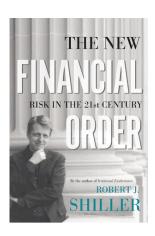
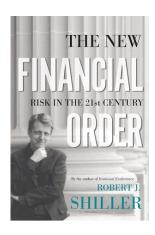
Insuring Consumption Using Income-Linked Assets

Andreas Fuster and Paul Willen

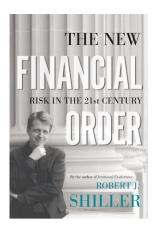
Harvard University and Federal Reserve Bank of Boston

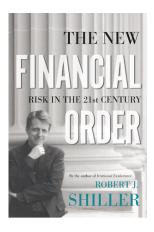

Conference on Household Finance and Macroeconomics Banco de España, Madrid October 16, 2009


Introduction

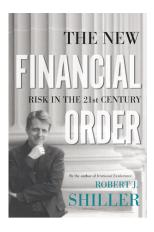
- Human capital is the largest component of total household wealth for much of life
- It is also risky: income volatility is high (and supposedly has increased over past decades)
- Much evidence that this leads to consumption volatility, due to imperfect risk-sharing
- Not too surprising: risk-sharing is generally difficult because of
 - informational asymmetries (moral hazard)
 - limited commitment

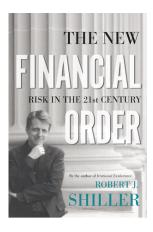
Introduction

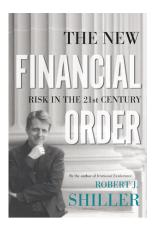

- Yet, part of human capital risk is group-specific and cross-sectional
- Such risk could be hedged through financial assets with payoffs linked to group-level income indices
 - and without requiring a risk premium for aggregate risk
- Shiller (2003) and others have advocated the introduction of new financial assets to allow households to better insure against human capital risk (among others)
- Our goal is to evaluate the potential use and usefulness of such assets for households' income risk management over the life cycle

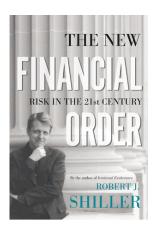


Shiller proposes six types of insurance:

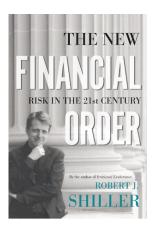

Livelihood insurance


- Livelihood insurance
- Home equity insurance

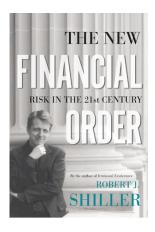

- Livelihood insurance
- Home equity insurance
- Macro markets


- Livelihood insurance
- Home equity insurance
- Macro markets
- Income-linked loans

- Livelihood insurance
- 4 Home equity insurance
- Macro markets
- Income-linked loans
- Inequality insurance

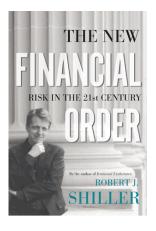


- Livelihood insurance
- 2 Home equity insurance
- Macro markets
- Income-linked loans
- Inequality insurance
- Intergenerational social security



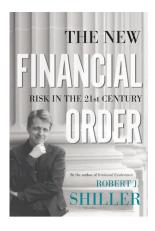
- Livelihood insurance
- Macro markets
- Income-linked loans

In this paper, we consider (an example of) 1/3, and 4



"Imagining the social and economic achievement that could come from a new financial order is difficult because we have not seen such an alternate world."

"Imagining the social and economic achievement that could come from a new financial order is difficult because we have not seen such an alternate world."


⇒ Need to use a model

"Imagining the social and economic achievement that could come from a new financial order is difficult because we have not seen such an alternate world."

 \Rightarrow Need to use a model

"Making such [assets] more widely available would entail work from both the private sector and the government."

"Imagining the social and economic achievement that could come from a new financial order is difficult because we have not seen such an alternate world."

 \Rightarrow Need to use a model

"Making such [assets] more widely available would entail work from both the private sector and the government."

⇒ How large are the benefits? Is it worth it?

- Consider a life-cycle portfolio choice model with realistic borrowing and investment opportunities
 - ▶ Key feature: borrowing rate > lending rate

- Consider a life-cycle portfolio choice model with realistic borrowing and investment opportunities
 - ▶ Key feature: borrowing rate > lending rate
- Introduce new assets: income-hedging instrument or income-linked loans

- Consider a life-cycle portfolio choice model with realistic borrowing and investment opportunities
 - ▶ Key feature: borrowing rate > lending rate
- Introduce new assets: income-hedging instrument or income-linked loans
 - IHI: limited liability asset with returns negatively correlated with income shock

- Consider a life-cycle portfolio choice model with realistic borrowing and investment opportunities
 - Key feature: borrowing rate > lending rate
- Introduce new assets: income-hedging instrument or income-linked loans
 - IHI: limited liability asset with returns negatively correlated with income shock
 - ILL: loan with required repayment positively correlated with income shock

- Consider a life-cycle portfolio choice model with realistic borrowing and investment opportunities
 - Key feature: borrowing rate > lending rate
- Introduce new assets: income-hedging instrument or income-linked loans
 - IHI: limited liability asset with returns negatively correlated with income shock
 - ILL: loan with required repayment positively correlated with income shock
- Look at demand for these assets over the life cycle, and predicted welfare gains that their availability would generate for households

Usefulness of income-linked assets depends strongly on how they are implemented:

- Usefulness of income-linked assets depends strongly on how they are implemented:
 - ILL generally more beneficial than IHI

- Usefulness of income-linked assets depends strongly on how they are implemented:
 - ▶ ILL generally more beneficial than IHI
 - Correlation with income shocks

- Usefulness of income-linked assets depends strongly on how they are implemented:
 - ILL generally more beneficial than IHI
 - Correlation with income shocks
 - Volatility

- Usefulness of income-linked assets depends strongly on how they are implemented:
 - ILL generally more beneficial than IHI
 - Correlation with income shocks
 - Volatility
- ② The income-linked assets (in particular ILL) can produce non-negligible welfare gains (>1%)

- Usefulness of income-linked assets depends strongly on how they are implemented:
 - ▶ ILL generally more beneficial than IHI
 - Correlation with income shocks
 - Volatility
- ② The income-linked assets (in particular ILL) can produce non-negligible welfare gains (>1%)
- But difficult to reduce a large fraction of the welfare costs from labor income risk with the assets we consider

- What would be...
 - ightharpoonup E(r)?
 - $ightharpoonup \sigma(r)$?
 - ightharpoonup corr(r, income)?

