Discussion Cournot Fire Sales by Thomas Eisenbach and Gregory Phelan

Eduardo Dávila

Yale and NBER

Second Financial Stability Conference Bank of Spain June 4, 2019

Summary

- Starting point for this paper
 - Pecuniary/Fire-Sale externalities as rationale for regulation
 - Root of externalities: price-taking behavior
 - In addition to incomplete markets and/or binding constraints

Summary

- Starting point for this paper
 - Pecuniary/Fire-Sale externalities as rationale for regulation
 - Root of externalities: price-taking behavior
 - In addition to incomplete markets and/or binding constraints

This paper

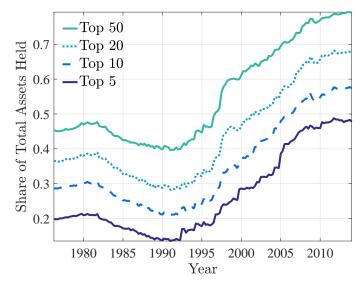
Explores the role of non-price taking behavior (oligopoly)

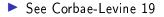
- Interesting question
 - Conceptually: previously unexplored
 - Practically: increased concentration in banking/intermediation

Summary

- Starting point for this paper
 - Pecuniary/Fire-Sale externalities as rationale for regulation
 - Root of externalities: price-taking behavior
 - In addition to incomplete markets and/or binding constraints
- This paper
 - Explores the role of non-price taking behavior (oligopoly)
- Interesting question
 - Conceptually: previously unexplored
 - Practically: increased concentration in banking/intermediation
- 🕨 Main takeaways
 - Cournot solution is different from planning solution
 - Different price impact
 - Cournot solution can reverse normative prescriptions
 - Move further away from planning solution (worsens lack of liquidity provision)
 - Under-investment (Cournot) instead of over-investment (CE) relative to planning solution

Increasing Concentration





Roadmap

- 1. Abstract framework
- 2. Liquidity model
- 3. Final comments

General framework (incomplete markets)

 \blacktriangleright $i \in I$ agents, single asset, many states, single good economy

$$\max_{x_t^i} \mathbb{E}_0 \left[\sum_t \beta^t u_i \left(c_t^i \right) \right]$$
$$c_t^i = e_t^i + d_t x_{t-1}^i - p_t \Delta x_t^i$$

General framework (incomplete markets)

 \blacktriangleright $i \in I$ agents, single asset, many states, single good economy

$$\max_{x_t^i} \mathbb{E}_0 \left[\sum_t \beta^t u_i \left(c_t^i \right) \right]$$
$$c_t^i = e_t^i + d_t x_{t-1}^i - p_t \Delta x_t^i$$

Competitive Equilibrium

- Agents maximize
- Market clearing: $\int_i \Delta x_t^i(p) = 0$, $\forall t$

General framework (incomplete markets)

 \blacktriangleright $i \in I$ agents, single asset, many states, single good economy

$$\max_{x_t^i} \mathbb{E}_0 \left[\sum_t \beta^t u_i \left(c_t^i \right) \right]$$
$$c_t^i = e_t^i + d_t x_{t-1}^i - p_t \Delta x_t^i$$

Competitive Equilibrium

- Agents maximize
- Market clearing: $\int_i \Delta x_t^i(p) = 0$, $\forall t$
- Benchmark 1: Competitive Equilibrium

$$p_{t} = \mathbb{E}_{t} \left[\frac{\beta u_{i}^{\prime} \left(c_{t+1}^{i} \right)}{u_{i}^{\prime} \left(c_{t}^{i} \right)} \left(d_{t+1} + p_{t+1} \right) \right], \forall i, t$$

General framework (incomplete markets)

 \blacktriangleright $i \in I$ agents, single asset, many states, single good economy

$$\max_{x_t^i} \mathbb{E}_0 \left[\sum_t \beta^t u_i \left(c_t^i \right) \right]$$
$$c_t^i = e_t^i + d_t x_{t-1}^i - p_t \Delta x_t^i$$

Competitive Equilibrium

- Agents maximize
- Market clearing: $\int_i \Delta x_t^i(p) = 0$, $\forall t$
- Benchmark 1: Competitive Equilibrium

$$p_{t} = \mathbb{E}_{t} \left[\frac{\beta u_{i}^{\prime} \left(c_{t+1}^{i} \right)}{u_{i}^{\prime} \left(c_{t}^{i} \right)} \left(d_{t+1} + p_{t+1} \right) \right], \forall i, t$$

• Remark: MRS generically not equalized, $\frac{\beta u'_i(c^i_{t+1})}{u'_i(c^i_t)}$ vary across *i*

