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Climate Science and Uncertainty
... the eventual equilibrium global mean temperature
associated with a given stabilization level of atmospheric
greenhouse gas concentrations remains uncertain,
complicating the setting of stabilization targets to avoid
potentially dangerous levels of global warming.

Citation: Allen et al: 2009
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Approach Taken
▷ Posit a social planning decision problem
▷ Include two interacting dynamic channels:

◦ economic activity (e.g. CO2 emissions) alters the climate
(e.g temperature)

◦ climate change alters economic opportunities (e.g.
damages)

▷ Adopt a broad notion of uncertainty with multiple layers
▷ Explore how uncertainty operates through these two channels
▷ Deduce the social cost of carbon as a marginal rate of
substitution between consumption and emissions - Pigouvian tax

▷ Interpret the cost attributed to the externality using asset pricing
methods
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Why Asset Pricing
Asset pricing methods

▷ embrace uncertainty - a market compensates investors for being
exposed to uncertainty

▷ provide compensations over alternative horizons - equity prices
reflect cash flows of enterprises in current and future time
periods

In this investigation we use:

▷ social valuation rather than private valuation
▷ climate change and the subsequent societal damages induced by
economic activity as the “cash flow” to be valued
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Two sources of uncertainty
▷ climate (temperature) consequences of CO2 emissions
▷ economic consequences of temperature changes

Observations:

▷ measurement or quantification research in geophysics focuses on
the first and economics on the latter.

▷ each is dynamic.

We study the “multiplicative” or “compound” interactions.

▷ When both happen to be small, then their product is tiny.
▷ When both happen to be large, then their product is huge.

5 / 1



Climate Impacts
Climate literature suggests an approximation that simplifies
discussions of uncertainty and its impact.

▷ Matthews et al and others have purposefully constructed a
simple “approximate” climate model:

Tt − T0 ≈ βf

∫ t

0
Eτdτ

.
= Ft.

▷ F cumulates (adds up) the emissions over time.
▷ Abstract from transient changes in temperature.

Emissions today have a permanent impact on temperature in the
future where βf is a climate sensitivity parameter.
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Climate Sensitivity Uncertainty

Histograms and density for the climate sensitivity parameter across
models. Evidence is from MacDougall-Swart-Knutti (2017).
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Carbon budgeting
Some in the climate science community argue for a carbon budgeting
approach as a simplified way to frame the discussion of
environmental damages.

▷ exploit the Matthews approximation linking emissions to
temperature

▷ design policy to enforce a Hotelling-like restriction on
cumulative carbon emissions because of climate impact

Still must confront uncertainty as to what the constraint should be
because it depends on the climate sensitivity parameter.
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Baseline Economic Model

Formally we introduce Brownian increment shocks, adjustment costs
in capital accumulation and curvature in the mapping from
exploration to reserves.
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Economic Environment:
Information
▷ W .

= {Wt : t ≥ 0} is a multivariate standard Brownian motion
and F .

= {Ft : t ≥ 0} is the corresponding Brownian filtration
with Ft generated by the Brownian motion between dates zero
and t.

▷ Let Z .
= {Zt : t ≥ 0} be a stochastically stable, multivariate

forcing process with evolution:

dZt = µz(Zt)dt+ σz(Zt)dWt.
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Economic Environment: Production
AK model with adjustment costs

▷ Evolution of capital K

dKt = Kt

[
µk(Zt)dt+ ϕ0 log

(
1 + ϕ1

It
Kt

)
dt+ σk · dWt

]
.

where It is investment and 0 < ϕ0 < 1 and ϕ1 > 1.
▷ Production

Ct + It + Jt = αKt

where Ct is consumption and Jt is investment in new fossil fuel
reserves.
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Economic Environment: Reserves
▷ Reserve stock, R, evolves according to:

dRt = −Etdt+ ψ0(Rt)
1−ψ1(Jt)ψ1 + RtσR · dWt

where ψ0 > 0 and 0 < ψ1 ≤ 1 and Et is the emission of carbon.
▷ Hotelling fixed stock of reserves is a special case with ψ0 = 0.
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Economic Impacts of Climate
Change

Explore three specifications:

i) adverse impact on societal preferences
ii) adverse impact on production possibilities
iii) adverse impact on the growth potential
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Damage Specification
Posit a damage process, D, to capture negative externalities on society
imposed by carbon emissions. Evolution for logDt:

d logDt = (γ1 + γ2Ft)Etβfdt+ dνd(Zt) + Etσd · dWt

for Ft ≤ f with an additional penalty added with Ft ≥ f.