- What would be...
 - ightharpoonup E(r)?
 - $ightharpoonup \sigma(r)$?
 - ightharpoonup corr(r, income)?
- We remain relatively agnostic & try various assumptions

- What would be...
 - ightharpoonup E(r)?
 - $ightharpoonup \sigma(r)$?
 - ightharpoonup corr(r, income)?
- We remain relatively agnostic & try various assumptions
- Baseline assumption for |corr(r, income)|: 0.5, based on CPS occupation-level income series (Davis et al. 2009)

- What would be...
 - ightharpoonup E(r)?
 - $ightharpoonup \sigma(r)$?
 - ightharpoonup corr(r, income)?
- We remain relatively agnostic & try various assumptions
- Baseline assumption for |corr(r, income)|: 0.5, based on CPS occupation-level income series (Davis et al. 2009)
- Baseline assumption for E(r): "actuarial fairness"
 - $E(\tilde{r}_{IHI}) = r_l$ (risk-free saving rate)
 - $E(\tilde{r}_{ILL}) = r_b$ (risk-free borrowing rate)

- What would be...
 - ightharpoonup E(r)?
 - $ightharpoonup \sigma(r)$?
 - ightharpoonup corr(r, income)?
- We remain relatively agnostic & try various assumptions
- Baseline assumption for |corr(r, income)|: 0.5, based on CPS occupation-level income series (Davis et al. 2009)
- Baseline assumption for E(r): "actuarial fairness"
 - ightharpoonup $\mathrm{E}(\tilde{r}_{IHI}) = r_l$ (risk-free saving rate)
 - ightharpoonup $\mathrm{E}(ilde{r}_{ILL}) = r_b$ (risk-free borrowing rate)
- This assumes that risks are cross-sectional (not aggregate), and in that sense stacks the deck in favor of these assets

Related Literature

- Quantitative dynamic macro models that consider welfare costs of income shocks
 - Storesletten, Telmer, Yaron (2004), Heathcote, Storesletten, Violante (2008)
- Risk-sharing and partial insurance
 - Attanasio and Davis (1996), Krueger and Perri (2006), Blundell et al. (2008)
- Optimal portfolio choice over the life cycle
 - ► Cocco, Gomes, Maenhout (2005), Gomes and Michaelides (2005)
 - Our model builds on Davis, Kübler, Willen (2006)
 - Close in spirit: De Jong, Driessen, Van Hemert (2008) on housing futures; Cocco and Gomes (2009) on longevity bonds

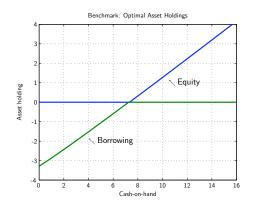
Outline

- Two-period example
 - Goal: provide intuition for what determines demand for and welfare gains from income-linked assets
- 2 Life-cycle model
 - Goal: show that intuition carries over; quantitatively assess use and usefulness of assets over life cycle
- Oiscussion / Conclusion

Two-Period Example: Setup

- CRRA=2 investor lives for 2 periods
- Objective: max $u(c_1) + Eu(c_2)$
- Has some cash-on-hand in period 1
- Receives stochastic income in period 2 with mean 8
 - $Y_2 \in \{5.4, 8, 10.6\}$ with $p = \{1/6, 2/3, 1/6\}$

Two-Period Example: Setup

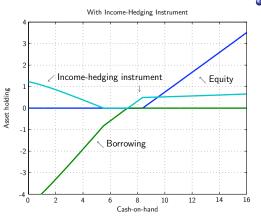

- CRRA=2 investor lives for 2 periods
- Objective: $\max u(c_1) + Eu(c_2)$
- Has some cash-on-hand in period 1
- Receives stochastic income in period 2 with mean 8
 - $Y_2 \in \{5.4, 8, 10.6\} \text{ with } p = \{1/6, 2/3, 1/6\}$
- Benchmark: Investor can...
 - save at $r_l = 2\%$
 - invest in equity with $\mathrm{E}(\tilde{r}_e)=6\%$ and $\sigma(\tilde{r}_e)=16\%$
 - borrow at $r_b = 8\%$

Two-Period Example: Setup

- CRRA=2 investor lives for 2 periods
- Objective: $\max u(c_1) + Eu(c_2)$
- Has some cash-on-hand in period 1
- Receives stochastic income in period 2 with mean 8
 - $Y_2 \in \{5.4, 8, 10.6\}$ with $p = \{1/6, 2/3, 1/6\}$
- Benchmark: Investor can...
 - save at $r_l = 2\%$
 - invest in equity with $\mathrm{E}(\tilde{r}_e) = 6\%$ and $\sigma(\tilde{r}_e) = 16\%$
 - borrow at $r_b = 8\%$
- Constraints: b, l, $e \ge 0$
- No default in model, so positive lower bound on Y_2 important (otherwise no borrowing possible)

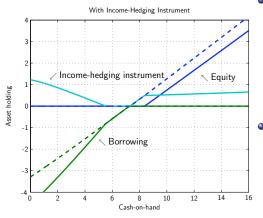
Benchmark

$$E(Y_2) = 8$$
, $r_l = 0.02$, $r_b = 0.08$, $E(\tilde{r}_e) = 0.06$, $\sigma_e = 0.16$



Income-Hedging Instrument

Now, investor can additionally invest in income-hedging instrument


- $E(\tilde{r}_{IHI}) = r_l = 2\%$
- $\sigma(\tilde{r}_{IHI}) = 25\%$
- $corr(\tilde{r}_{IHI}, Y_2) = -0.5$
- \Rightarrow IHI provides some insurance benefits, but not perfect insurance

IHI: Optimal Asset Holdings

- Optimal IHI holdings nonlinear in cash-on-hand
 - Over some range of cash-on-hand, no IHI holdings
 - Relatively poor and relatively rich investors find IHI most attractive

IHI: Optimal Asset Holdings

- Optimal IHI holdings nonlinear in cash-on-hand
 - Over some range of cash-on-hand, no IHI holdings
 - Relatively poor and relatively rich investors find IHI most attractive
- Compared with benchmark:
 - Borrowing by poor investor increases
 - Equity holdings by rich decrease

- How much a households holds of each asset depends on the risk-adjusted returns $\mathrm{E}_Q(\tilde{R}_i)$ of all assets
 - $lackbox{ } \mathrm{E}_Q(ilde{R}_i)$ higher if i pays off a lot in states of the world with high u'(c)

- \bullet How much a households holds of each asset depends on the risk-adjusted returns $\mathrm{E}_Q(\tilde{R}_i)$ of all assets
 - ullet $\mathrm{E}_Q(ilde{R}_i)$ higher if i pays off a lot in states of the world with high u'(c)
- For IHI, have that

$$E_Q(\tilde{R}_{IHI}) > E(\tilde{R}_{IHI}) = R_l$$

- How much a households holds of each asset depends on the risk-adjusted returns $\mathrm{E}_Q(\tilde{R}_i)$ of all assets
 - ullet $\mathrm{E}_Q(ilde{R}_i)$ higher if i pays off a lot in states of the world with high u'(c)
- For IHI, have that

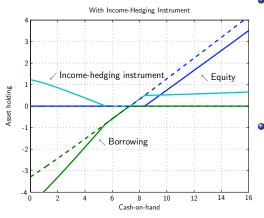
$$E_Q(\tilde{R}_{IHI}) > E(\tilde{R}_{IHI}) = R_l$$

ullet So if household could borrow at R_l , would always hold IHI

- How much a households holds of each asset depends on the risk-adjusted returns $\mathrm{E}_Q(\tilde{R}_i)$ of all assets
 - ullet $\mathrm{E}_Q(ilde{R}_i)$ higher if i pays off a lot in states of the world with high u'(c)
- For IHI, have that

$$E_Q(\tilde{R}_{IHI}) > E(\tilde{R}_{IHI}) = R_l$$

- ullet So if household could borrow at R_l , would always hold IHI
- However, for households who must borrow at higher rate, only buy IHI if $\mathbf{E}_Q(\tilde{R}_{IHI}) \geq R_b$
 - What determines whether a household borrows? Expected future consumption growth ⇒ borrow if relatively poor today


