Health and (other) Asset Holdings

Julien Hugonnier^{1,3} Florian Pelgrin² Pascal St-Amour^{2,3}

¹École Polytechnique Fédérale de Lausanne (EPFL)

²HEC, University of Lausanne

³Swiss Finance Institute

October 14, 2009

Strong links health and financial status/decisions

Health, wealth on portfolio, health expenditures:

	Dependent Variable				
Impact of	Risky port.	Health expend.	Labor income		
Variable	share of wealth	share of wealth			
Wealth	(+)	(-)			
Health	(+)	(-)			
• pre-retire.			(++)		
• post-rerire.			(+)		

- Should treat portfolio/health expend. as *joint* decision process, $(H_t, W_t) \rightarrow (\pi_t, I_t) \rightarrow (H_{t+s}, W_{t+s}), \dots$
- (almost) Never done.

Theoret. explan.: Two segmented strands of research

	Health Econ.	Fin. Econ.	This paper
Health investment			
health expend.	\checkmark		\checkmark
mortality risk	\checkmark		\checkmark
health dynamics	\checkmark		✓
health effects:			
-utility	\checkmark		
-income	\checkmark		\checkmark
-mortality	\checkmark		\checkmark
health insur.	\checkmark		
Portfolio/savings			
consumption	\checkmark	\checkmark	\checkmark
asset allocation		\checkmark	\checkmark
life cycle	✓	\checkmark	\checkmark

Main elements of model

Standard financial asset allocation [Merton, 1971]

- IID returns, constant investment set
- intermediate consumption utility,

Health investment model [Grossman, 1972]

- health as human capital
- locally deterministic process

Main elements of model

Additional features:

- Preferences:
 - Generalized recursive: VNM as special case.
 - ▶ Non-homothetic: Min. subsistence cons.
- Health effects:
 - (partially) Endogenous mortality
 - ▶ Positive effects on labor income
- Technology:
 - Convex health adjustment costs
 - Decreasing returns in mortality control
- Life cycle:
 - Different pre- post-retirement health elasticities of income
 - ▶ Life cycle properties for all variables

Solution concepts

Dual effects of health on income, mortality: Proceed in two steps

- 1 Abstract from endogenous mortality risk: Closed forms,
- 2 Allow endogenous mortality risk: No closed-form solutions.
 - Perturbation method around first-step benchmark,
 - ▶ Characterize solutions in (W_t, H_t) space.

Advantages:

- Analytical tractability: No calibration exercise for comparative statics.
- Econometric tractability: Conditionally linear estimated optimal rules.

Main findings

	Data	Exo. mortality	Endo. mortality
Portfolios			
\bullet H_t	(+)	$(+)^*$	$(+)^*$
\bullet W_t	(+)	$(+)^*$	$(+)^*$
Health invest.			
\bullet H_t	(-)	(+)	$(-)^*$
• <i>W</i> _t	(-)	(-)	$(-)^*$

^{*:} In certain areas of (W_t, H_t) space.

Empirical analysis

Fully structural econometrics:

- *Dynamic* theoretical model with predictions in closed-forms optimal portfolio, health investment shares.
- *Cross-sectional* estimation using HRS data.

Econometric tractability:

- Conditional linear optimal rules: SRF estimation.
- Can recover structural parameters from SRF estimated parameters.

Empirical analysis

Main estimation results confirm theoretical model relevance:

- Health technology parameters:
 - ▶ Rapid depreciation of health in absence of invest.
 - ► Adjustments feasible, but . . .
 - ...strongly diminishing returns
- Mortality distribution parameters:
 - Important incompressible mortality, but . . .
 - ... mortality is partially controllable
 - Predicted longevity in accord with data
 - \blacktriangleright Dual effects of H_t are relevant.
- Preference parameters
 - Subsistence consumption important
 - Realistic risk aversion, EIS
 - ► VNM preferences rejected swiss:finance:institute