▷ γ2 gives a nonlinear damage adjustment
▷ additional penalty gives a smooth alternative to carbon budget
▷ σd · dWt captures one form of coefficient uncertainty in
damage/climate sensitivity

Uncertainty in the economic damages (coefficients, γ1, γ2) and
climate sensitivity (coefficient βf) multiplies!
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Damages in Preference
▷ the per period (instantaneous) contribution to preferences is:

δ(1− κ) (logCt − logDt) + δκ logEt

where δ > 0 is the subjective rate of discount and 0 < κ < 1 is a
preference parameter that determines the relative importance of
emissions in the instantaneous utility function.

▷ we may “equivalently” think of this as a model with proportional
damages to consumption and or production.
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Damages to Growth
Climate change diminishes growth in the capital evolution:

dKt = Kt

[
µk(Zt)dt− logDtdt+ ϕ0 log

(
1 + ϕ1

It
Kt

)
dt+ σk · dWt

]
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Measurement challenges
▷ little historical experience to draw upon
▷ impacts are likely different for regions of the world that are
differentially exposed to climate change

▷ potentially big differences between long-run and short-run
consequences because of adaptation
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Proportional Damage Uncertainty
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Growth-Rate Damage Uncertainty

Evidence from Burke et al (2018).
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Uncertainty in Decision Making
Explore three components to uncertainty:

▷ risk - uncertainty within a model: uncertain outcomes with
known probabilities

▷ ambiguity - uncertainty across models: unknown weights for
alternative possible models

▷ misspecification - uncertainty about models: unknown flaws of
approximating models

Impact how we pose the social planning problem and solve the
planning problem and the appropriate stochastic discount factor.
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Navigating Uncertainty
Statistical models we use in practice are misspecified, and there is
ambiguity as to which model among multiple ones is the best one.

◦ Aim of robust approaches:
▷ use models in sensible ways rather than discard them
▷ use probability and statistics to provide tools for limiting
the type and amount of uncertainty that is entertained

◦ Uncertainty aversion - dislike uncertainty about probabilities
over future events

◦ Outcome - target the uncertainty components with the most
adverse consequences for the decision maker

Robust decisions may differ from risk averse decisions but they do
NOT necessarily imply inaction!
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Decision Theory I
Ambiguity over alternative (structured) models and concerns about
model misspecification. Hansen-Sargent (2019) show how to
combine two approaches:

▷ Chen- Epstein (2002) recursive implementation of max-min
utility model axiomatized by Gilboa-Schmeidler(1989).
Confront structured model uncertainty.

▷ Hansen-Sargent (2001) a recursive penalization used to explore
model misspecification building on robust control theory.

Hansen-Sargent (2019) combine these approaches.
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Decision Theory II
Hansen-Miao (2018) propose a recursive implementation of the
smooth ambiguity model in continuous time. Discrete time version
originally axiomatized by Klibanoff-Marinacci-Mukerji (2005).

▷ ambiguity about local mean specification in the state dynamics
▷ axiomatic defense justifies a differential aversion to ambiguity
over models

▷ equivalence between the smooth ambiguity and recursive robust
choice of priors (Hansen-Sargent, 2007)

▷ additional adjustment for potential model misspecification
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Proportional Damage Uncertainty:
Reconsidered
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Ambiguity Adjusted Probabilities
Time = Year 0. Baseline weights equal for both models.

Blue = Baseline and Green = Adjusted.
Adjusted weights: equal for low and high. 25 / 1



Ambiguity Adjusted Probabilities
Time = Year 100. Baseline weights equal for both models.

Blue = Baseline, Red = Low Damage, Green = High Damage.
Adjusted weights = .37 for low and .63 for high.
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Ambiguity Aversion: Impact

Preference comparison. Average trajectories over simulated paths.
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Social Cost of Carbon as an Asset
Price
▷ Interpret the outcome of a robust social planner’s problem
▷ Discounting is stochastic and adjusted to accommodate concerns
for ambiguity and model misspecification

▷ Shadow prices are computed using an efficient allocation and not
necessarily what is observed in competitive markets

Construct a decomposition of the SCC in terms of economically
meaningful components.
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Social Costs of Carbon

Cost decomposition. Average trajectories over simulated paths.
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Where We Stand
▷ Social cost of carbon

◦ Cost can increase substantially by incorporating broader
notions of uncertainty

◦ Important interaction between damage uncertainty and
climate impact uncertainty

▷ Extensions

◦ explore with climate scientists more ambitious climate
model inputs

◦ assess other potential policies including green energy
subsidies

◦ compare the impact of climate damage uncertainty with
other sources of growth uncertainty
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Conclusions

▷ Decision theory under a broad umbrella of uncertainty DOES
NOT imply inaction.

▷ Asset pricing and decision theory tools help in navigating
through the multiple layers of uncertainty.
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