- How much a households holds of each asset depends on the risk-adjusted returns $E_Q(R_i)$ of all assets
 - ightharpoonup $\mathrm{E}_O(ilde{R}_i)$ higher if i pays off a lot in states of the world with high u'(c)
- For IHI, have that

$$E_Q(\tilde{R}_{IHI}) > E(\tilde{R}_{IHI}) = R_l$$

- ullet So if household could borrow at R_l , would always hold IHI
- However, for households who must borrow at higher rate, only buy IHI if $E_Q(R_{IHI}) \geq R_b$
 - ▶ What determines whether a household borrows? Expected future consumption growth ⇒ borrow if relatively poor today
- And for households who save, IHI "competes" against equity ⇒ only buy IHI if $E_O(\tilde{R}_{IHI}) \geq E_O(\tilde{R}_e)$

October 16, 2009

IHI: Optimal Asset Holdings

- Optimal IHI holdings nonlinear in cash-on-hand
 - Over some range of cash-on-hand, no IHI holdings
 - Relatively poor and relatively rich investors find IHI most attractive
- Compared with benchmark:
 - Borrowing by poor investor increases
 - Equity holdings by rich decrease

Bottom line:

 Whether and how extensively investor will use income-linked asset will depend on

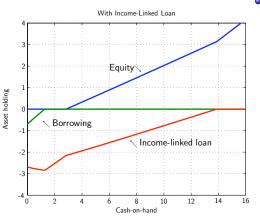
- Whether and how extensively investor will use income-linked asset will depend on
 - his financial wealth

- Whether and how extensively investor will use income-linked asset will depend on
 - his financial wealth
 - ▶ his life-cycle income profile

- Whether and how extensively investor will use income-linked asset will depend on
 - his financial wealth
 - ▶ his life-cycle income profile
 - the risk-adjusted returns of other investment opportunities

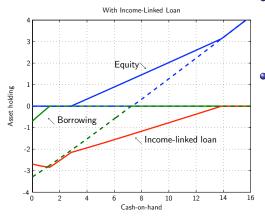
- Whether and how extensively investor will use income-linked asset will depend on
 - his financial wealth
 - his life-cycle income profile
 - the risk-adjusted returns of other investment opportunities
- The welfare gain from an income-linked asset will depend on its (opportunity) cost
 - High for IHI

Income-Linked Loan

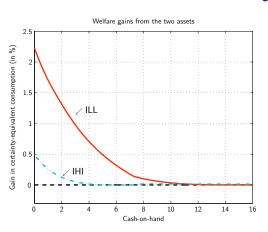

Now, instead, investor can additionally borrow through income-linked loan

•
$$E(\tilde{r}_{ILL}) = r_b = 8\%$$

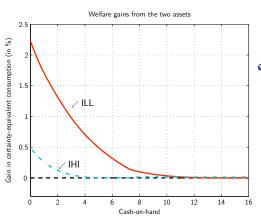
•
$$\sigma(\tilde{r}_{ILL}) = 25\%$$


•
$$corr(\tilde{r}_{ILL}, Y_2) = +0.5$$

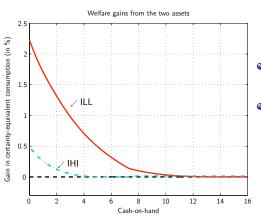
ILL: Optimal Asset Holdings

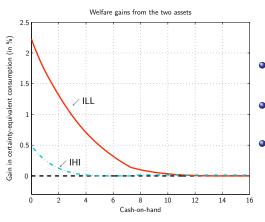

- Optimal ILL borrowing nonlinear in cash-on-hand
 - Goes to zero as cash-on-hand increases

ILL: Optimal Asset Holdings



- Optimal ILL borrowing nonlinear in cash-on-hand
 - Goes to zero as cash-on-hand increases
- Compared with benchmark:
 - ► ILL substitutes for unsecured borrowing
 - ► Over some range, additional borrowing & investment in equity


$$\left(\mathrm{E}_Q(\tilde{R}_{ILL}) = \mathrm{E}_Q(\tilde{R}_e), \text{ even though } \mathrm{E}(\tilde{R}_{ILL}) > \mathrm{E}(\tilde{R}_e)\right)$$


• Welfare measure: certainty-equivalent consumption \bar{c} s.th. $u(c_1) + Eu(c_2) = 2u(\bar{c})$

- Welfare measure: certainty-equivalent consumption \bar{c} s.th. $u(c_1) + Eu(c_2) = 2u(\bar{c})$
- ILL provides larger gains over wide range of cash-on-hand

- Welfare measure: certainty-equivalent consumption \bar{c} s.th. $u(c_1) + Eu(c_2) = 2u(\bar{c})$
- ILL provides larger gains over wide range of cash-on-hand
- Intuitively: lower (opportunity) cost

- Welfare measure: certainty-equivalent consumption \bar{c} s.th. $u(c_1) + Eu(c_2) = 2u(\bar{c})$
- ILL provides larger gains over wide range of cash-on-hand
- Intuitively: lower (opportunity) cost
- Welfare gain small as compared to having Y_2 =8 for sure
 - ▶ 9.21% for c-o-h=0
 - ▶ 2.81% for c-o-h=5
 - ▶ 1.40% for c-o-h=10

Introduction Two-Period Example Life-Cycle Model Discussion Setup Benchmark Results Income-Hedging Instrument Income-Linked Loans

Introduction Two-Period Example Life-Cycle Model Discussion Setup Benchmark Results Income-Hedging Instrument Income-Linked Loans

- Households in partial equilibrium, live from 20 to 80, retire at 65
- ullet Receive stochastic income Y_t during working life

Setup Benchmark Results Income-Hedging Instrument Income-Linked Loans

- Households in partial equilibrium, live from 20 to 80, retire at 65
- Receive stochastic income Y_t during working life
- Can trade three or four financial assets.