Benchmark 2: Planning Problem

Consider perturbation: $\tilde{x}_{t}^{i} = x_{t}^{i} + \varepsilon h_{t}^{i}$ (e.g., $h_{t}^{i} = 1$, $\forall i$) $\frac{dW^{i}}{d\varepsilon} = \mathbb{E}_{0} \left[\sum_{t} \beta^{t} u_{i}^{\prime} \left(c_{t}^{i} \right) \left(\left[-p_{t} + \mathbb{E}_{t} \left[\frac{\beta u_{i}^{\prime} \left(c_{t+1}^{i} \right)}{u_{i}^{\prime} \left(c_{t}^{i} \right)} \left(d_{t+1} + p_{t+1} \right) \right] \right] \frac{d\tilde{x}_{t}^{i}}{d\varepsilon} - \Delta \tilde{x}_{t}^{i} \frac{dp_{t}}{d\varepsilon} \right) \right]$

Benchmark 2: Planning Problem
Consider perturbation:
$$\tilde{x}_{t}^{i} = x_{t}^{i} + \varepsilon h_{t}^{i}$$
 (e.g., $h_{t}^{i} = 1$, $\forall i$)

$$\frac{dW^{i}}{d\varepsilon} = \mathbb{E}_{0} \left[\sum_{t} \beta^{t} u_{i}^{i} \left(c_{t}^{i} \right) \left(\left[-p_{t} + \mathbb{E}_{t} \left[\frac{\beta u_{i}^{i} \left(c_{t+1}^{i} \right)}{u_{i}^{i} \left(c_{t}^{i} \right)} \left(d_{t+1} + p_{t+1} \right) \right] \right] \frac{d\tilde{x}_{t}^{i}}{d\varepsilon} - \Delta \tilde{x}_{t}^{i} \frac{dp_{t}}{d\varepsilon} \right) \right]$$

$$\text{Limit } \varepsilon \to 0 \text{ and normalize}$$

$$\lim_{\varepsilon \to 0} \frac{\frac{dW^{i}}{d\varepsilon}}{u_{i}'\left(c_{0}^{i}\right)} = -\mathbb{E}_{0}\left[\sum_{t} \frac{\beta^{t}u_{i}'\left(c_{t}^{i}\right)}{u_{i}'\left(c_{0}^{i}\right)} \Delta \tilde{x}_{t}^{i} \frac{dp_{t}}{d\varepsilon}\right]$$

- 2. Net trading positions
- 3. Price impact

• Computing $\frac{dp_t}{d\epsilon}$? Implicit Function Thm on $\int_i \Delta \tilde{x}_t^i(p,\epsilon) = 0, \ \forall t$

Benchmark 2: Planning Problem • Consider perturbation: $\tilde{x}_t^i = x_t^i + \varepsilon h_t^i$ (e.g., $h_t^i = 1, \forall i$) $\frac{dW^{i}}{d\varepsilon} = \mathbb{E}_{0} \left| \sum_{i} \beta^{t} u_{i}^{\prime} \left(c_{t}^{i} \right) \left(\left| -p_{t} + \mathbb{E}_{t} \left| \frac{\beta u_{i}^{\prime} \left(c_{t+1}^{i} \right)}{u_{i}^{\prime} \left(c_{t}^{i} \right)} \left(d_{t+1} + p_{t+1} \right) \right| \left| \frac{d\tilde{x}_{t}^{i}}{d\varepsilon} - \Delta \tilde{x}_{t}^{i} \frac{dp_{t}}{d\varepsilon} \right) \right|$ \blacktriangleright Limit $\varepsilon \rightarrow 0$ and normalize $\lim_{\varepsilon \to 0} \frac{\frac{dW^{i}}{d\varepsilon}}{u_{i}^{\prime}\left(c_{0}^{i}\right)} = -\mathbb{E}_{0} \left[\sum_{t} \frac{\beta^{t}u_{i}^{\prime}\left(c_{t}^{i}\right)}{u_{i}^{\prime}\left(c_{0}^{i}\right)} \Delta \tilde{x}_{t}^{i} \frac{dp_{t}}{d\varepsilon} \right]$ ► If $\frac{\beta^i u'_i(c_t^i)}{u'_i(c_t^i)} = f$, $\forall i$, (complete markets), then $\int_i \Delta \tilde{x}_t^i \frac{dp_t}{d\epsilon} = 0$ Incomplete markets: scope for Pareto Improvements (distributive externalities, see Davila/Korinek 18) 1. Differences in MRS 2. Net trading positions 3. Price impact • Computing $\frac{dp_i}{d\varepsilon}$? Implicit Function Thm on $\int_i \Delta \tilde{x}_t^i(p,\varepsilon) = 0, \ \forall t$ $\int_{i} \frac{\partial \tilde{x}_{t}^{i}(p,\varepsilon)}{\partial \varepsilon} + \int_{i} \frac{\partial \tilde{x}_{t}^{i}(p,\varepsilon)}{\partial \varepsilon} \frac{dp}{d\varepsilon} = 0 \Rightarrow \frac{dp}{d\varepsilon} = -\left(\int_{i} \frac{\partial \tilde{x}_{t}^{i}(p,\varepsilon)}{\partial v}\right)^{-1} \int_{i} \frac{\partial \tilde{x}_{t}^{i}(p,\varepsilon)}{\partial \varepsilon}$

