8 How important are island shocks?
- I...Bank Leverage?
- 10 Policy Insights

Quantile Regression Coefficients (Diversifiable and Non-diversifiable Risk Shocks)

June 3, 2019 39 / 54

Path to Crisis: 3-order

Path to crisis: periods of **Twin defaults** are driven by moderate (1.5 std) increases in non-diversifiable risk

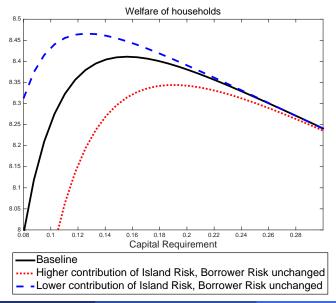

- High bank leverage
- Non-linear behaviour of bank returns and loan pricing

...amplify the transmission of non-diversifiable risk!

- 2 Key Facts
- 3 This Paper
- 4 Model
- 5 Estimation and Model Fit
- 6 Bank Risk Taking
- 7 Risk Shocks
- 8 How important are island shocks?
- Image: Bank Leverage
- 10 Policy Insights

Paths to crises and Bank Leverage

2 Key Facts


- 3 This Paper
- 4 Model
- 5 Estimation and Model Fit
- 6 Bank Risk Taking
- 7 Risk Shocks
- B How important are island shocks?
- I...Bank Leverage?
- 10 Policy Insights

Higher bank capital requirements

- reduces the probability of twin defaults
- BUT...reduces the supply of credit in normal times!

-> What is the optimal (maximizes Welfare) capital requirement level ?

Optimal Capital Requirement: Welfare

June 3, 2019 46 / 54

Propose a framework that reproduces the **correlation patterns** of firm and bank defaults including the rare crisis episodes (**twin defaults**) and associated **macroeconomic outcomes**

- Shocks to **non-divesifiable risk** play an important role in generating *Twin Defaults*
- Non-linearities are key!
- Bank risk-taking incentives amplify the effect of borrower non-diversifiable risk on bank failures and macroeconomic performance
- Amplification is stronger at **high bank leverage** so can be mitigated by bank capital regulation

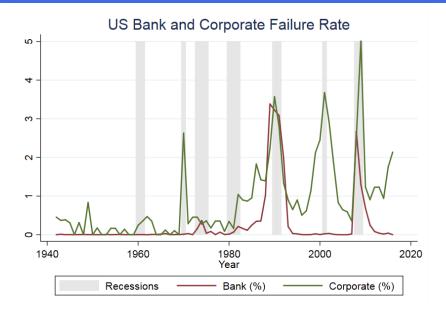
Propose a framework that reproduces the **correlation patterns** of firm and bank defaults including the rare crisis episodes (**twin defaults**) and associated **macroeconomic outcomes**

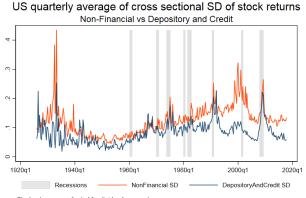
- Shocks to **non-divesifiable risk** play an important role in generating *Twin Defaults*
- Non-linearities are key!
- Bank risk-taking incentives amplify the effect of borrower non-diversifiable risk on bank failures and macroeconomic performance
- Amplification is stronger at **high bank leverage** so can be mitigated by bank capital regulation

Propose a framework that reproduces the **correlation patterns** of firm and bank defaults including the rare crisis episodes (**twin defaults**) and associated **macroeconomic outcomes**

- Shocks to **non-divesifiable risk** play an important role in generating *Twin Defaults*
- Non-linearities are key!
- Bank risk-taking incentives amplify the effect of borrower non-diversifiable risk on bank failures and macroeconomic performance
- Amplification is stronger at **high bank leverage** so can be mitigated by bank capital regulation

Propose a framework that reproduces the **correlation patterns** of firm and bank defaults including the rare crisis episodes (**twin defaults**) and associated **macroeconomic outcomes**