- Households in partial equilibrium, live from 20 to 80, retire at 65
- ullet Receive stochastic income Y_t during working life
- Can trade three or four financial assets.
 - equity with stochastic net return \tilde{r}_e ,

Setup Benchmark Results Income-Hedging Instrument Income-Linked Loans

- Households in partial equilibrium, live from 20 to 80, retire at 65
- Receive stochastic income Y_t during working life
- Can trade three or four financial assets.
 - lacktriangle equity with stochastic net return $ilde{r}_e$,
 - save at a net risk-free rate r_l,

- Households in partial equilibrium, live from 20 to 80, retire at 65
- Receive stochastic income Y_t during working life
- Can trade three or four financial assets.
 - lacktriangle equity with stochastic net return $ilde{r}_e$,
 - save at a net risk-free rate r_l,
 - lacktriangle engage in uncollateralized borrowing at the rate $r_b>r_l$

- Households in partial equilibrium, live from 20 to 80, retire at 65
- Receive stochastic income Y_t during working life
- Can trade three or four financial assets.
 - equity with stochastic net return \tilde{r}_e ,
 - \triangleright save at a net risk-free rate r_l ,
 - lacktriangleright engage in uncollateralized borrowing at the rate $r_b>r_l$ and either

- Households in partial equilibrium, live from 20 to 80, retire at 65
- ullet Receive stochastic income Y_t during working life
- Can trade three or four financial assets.
 - equity with stochastic net return \tilde{r}_e ,
 - \triangleright save at a net risk-free rate r_l ,
 - lacktriangle engage in uncollateralized borrowing at the rate $r_b>r_l$

and either

 \blacktriangleright invest in income-hedging instrument with stochastic net return \tilde{r}_{IHI} , or

- Households in partial equilibrium, live from 20 to 80, retire at 65
- Receive stochastic income Y_t during working life
- Can trade three or four financial assets.
 - equity with stochastic net return \tilde{r}_e ,
 - save at a net risk-free rate r_l,
 - lacktriangle engage in uncollateralized borrowing at the rate $r_b>r_l$

and either

- \blacktriangleright invest in income-hedging instrument with stochastic net return \tilde{r}_{IHI} , or
- **b** borrow through income-linked loans at the stochastic rate \tilde{r}_{ILL} .

- Households in partial equilibrium, live from 20 to 80, retire at 65
- Receive stochastic income Y_t during working life
- Can trade three or four financial assets.
 - lacktriangle equity with stochastic net return $ilde{r}_e$,
 - \triangleright save at a net risk-free rate r_l ,
 - lacktriangle engage in uncollateralized borrowing at the rate $r_b>r_l$

and either

- \blacktriangleright invest in income-hedging instrument with stochastic net return \tilde{r}_{IHI} , or
- lacktriangle borrow through income-linked loans at the stochastic rate $ilde{r}_{ILL}.$
- ullet No explicit limit on borrowing; have to be able to repay with prob. 1

- Households in partial equilibrium, live from 20 to 80, retire at 65
- Receive stochastic income Y_t during working life
- Can trade three or four financial assets.
 - equity with stochastic net return \tilde{r}_e ,
 - ightharpoonup save at a net risk-free rate r_l ,
 - lacktriangleright engage in uncollateralized borrowing at the rate $r_b>r_l$

and either

- \blacktriangleright invest in income-hedging instrument with stochastic net return \tilde{r}_{IHI} , or
- **b** borrow through income-linked loans at the stochastic rate \tilde{r}_{ILL} .
- No explicit limit on borrowing; have to be able to repay with prob. 1
- Short-sale constraints:

$$e_t \ge 0, l_t \ge 0, b_t \ge 0, IHI_t \ge 0, ILL_t \ge 0$$

- Households in partial equilibrium, live from 20 to 80, retire at 65
- Receive stochastic income Y_t during working life
- Can trade three or four financial assets.
 - equity with stochastic net return \tilde{r}_e ,
 - \triangleright save at a net risk-free rate r_l ,
 - lacktriangleright engage in uncollateralized borrowing at the rate $r_b>r_l$

and either

- \blacktriangleright invest in income-hedging instrument with stochastic net return \tilde{r}_{IHI} , or
- **b** borrow through income-linked loans at the stochastic rate \tilde{r}_{ILL} .
- No explicit limit on borrowing; have to be able to repay with prob. 1
- Short-sale constraints:

$$e_t \ge 0, l_t \ge 0, b_t \ge 0, IHI_t \ge 0, ILL_t \ge 0$$

• Finite-horizon dynamic program, solved computationally

Our Strategy

- Start with model that only features e, l, b
 - Calibrate to match wealth/income before retirement
 - Demonstrate that this model makes reasonable predictions regarding equity holdings and borrowing over the LC
 - Use this as benchmark model

Our Strategy

- Start with model that only features e, l, b
 - Calibrate to match wealth/income before retirement
 - Demonstrate that this model makes reasonable predictions regarding equity holdings and borrowing over the LC
 - Use this as benchmark model
- Then, add either income-hedging instrument or income-linked loan, with various assumptions about return process
 - Look at effect on asset holdings over the LC
 - Evaluate welfare gain from having access to new asset

Setup Benchmark Results Income-Hedging Instrument Income-Linked Loans

Income Process

 Income process as standard in consumption/pf choice literature (following Gourinchas-Parker 2002, Cocco et al. 2005):

$$log(Y_{it}) = \tilde{y}_t = d_t + \tilde{\eta}_t + \tilde{\varepsilon}_t$$

 Income process as standard in consumption/pf choice literature (following Gourinchas-Parker 2002, Cocco et al. 2005):

$$log(Y_{it}) = \tilde{y}_t = d_t + \tilde{\eta}_t + \tilde{\varepsilon}_t$$

• Deterministic component d_t

 Income process as standard in consumption/pf choice literature (following Gourinchas-Parker 2002, Cocco et al. 2005):

$$log(Y_{it}) = \tilde{y}_t = d_t + \tilde{\eta}_t + \tilde{\varepsilon}_t$$

- Deterministic component d_t
- Permanent (random walk) component

$$\tilde{\eta}_t = \eta_{t-1} + \tilde{u}_t$$
, with $\tilde{u}_t \sim N(-\sigma_u^2/2, \sigma_u^2)$

 Income process as standard in consumption/pf choice literature (following Gourinchas-Parker 2002, Cocco et al. 2005):

$$log(Y_{it}) = \tilde{y}_t = d_t + \tilde{\eta}_t + \tilde{\varepsilon}_t$$

- Deterministic component d_t
- Permanent (random walk) component

$$\tilde{\eta}_t = \eta_{t-1} + \tilde{u}_t$$
, with $\tilde{u}_t \sim N(-\sigma_u^2/2, \sigma_u^2)$

Temporary component

$$\tilde{\varepsilon}_t \sim N(-\sigma_{\varepsilon}^2/2, \sigma_{\varepsilon}^2)$$

 Income process as standard in consumption/pf choice literature (following Gourinchas-Parker 2002, Cocco et al. 2005):

$$log(Y_{it}) = \tilde{y}_t = d_t + \tilde{\eta}_t + \tilde{\varepsilon}_t$$

- Deterministic component d_t
- Permanent (random walk) component

$$\tilde{\eta}_t = \eta_{t-1} + \tilde{u}_t$$
, with $\tilde{u}_t \sim N(-\sigma_u^2/2, \sigma_u^2)$

Temporary component

$$\tilde{\varepsilon}_t \sim N(-\sigma_{\varepsilon}^2/2, \sigma_{\varepsilon}^2)$$

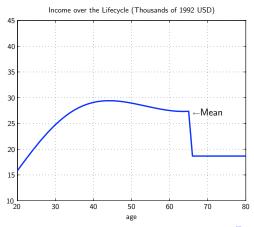
Shocks are effectively bounded; no zero-income temporary shock