Related literature

authors	similarities	differences
[Edwards, 2008]	• asset selection	 no mortality risks health non-storable perm. health expend. if sick no preventive expend. no health-dep. income
[Hall and Jones, 2007]	endo. mortalityhealth investmentconvex adjust.	 no asset selection aggreg. health spend. non structural econometrics spec. of prefs.
[Yogo, 2008]	health investmentasset selection	 no health-dep. income no life cycle health can be sold calibration optimal annuities mkt. exogenous mortality only

Outline of the talk

- 1 Introduction
 - Motivation and outline
 - Related literature
- 2 Data
 - Description of data set
 - Relevant co-movements
- 3 Model
 - Health dynamics, survival and income dynamics
 - Preferences and budget constraint
 - The decision problem
- 4 Optimal rules
 - Exogenous mortality
 - Endogenous mortality
- 5 Econometric analysis
 - Econometric model
- 6 Estimation results
 - Unrestricted reduced-form parameters
 - Structural parameters
- 7 Conclusion

Data description

- Health and Retire. Survey (HRS) resp. aged 51+, 5th wave (2000),
- Financial wealth: $W_j = Safe_j + Bonds_j + Risky_j$
 - safe assets (check. and saving accounts, money mkt. funds, CD's, gov. savings bonds and T-bills)
 - bonds (corp., muni. and frgn. bonds, and bond funds)
 - risky assets (stock and equity mutual funds)
- Self-reported health level (poor, fair, good, v. good, excel.)
- Health investment
 - Medical expenditures (doctor visits, outpatient surg., home, hosp. and nurs. home care, prescr. drugs, ...)
 - ▶ OOP (unins. cost over prev. 2 yrs.)

HRS data: Effects of health, wealth

Table: Summary stats. by net fin. wealth and health for retired agents

	Net financial wealth quintile				
Health	1	2	3	4	5
Fair					
Wealth	-\$6,114	\$596	\$12,683	\$59,366	\$514,602
P(risky > 0)	2%	1%	14%	42%	74%
risky assets	-2%	1%	7%	24%	42%
Health inv. share	-245%	710%	46%	12%	2%
Good					
Wealth	-\$10,911	\$718	\$13,094	\$64,108	\$436,456
P(risky > 0)	5%	2%	19%	45%	77%
risky assets	-5%	3%	12%	24%	45%
Health inv. share	-79%	476%	31%	7%	1%
Very Good					
Wealth	-\$7,108	\$960	\$13,578	\$64,905	\$467,585
P(risky > 0)	7%	4%	24%	52%	82%
risky assets	-61%	7%	12%	27%	50%
Health inv. share	-86%	188%	21%	5%	1%

HRS data: Effects of health on income

Table: Income and health regression

	All	Non-retired	Retired		
	A. Individual income				
Constant	0.0047**	0.0052	0.0091***		
	(0.0021)	(0.0051)	(0.0012)		
Health	0.0104***	0.0130***	0.0065***		
	(0.0006)	(0.0014)	(0.0004)		
Observations	19,571	8,836	10,735		
	B.	Household inco	me		
Constant	0.0077**	0.0116***	0.0130***		
	(0.0022)	(0.0053)	(0.0013)		
Health	0.0141***	0.0174***	0.0082***		
	(0.0007)	(0.0014)	(0.0004)		
Observations	19,571	8,836	10,735		

Health dynamics and survival

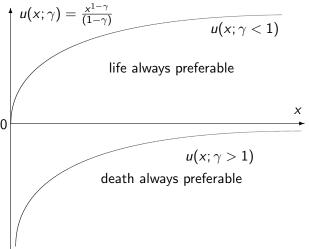
$$dH_t = (I_t^{\alpha} H_t^{1-\alpha} - \delta H_t) dt, \quad H_0 > 0,$$
 (1)

$$\lim_{s\to 0} \frac{1}{s} P_t \left[t < \tau \le t + s \right] = \lambda (H_t) = \lambda_0 + \frac{\lambda_1}{H_t^{\xi}}$$
 (2)

$$P_0[\tau > t] = E_0 \left[e^{-\int_0^t \lambda(H_s) ds} \right]$$
 (3)