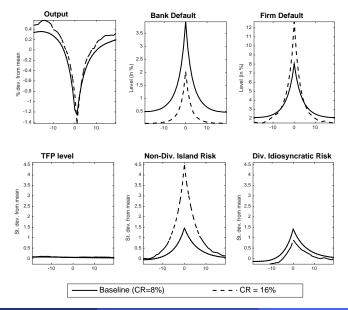

- Shocks to **non-divesifiable risk** play an important role in generating *Twin Defaults*
- Non-linearities are key!
- Bank risk-taking incentives amplify the effect of borrower non-diversifiable risk on bank failures and macroeconomic performance
- Amplification is stronger at **high bank leverage** so can be mitigated by bank capital regulation


Propose a framework that reproduces the **correlation patterns** of firm and bank defaults including the rare crisis episodes (**twin defaults**) and associated **macroeconomic outcomes**

- Shocks to **non-divesifiable risk** play an important role in generating *Twin Defaults*
- Non-linearities are key!
- Bank risk-taking incentives amplify the effect of borrower non-diversifiable risk on bank failures and macroeconomic performance
- Amplification is stronger at **high bank leverage** so can be mitigated by bank capital regulation

BACKGROUND SLIDES

US time Series


Stock returns are adjusted for dividend payments

Parameter	Value	
Entrepreneurs' endowment	χ_{e}	0.5514
Bankers' endowment	χь	0.5233
Mean std of firm idio. shock	$\bar{\sigma}_{\omega_i}$	0.4425
Mean std of island idio. shock	$\bar{\sigma}_{\omega_i}$	0.3131
Std TFP shock	σ_{A}	0.0053
Persistence TFP shock	$ ho_{A}$	0.9868
Std firm idio. risk shock	σ_i	0.0789
Persistence firm idio. risk shock	$ ho_{\sigma_i}$	0.8322
Std island idio. risk shock	σ_j	0.084
Persistence island idio. risk shock	ρ_{σ_i}	0.8401
Mean productivity growth	Ī	1.0965
Capital adjustment cost	ψ_{k}	4.9902

	Moment	Baseline Model	Model	Model	Data			
		$(\phi = .08)$	$(\phi=.105)$	$(\phi = .16)$				
Low Firm and Low Bank Default								
Mean	GDP growth	0.0392	0.0273	0.0196	0.0923			
Mean	Bank default	0.196	0.0688	0.0067	0.4346			
Mean	Firm default	1.4409	1.3849	1.2584	2.3480			
High Firm and Low Bank Default								
Mean	GDP growth	-0.0863	-0.103	-0.0805	-0.0466			
Mean	Bank default	0.814	0.326	0.0491	0.4033			
Mean	Firm default	6.3371	6.2944	6.0243	4.8500			
High Firm and High Bank Default								
Mean	GDP growth	-0.4048	-0.2396	-0.1628	-0.5842			
Mean	Bank default	3.8718	1.9106	0.4344	3.2294			
Mean	Firm default	7.6206	7.4513	7.0123	4.6688			

	Moment	Baseline	1st order app.	Data			
Low Firm and Low Bank Default							
Mean	GDP growth	0.0392	0.0213	0.0923			
Mean	Bank default	0.196	0.1034	0.4346			
Mean	Firm default	1.4409	1.3458	2.3480			
High Firm and Low Bank Default							
Mean	GDP growth	-0.0863	-0.102	-0.0466			
Mean	Bank default	0.814	0.5548	0.4033			
Mean	Firm default	6.3371	4.4265	4.8500			
High Firm and High Bank Default							
Mean	GDP growth	-0.4048	-0.1538	-0.5842			
Mean	Bank default	3.8718	0.997	3.2294			
Mean	Firm default	7.6206	4.8921	4.6688			

Paths to crises and Bank Leverage