◆ロ > ◆部 > ◆き > をき をき の

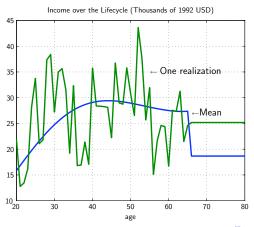
 Income process as standard in consumption/pf choice literature (following Gourinchas-Parker 2002, Cocco et al. 2005):

$$log(Y_{it}) = \tilde{y}_t = d_t + \tilde{\eta}_t + \tilde{\varepsilon}_t$$

- Deterministic component d_t
- Permanent (random walk) component

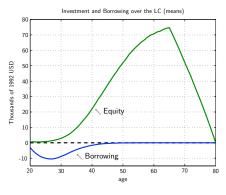

$$\tilde{\eta}_t = \eta_{t-1} + \tilde{u}_t$$
, with $\tilde{u}_t \sim N(-\sigma_u^2/2, \sigma_u^2)$

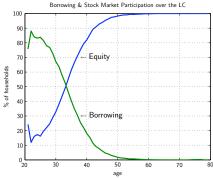
Temporary component


$$\tilde{\varepsilon}_t \sim N(-\sigma_{\varepsilon}^2/2, \sigma_{\varepsilon}^2)$$

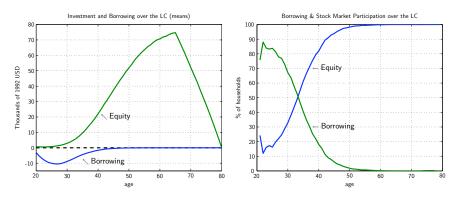
- Shocks are effectively bounded; no zero-income temporary shock
- Retirement income: $\tilde{y_t} = \log(\lambda) + d_{t_R} + \eta_{t_R}, t > t_R$

Use parameters from Cocco et al. for HS grads: σ_u =0.103, σ_ε =0.272, λ =0.682. Enter at 20, retire at 65, die at 80.


Use parameters from Cocco et al. for HS grads: σ_u =0.103, σ_ε =0.272, λ =0.682. Enter at 20, retire at 65, die at 80.



Other Parameters for Benchmark


- CRRA utility with curvature $\gamma = 2$
- Taste-shifter s.th. consumption drops 10% at retirement
- Risk-free saving rate: $r_l = 0.02$
- Risk-free borrowing rate: $r_b = 0.08$ (Davis et al. 2006)
- Equity returns: $E(\tilde{r}_e) = 0.06$, $\sigma_e = 0.16$
- Discount factor: $\beta = 0.936$. Chosen to match $\overline{W/Y} = 2.6$ of households with head aged 50 to 59 (Laibson et al. 2007)

Benchmark Results

Benchmark Results

- Successes: general pattern of borrowing and risky asset holdings (and participation) over the LC
- Failures: no bond holdings, and almost no borrowing late in life

Add IHI to benchmark setting. Parameters:

•
$$r_l = 0.02$$
, $r_b = 0.08$, $E(\tilde{r}_e) = 0.06$, $\sigma_e = 0.16$

Add IHI to benchmark setting. Parameters:

•
$$r_l = 0.02$$
, $r_b = 0.08$, $E(\tilde{r}_e) = 0.06$, $\sigma_e = 0.16$

•
$$E(\tilde{r}_{IHI}) = r_l = 0.02$$

Add IHI to benchmark setting. Parameters:

•
$$r_l = 0.02$$
, $r_b = 0.08$, $E(\tilde{r}_e) = 0.06$, $\sigma_e = 0.16$

- $E(\tilde{r}_{IHI}) = r_l = 0.02$
- $corr(\tilde{r}_{IHI}, \tilde{u}) = \{-0.25, -0.5, -0.75, -1\}$
 - Return negatively correlated with permanent shock to income

Add IHI to benchmark setting. Parameters:

•
$$r_l = 0.02$$
, $r_b = 0.08$, $E(\tilde{r}_e) = 0.06$, $\sigma_e = 0.16$

•
$$E(\tilde{r}_{IHI}) = r_l = 0.02$$

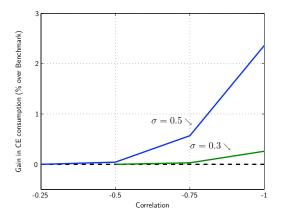
•
$$corr(\tilde{r}_{IHI}, \tilde{u}) = \{-0.25, -0.5, -0.75, -1\}$$

Return negatively correlated with permanent shock to income

•
$$\sigma(\tilde{r}_{IHI}) = \{0.3, 0.5\}$$

Add IHI to benchmark setting. Parameters:

•
$$r_l = 0.02$$
, $r_b = 0.08$, $E(\tilde{r}_e) = 0.06$, $\sigma_e = 0.16$


- $E(\tilde{r}_{IHI}) = r_l = 0.02$
- $corr(\tilde{r}_{IHI}, \tilde{u}) = \{-0.25, -0.5, -0.75, -1\}$
 - Return negatively correlated with permanent shock to income
- $\sigma(\tilde{r}_{IHI}) = \{0.3, 0.5\}$

Focus on welfare gains from introducing IHI (in paper, look at PLC profiles in detail)

Welfare Gains from IHI

Welfare Gains from IHI

Compare to

- gain from reducing permanent income shock variance by 25%: 3.5%
- gain from eliminating all income risk: 16.4%

Setup Benchmark Results Income-Hedging Instrument Income-Linked Loans

IHI: Conclusions

 Unless returns very highly correlated with income shock and very volatile, IHI not very useful

IHI: Conclusions

- Unless returns very highly correlated with income shock and very volatile, IHI not very useful
- Too "expensive" for young households, who would benefit most from hedge

IHI: Conclusions

- Unless returns very highly correlated with income shock and very volatile, IHI not very useful
- Too "expensive" for young households, who would benefit most from hedge
- Richer (older) households hold more of IHI, but at expense of equity

IHI: Conclusions

- Unless returns very highly correlated with income shock and very volatile, IHI not very useful
- Too "expensive" for young households, who would benefit most from hedge
- Richer (older) households hold more of IHI, but at expense of equity
- Welfare gains convex in $corr(\tilde{r}_{IHI}, \tilde{u})$ (and even in $corr^2$)

Now instead add ILL to benchmark setting. Parameters:

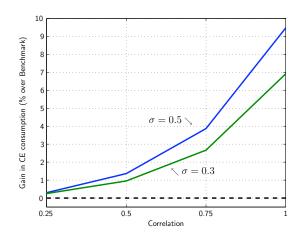
•
$$r_l$$
 =0.02, r_b =0.08, $\mathrm{E}(\tilde{r}_e)$ =0.06, σ_e =0.16

Now instead add ILL to benchmark setting. Parameters:

•
$$r_l$$
 =0.02, r_b =0.08, $E(\tilde{r}_e)$ =0.06, σ_e =0.16

•
$$E(\tilde{r}_{ILL}) = r_b = 0.08$$

Now instead add ILL to benchmark setting. Parameters:


- $r_l = 0.02$, $r_b = 0.08$, $E(\tilde{r}_e) = 0.06$, $\sigma_e = 0.16$
- $E(\tilde{r}_{ILL}) = r_b = 0.08$
- $corr(\tilde{r}_{ILL}, \tilde{u}) = \{0.25, 0.5, 0.75, 1\}$
 - Rate positively correlated with permanent shock to income

Now instead add ILL to benchmark setting. Parameters:

- $r_l = 0.02$, $r_b = 0.08$, $E(\tilde{r}_e) = 0.06$, $\sigma_e = 0.16$
- $E(\tilde{r}_{ILL}) = r_b = 0.08$
- $corr(\tilde{r}_{ILL}, \tilde{u}) = \{0.25, 0.5, 0.75, 1\}$
 - Rate positively correlated with permanent shock to income
- $\sigma(\tilde{r}_{ILL}) = \{0.3, 0.5\}$

▶ LC profiles

Welfare Gains from ILL

Setup Benchmark Results Income-Hedging Instrument Income-Linked Loans

ILL: Conclusions

• ILL offer more potential for welfare gains than IHI

- ILL offer more potential for welfare gains than IHI
 - Even for relatively moderate ρ , σ

- ILL offer more potential for welfare gains than IHI
 - Even for relatively moderate ρ , σ
- Young households (who would borrow anyway) would use it extensively and benefit from improved insurance

- ILL offer more potential for welfare gains than IHI
 - Even for relatively moderate ρ , σ
- Young households (who would borrow anyway) would use it extensively and benefit from improved insurance
- They invest part of their ILL borrowing in high-return equity

- ILL offer more potential for welfare gains than IHI
 - Even for relatively moderate ρ , σ
- Young households (who would borrow anyway) would use it extensively and benefit from improved insurance
- They invest part of their ILL borrowing in high-return equity
- Yet, still far from hypothetical welfare gain achieved by reducing income risk to zero

Robustness – Alternative Investment Option

• Our model does not generate enough (any) riskfree asset holdings

Robustness – Alternative Investment Option

- Our model does not generate enough (any) riskfree asset holdings
- Consequence: may understate benefits from IHI; overstate benefits from ILL

- Our model does not generate enough (any) riskfree asset holdings
- Consequence: may understate benefits from IHI; overstate benefits from ILL
- Check: version of the model where agent can only invest in 50/50 stocks-bonds fund (expected return $(E(\tilde{r}_e) + r_l)/2$, st. dev. $0.5\sigma_e$)

- Our model does not generate enough (any) riskfree asset holdings
- Consequence: may understate benefits from IHI; overstate benefits from ILL
- Check: version of the model where agent can only invest in 50/50 stocks-bonds fund (expected return $(E(\tilde{r}_e) + r_l)/2$, st. dev. $0.5\sigma_e$)
- Set $\beta=$ 0.947 to match $\overline{W/Y}$

- Our model does not generate enough (any) riskfree asset holdings
- Consequence: may understate benefits from IHI; overstate benefits from ILL
- Check: version of the model where agent can only invest in 50/50 stocks-bonds fund (expected return $(E(\tilde{r}_e) + r_l)/2$, st. dev. $0.5\sigma_e$)
- Set $\beta = 0.947$ to match $\overline{W/Y}$
- Gain from IHI with $\rho = -0.5$ and $\sigma = 0.5$ is now 0.33% instead of 0.04%

- Our model does not generate enough (any) riskfree asset holdings
- Consequence: may understate benefits from IHI; overstate benefits from ILL
- Check: version of the model where agent can only invest in 50/50 stocks-bonds fund (expected return $(E(\tilde{r}_e) + r_l)/2$, st. dev. $0.5\sigma_e$)
- Set $\beta = 0.947$ to match $\overline{W/Y}$
- Gain from IHI with $\rho = -0.5$ and $\sigma = 0.5$ is now 0.33% instead of 0.04%
- Gain from ILL with $\rho = +0.5$ and $\sigma = 0.5$ is now 0.85% instead of 1.36%

- Our model does not generate enough (any) riskfree asset holdings
- Consequence: may understate benefits from IHI; overstate benefits from ILL
- Check: version of the model where agent can only invest in 50/50 stocks-bonds fund (expected return $(E(\tilde{r}_e) + r_l)/2$, st. dev. $0.5\sigma_e$)
- Set $\beta = 0.947$ to match $\overline{W/Y}$
- Gain from IHI with $\rho = -0.5$ and $\sigma = 0.5$ is now 0.33% instead of 0.04%
- Gain from ILL with $\rho = +0.5$ and $\sigma = 0.5$ is now 0.85% instead of 1.36%
 - \Rightarrow ILL still generates larger welfare gain than IHI, but difference smaller

Robustness – Borrowing Cost

- We assume an interest rate wedge between borrowing and lending of 6%, based on Davis et al. (2006)
 - ► Adjust for tax considerations and charge-offs ⇒ remaining wedge due to transaction costs etc.

Robustness – Borrowing Cost

- We assume an interest rate wedge between borrowing and lending of 6%, based on Davis et al. (2006)
 - ► Adjust for tax considerations and charge-offs ⇒ remaining wedge due to transaction costs etc.
- What happens if households had access to cheaper borrowing, at 5%?

Robustness - Borrowing Cost

- We assume an interest rate wedge between borrowing and lending of 6%, based on Davis et al. (2006)
 - Adjust for tax considerations and charge-offs ⇒ remaining wedge due to transaction costs etc.
- What happens if households had access to cheaper borrowing, at 5%?
- Welfare gain from baseline IHI: 0.8%

Robustness - Borrowing Cost

- We assume an interest rate wedge between borrowing and lending of 6%, based on Davis et al. (2006)
 - ► Adjust for tax considerations and charge-offs ⇒ remaining wedge due to transaction costs etc.
- What happens if households had access to cheaper borrowing, at 5%?
- Welfare gain from baseline IHI: 0.8%
- Welfare gain from baseline ILL with $E(\tilde{r}_{ILL}) = r_b = 0.05$: 3%

Robustness – Borrowing Cost

- We assume an interest rate wedge between borrowing and lending of 6%, based on Davis et al. (2006)
 - Adjust for tax considerations and charge-offs ⇒ remaining wedge due to transaction costs etc.
- What happens if households had access to cheaper borrowing, at 5%?
- Welfare gain from baseline IHI: 0.8%
- Welfare gain from baseline ILL with $\mathrm{E}(\tilde{r}_{ILL}) = r_b = 0.05$: 3%
- Welfare gain from baseline ILL but with $\mathrm{E}(\tilde{r}_{ILL}) = 0.08 > r_b$: 0.5%

Robustness - Borrowing Cost

- We assume an interest rate wedge between borrowing and lending of 6%, based on Davis et al. (2006)
 - ► Adjust for tax considerations and charge-offs ⇒ remaining wedge due to transaction costs etc.
- What happens if households had access to cheaper borrowing, at 5%?
- Welfare gain from baseline IHI: 0.8%
- Welfare gain from baseline ILL with $E(\tilde{r}_{ILL}) = r_b = 0.05$: 3%
- ullet Welfare gain from baseline ILL but with $\mathrm{E}(ilde{r}_{ILL})=0.08>r_b$: 0.5%
- Thus, if households had access to borrowing at a cheaper rate than what they would pay on the ILL, result that ILL generates larger gains than IHI may be reversed

Robustness – Preferences

• With higher risk aversion, welfare gains increase

Robustness - Preferences

- With higher risk aversion, welfare gains increase
- \bullet Try $\gamma=$ 3, $\beta=$ 0.92 (and equity as earlier, not 50/50)