 $=h^{i}$

Abstract Framework: "Cournot"

b Benchmark 3: "Cournot" perturbation $(\tilde{x}_t^i = x_t^i + \varepsilon h_t^i)$

• $h_t^i = 1$, for some i, $h_t^{-i} = 0$ otherwise

$$\lim_{\varepsilon \to 0} \frac{\frac{dW^{i}}{d\varepsilon}}{u_{i}'\left(c_{0}^{i}\right)} = -\mathbb{E}_{0}\left[\sum_{t} \frac{\beta^{t}u_{i}'\left(c_{t}^{i}\right)}{u_{i}'\left(c_{0}^{i}\right)} \Delta \tilde{x}_{t}^{i} \frac{dp_{t}^{i}}{d\varepsilon}\right]$$

Abstract Framework: "Cournot"

• Benchmark 3: "Cournot" perturbation $(\tilde{x}_t^i = x_t^i + \varepsilon h_t^i)$

• $h_t^i = 1$, for some i, $h_t^{-i} = 0$ otherwise

$$\lim_{\varepsilon \to 0} \frac{\frac{dW^{i}}{d\varepsilon}}{u_{i}'\left(c_{0}^{i}\right)} = -\mathbb{E}_{0}\left[\sum_{t} \frac{\beta^{t}u_{i}'\left(c_{t}^{i}\right)}{u_{i}'\left(c_{0}^{i}\right)} \Delta \tilde{x}_{t}^{i} \frac{dp_{t}^{i}}{d\varepsilon}\right]$$

Key difference: Price impacts are perceived differently
 Formally, dpi/dε instead of dpt/dε
 Computing dpi/dε? Residual demands are agent specific
 Δx̃t(ε) + ∫_i Δx̃t(p) = 0 ⇒ dpt/dε = - (∫_i ∂x̃t(p,ε)/∂p)^{-1} ∂x̃t(p,ε)/∂ε = hticking demands

Abstract Framework: "Cournot"

• Benchmark 3: "Cournot" perturbation $(\tilde{x}_t^i = x_t^i + \varepsilon h_t^i)$

• $h_t^i = 1$, for some *i*, $h_t^{-i} = 0$ otherwise

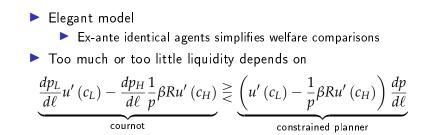
$$\lim_{\varepsilon \to 0} \frac{\frac{dW^{i}}{d\varepsilon}}{u_{i}^{\prime}\left(c_{0}^{i}\right)} = -\mathbb{E}_{0}\left[\sum_{t} \frac{\beta^{t}u_{i}^{\prime}\left(c_{t}^{i}\right)}{u_{i}^{\prime}\left(c_{0}^{i}\right)} \Delta \tilde{x}_{t}^{i} \frac{dp_{t}^{i}}{d\varepsilon}\right]$$

Key difference: Price impacts are perceived differently
 Formally, dpi/dε instead of dpt/dε
 Computing dpi/dε? Residual demands are agent specific
 Δx̃t(ε) + ∫_i Δx̃t(p) = 0 ⇒ dpt/dε = - (∫_i ∂x̃t(p,ε)/∂p)^{-1} ∂x̃t(p,ε)/∂ε = htick

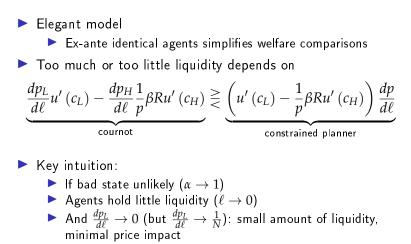
Cournot solution must be bad under complete markets

$$\int_{i} \Delta \tilde{x}_{t}^{i} \frac{dp_{t}^{i}}{d\varepsilon} \neq 0$$

Liquidity Provision Model



Liquidity Provision Model



• **Comment**: How robust are $\frac{dp_L}{d\ell}$ and $\frac{dp_H}{d\ell}$ results? Ideally empirically disciplined

Comments/Thoughts

- 1. Include welfare rankings
 - \blacktriangleright It is not obvious whether Cournot \succ Competitive or vice versa
 - Paper focuses on ℓ (allocations)
- 2. Explore joint antitrust and insurance policies
 - Benchmark with imperfect competition and complete markets
- 3. Single agent case (full monopolist with RoW/fringe pricing)
 - Converges to constrained efficient benchmark
 - Worth discussing
- 4. Both models would benefit from sensible numerical illustrations
 - Sense of magnitudes
 - Calibration?