Robustness - Preferences

- With higher risk aversion, welfare gains increase
- Try $\gamma = 3$, $\beta = 0.92$ (and equity as earlier, not 50/50)
- Gain from IHI with $\rho=$ –0.5 and $\sigma=$ 0.5 is now 0.42% ($\gamma=$ 2: 0.04%)

Robustness – Preferences

- With higher risk aversion, welfare gains increase
- Try $\gamma=$ 3, $\beta=$ 0.92 (and equity as earlier, not 50/50)
- Gain from IHI with $\rho=$ –0.5 and $\sigma=$ 0.5 is now 0.42% ($\gamma=$ 2: 0.04%)
- Gain from ILL with ho = +0.5 and $\sigma = 0.5$ is now 2.42% ($\gamma = 2$: 1.36%)

Robustness – Preferences

- With higher risk aversion, welfare gains increase
- Try $\gamma = 3$, $\beta = 0.92$ (and equity as earlier, not 50/50)
- Gain from IHI with $\rho=$ –0.5 and $\sigma=$ 0.5 is now 0.42% ($\gamma=$ 2: 0.04%)
- Gain from ILL with ho=+0.5 and $\sigma=0.5$ is now 2.42% ($\gamma=2$: 1.36%)
 - \Rightarrow Gains significantly larger with higher risk aversion (as is the welfare cost from life cycle income shocks in the benchmark: 24.5%)

Usefulness of income-linked assets depends strongly on how they are implemented:

- Usefulness of income-linked assets depends strongly on how they are implemented:
 - ▶ ILL vs. IHI

- Usefulness of income-linked assets depends strongly on how they are implemented:
 - ▶ ILL vs. IHI
 - Correlation with income shocks

- Usefulness of income-linked assets depends strongly on how they are implemented:
 - ▶ ILL vs. IHI
 - Correlation with income shocks
 - Volatility

- Usefulness of income-linked assets depends strongly on how they are implemented:
 - ▶ ILL vs. IHI
 - Correlation with income shocks
 - Volatility
- The income-linked assets (in particular ILL) can produce non-negligible welfare gains
 - ▶ Baseline welfare gains with $|\rho|$ =0.5, σ =0.5: IHI \approx 0, ILL \approx 1.4% (US\$400/year)

- Usefulness of income-linked assets depends strongly on how they are implemented:
 - ▶ ILL vs. IHI
 - Correlation with income shocks
 - Volatility
- The income-linked assets (in particular ILL) can produce non-negligible welfare gains
 - ▶ Baseline welfare gains with $|\rho|$ =0.5, σ =0.5: IHI \approx 0, ILL \approx 1.4% (US\$400/year)
 - ► Attractiveness of alternative investment options matters for relative gains from ILL vs. IHI

- Usefulness of income-linked assets depends strongly on how they are implemented:
 - ▶ ILL vs. IHI
 - Correlation with income shocks
 - Volatility
- The income-linked assets (in particular ILL) can produce non-negligible welfare gains
 - ▶ Baseline welfare gains with $|\rho|$ =0.5, σ =0.5: IHI \approx 0, ILL \approx 1.4% (US\$400/year)
 - ► Attractiveness of alternative investment options matters for relative gains from ILL vs. IHI
- But difficult to reduce a large fraction of the welfare costs from labor income risk with the assets we have considered

- Usefulness of income-linked assets depends strongly on how they are implemented:
 - ▶ ILL vs. IHI
 - Correlation with income shocks
 - Volatility
- The income-linked assets (in particular ILL) can produce non-negligible welfare gains
 - ▶ Baseline welfare gains with $|\rho| = 0.5$, $\sigma = 0.5$: IHI ≈ 0 , ILL $\approx 1.4\%$ (US\$400/year)
 - ▶ Attractiveness of alternative investment options matters for relative gains from ILL vs. IHI
- But difficult to reduce a large fraction of the welfare costs from labor income risk with the assets we have considered
 - Unless they were highly correlated with shocks to permanent income...
 - or households had access to cheap borrowing

- Usefulness of income-linked assets depends strongly on how they are implemented:
 - ▶ ILL vs. IHI
 - Correlation with income shocks
 - Volatility
- The income-linked assets (in particular ILL) can produce non-negligible welfare gains
 - ▶ Baseline welfare gains with $|\rho| = 0.5$, $\sigma = 0.5$: IHI ≈ 0 , ILL $\approx 1.4\%$ (US\$400/year)
 - ▶ Attractiveness of alternative investment options matters for relative gains from ILL vs. IHI
- But difficult to reduce a large fraction of the welfare costs from labor income risk with the assets we have considered
 - Unless they were highly correlated with shocks to permanent income...
 - or households had access to cheap borrowing

 Using a model with realistic portfolio constraints & opportunity costs is key to evaluating new assets

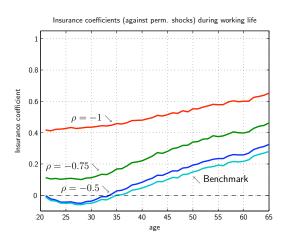
- Using a model with realistic portfolio constraints & opportunity costs is key to evaluating new assets
- If instead assumed $r_b = r_l = \mathrm{E}(\tilde{r}_{ILA})$ =0.02, model would predict
 - IHI and ILL equivalent
 - $ightharpoonup \sigma$ does not matter
 - even with $|\rho| = 0.5$, welfare gain > 4%

THE END - THANK YOU!

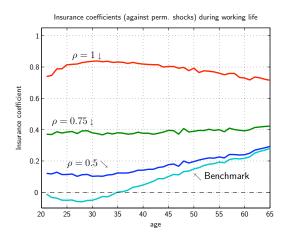
- \bullet Through large number of simulations of stochastic variables, find ex-ante lifetime expected utility \bar{U}
- \bullet Then, compute certainty equivalent consumption $\bar{c}\!\colon$ constant level of consumption such that lifetime utility equals \bar{U}

- \bullet Through large number of simulations of stochastic variables, find ex-ante lifetime expected utility \bar{U}
- \bullet Then, compute certainty equivalent consumption $\bar{c}\!:$ constant level of consumption such that lifetime utility equals \bar{U}
- \bullet For benchmark parameters, eliminating income shocks would raise \bar{c} by 16.4%

- \bullet Through large number of simulations of stochastic variables, find ex-ante lifetime expected utility \bar{U}
- \bullet Then, compute certainty equivalent consumption $\bar{c}\!\colon$ constant level of consumption such that lifetime utility equals \bar{U}
- \bullet For benchmark parameters, eliminating income shocks would raise \bar{c} by 16.4%
- Alternative measure to assess effect of new assets: coefficient of partial insurance against shocks (Kaplan and Violante, 2008):


$$\phi_t^u = 1 - \frac{cov(\Delta c_{it}, u_{it})}{var(u_{it})}$$

- \bullet Through large number of simulations of stochastic variables, find ex-ante lifetime expected utility \bar{U}
- \bullet Then, compute certainty equivalent consumption $\bar{c}\!:$ constant level of consumption such that lifetime utility equals \bar{U}
- \bullet For benchmark parameters, eliminating income shocks would raise \bar{c} by 16.4%
- Alternative measure to assess effect of new assets: coefficient of partial insurance against shocks (Kaplan and Violante, 2008):


$$\phi_t^u = 1 - \frac{cov(\Delta c_{it}, u_{it})}{var(u_{it})}$$

- The lower this coefficient, the more an income shock translates into consumption changes. $\phi = 1$: perfect insurance.
- In benchmark, $\bar{\phi^u}=0.08$ and $\bar{\phi^\varepsilon}=0.9$: easy to insure against transitory shocks, hard to insure against permanent ones.

Partial Insurance Coefficients with IHI

Partial Insurance Coefficients with ILL

Computational Solution

Closely follow Davis, Kübler, Willen (2006)

Computational Solution

- Closely follow Davis, Kübler, Willen (2006)
- Finite-horizon dynamic program, solved by backward induction

- Closely follow Davis, Kübler, Willen (2006)
- Finite-horizon dynamic program, solved by backward induction
- Get rid of one state by exploiting scale-independence and dividing everything by permanent income

- Closely follow Davis, Kübler, Willen (2006)
- Finite-horizon dynamic program, solved by backward induction
- Get rid of one state by exploiting scale-independence and dividing everything by permanent income
- Thus, state variables: normalized cash-on-hand (x_t) and age (t)

- Closely follow Davis, Kübler, Willen (2006)
- Finite-horizon dynamic program, solved by backward induction
- Get rid of one state by exploiting scale-independence and dividing everything by permanent income
- ullet Thus, state variables: normalized cash-on-hand (x_t) and age (t)
- 3 or 4 asset holding decisions, with short-sale constraints on all of them

- Closely follow Davis, Kübler, Willen (2006)
- Finite-horizon dynamic program, solved by backward induction
- Get rid of one state by exploiting scale-independence and dividing everything by permanent income
- ullet Thus, state variables: normalized cash-on-hand (x_t) and age (t)
- 3 or 4 asset holding decisions, with short-sale constraints on all of them
- Solve by policy-function iteration, as FOCs necessary and sufficient

• Use Garcia-Zangwill (1981) "trick" to transform Kuhn-Tucker conditions into system of nonlinear equations. E.g. for e_t :

• Use Garcia-Zangwill (1981) "trick" to transform Kuhn-Tucker conditions into system of nonlinear equations. E.g. for e_t :

$$u'(\overbrace{x_t + b_t - l_t - e_t}^{c_t}) - \beta E[(1 + \tilde{r}_e)u'(c_{t+1})] - \mu_{e,t} = 0$$

$$e_t \ge 0, \ \mu_{e,t} \ge 0, \ e_t \mu_{e,t} = 0$$

• Use Garcia-Zangwill (1981) "trick" to transform Kuhn-Tucker conditions into system of nonlinear equations. E.g. for e_t :

$$u'(\overbrace{x_t + b_t - l_t - e_t}^{c_t}) - \beta E[(1 + \tilde{r}_e)u'(c_{t+1})] - \mu_{e,t} = 0$$

$$e_t \ge 0, \ \mu_{e,t} \ge 0, \ e_t \mu_{e,t} = 0$$

Define $e_t = (max\{0, \lambda_e\})^{\kappa}$ and $\mu_{e,t} = max(\{0, -\lambda_e\})^{\kappa}$.

• Use Garcia-Zangwill (1981) "trick" to transform Kuhn-Tucker conditions into system of nonlinear equations. E.g. for e_t :

$$u'(\overbrace{x_t + b_t - l_t - e_t}^{c_t}) - \beta E[(1 + \tilde{r}_e)u'(c_{t+1})] - \mu_{e,t} = 0$$

$$e_t \ge 0, \ \mu_{e,t} \ge 0, \ e_t \mu_{e,t} = 0$$

Define
$$e_t = (\max\{0, \lambda_e\})^{\kappa}$$
 and $\mu_{e,t} = \max(\{0, -\lambda_e\})^{\kappa}$.

Then,
$$(max\{0, \lambda_e\})^{\kappa} \geq 0$$
, $(max\{0, -\lambda_e\})^{\kappa} \geq 0$, and $(max\{0, \lambda_e\})^{\kappa} \cdot (max\{0, -\lambda_e\})^{\kappa} = 0$

• Use Garcia-Zangwill (1981) "trick" to transform Kuhn-Tucker conditions into system of nonlinear equations. E.g. for e_t :

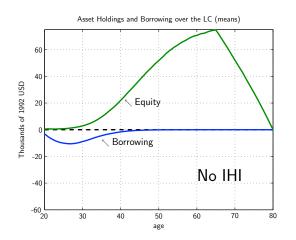
$$u'(\overbrace{x_t + b_t - l_t - e_t}^{c_t}) - \beta E[(1 + \tilde{r}_e)u'(c_{t+1})] - \mu_{e,t} = 0$$

$$e_t \ge 0, \ \mu_{e,t} \ge 0, \ e_t \mu_{e,t} = 0$$

Define $e_t = (max\{0, \lambda_e\})^{\kappa}$ and $\mu_{e,t} = max(\{0, -\lambda_e\})^{\kappa}$.

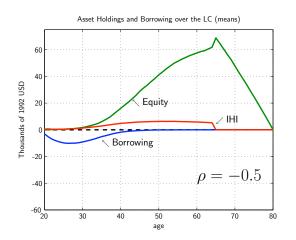
Then,
$$(\max\{0,\lambda_e\})^{\kappa} \geq 0$$
, $(\max\{0,-\lambda_e\})^{\kappa} \geq 0$, and $(\max\{0,\lambda_e\})^{\kappa} \cdot (\max\{0,-\lambda_e\})^{\kappa} = 0$

 \Rightarrow can solve *equation* that is differentiable of degree κ –1 for λ_e (and similarly for other assets and multipliers).


- Discretization: 2 nodes for income shocks, 3 for equity, 4 for income-linked assets
 - Results not sensitive to adding more nodes, as long as lowest income shock "not too small"

- Discretization: 2 nodes for income shocks, 3 for equity, 4 for income-linked assets
 - Results not sensitive to adding more nodes, as long as lowest income shock "not too small"
- Set bounds of grid for cash-on-hand s.th. never move out of bounds in simulations

- Discretization: 2 nodes for income shocks, 3 for equity, 4 for income-linked assets
 - Results not sensitive to adding more nodes, as long as lowest income shock "not too small"
- Set bounds of grid for cash-on-hand s.th. never move out of bounds in simulations
- Denser grid at low values of cash-on-hand


- Discretization: 2 nodes for income shocks, 3 for equity, 4 for income-linked assets
 - Results not sensitive to adding more nodes, as long as lowest income shock "not too small"
- Set bounds of grid for cash-on-hand s.th. never move out of bounds in simulations
- Denser grid at low values of cash-on-hand
- Solve in Matlab, using dogleg algorithm by H.B. Nielsen

- Discretization: 2 nodes for income shocks, 3 for equity, 4 for income-linked assets
 - Results not sensitive to adding more nodes, as long as lowest income shock "not too small"
- Set bounds of grid for cash-on-hand s.th. never move out of bounds in simulations
- Denser grid at low values of cash-on-hand
- Solve in Matlab, using dogleg algorithm by H.B. Nielsen
- Average consumption-equivalent EE error of order 10^{-6}