- Health as human capital, locally deterministic [Grossman, 1972]
- Convex adj. costs [Ehrlich, 2000, Ehrlich and Chuma, 1990]
- Poisson mortality [Ehrlich and Yin, 2005, Hall and Jones, 2007]
 - ▶ Incompressible mortality λ_0 ,
 - ► Path dependence of health decisions_{swiss}:finance:institute

Income dynamics


$$Y_t \equiv Y(t, H_t) = 1_{\{t \le T\}} Y_t^{e} + 1_{\{t > T\}} Y_t^{r}$$
(4)

$$Y_t^i \equiv Y^i(H_t) = y^i + \beta^i H_t, \tag{5}$$

- Two employment phases i = e (employed) or i = r (retired)
- Health-dependent labor income,
 - Higher wages to agents in better health, less absent from work, better access to promotions.
 - Differences in pre- post- retirement fixed income (e.g. pensions) and health sensitivity.

Standard approaches under endo. mortality

Standard approach: $U_t = \mathbb{1}_{\{\tau > t\}} \mathsf{E}_t[\int_t^\tau e^{-\rho(s-t)} u(c_s) \mathrm{d}s]$

Preferences

Our approach: Abandon VNM

$$U_t = 1_{\{\tau > t\}} \mathsf{E}_t \left[\int_t^\tau \left(f(c_s, U_s) - \frac{\gamma}{2U_s} |\sigma_s(U)|^2 \right) \mathrm{d}s \right] \tag{6}$$

$$f(c,v) = \frac{v\rho}{1 - 1/\varepsilon} \left[\left(\frac{c - a}{v} \right)^{1 - 1/\varepsilon} - 1 \right]. \tag{7}$$

- Generalized recursive
 [Duffie and Epstein, 1992, Schroder and Skiadas, 1999].
 - ▶ $f(\cdot)$ h.d. $1 \to U(\cdot)$ h.d. $1 \to U_t, c_t a$ in same metric
 - $c_t a \ge 0 \iff U_t \ge 0 \to \text{life always preferable by monotonicity.}$
- Non-homothetic for $a \neq 0$,
- Health-, time-indep., no bequest.

Financial market and budget constraint

$$S_t^0 = e^{rt} \tag{8}$$

$$dS_t = \mu S_t dt + \sigma S_t dZ_t, \qquad S_0 > 0, \tag{9}$$

$$dW_t = (rW_t + Y_t - I_t - c_t)dt + W_t \pi_t \sigma(dZ_t + \theta dt), \qquad (10)$$

- Riskless and risky assets,
- Constant investment set,
- Incomplete markets.

Iso-morphism

1- With health-dependent preferences:

$$V(t, W_t, H_t) = \sup_{(\pi, c, I)} U_t(c)$$
s.t.
$$dW_t = (rW_t + y + \beta H_t - I_t - c_t) dt + W_t \pi_t \sigma(dZ_t + \theta dt)$$

$$\iff V(t, W_t, H_t) = \sup_{(\pi, x, I)} U_t(x + \beta H),$$
s.t.
$$dW_t = (rW_t + y - I_t - x_t) dt + W_t \pi_t \sigma(dZ_t + \theta dt).$$

Iso-morphism

2- With complete market + infinite horiz. + endo. discount.

$$U_t = 1_{\{\tau > t\}} \mathsf{E}_t \left[\int_t^\tau \left(f(c_s, U_s) - \frac{\gamma}{2U_s} |\sigma_s(U)|^2 \right) \mathrm{d}s \right]$$

= $1_{\{\tau > t\}} U_t^o$,

where,

$$U_t^o = \mathsf{E}_t \left[\int_t^\infty e^{-\int_t^s \lambda(H_u) \mathrm{d}u} \left(f(c_s, U_s^o) - \frac{\gamma}{2U_s^o} |\sigma_s(U^o)|^2 \right) \mathrm{d}s \right].$$

Optimal rules

Two channels for health effects:

- 2 Mortality $\lambda(H_t) = \lambda_0 + \lambda_1 H_t^{-\xi}$

Abstract first from mortality ($\lambda_1=0$) to highlight income effects, then re-introduce mortality.

Solution concept exogenous mortality:

1 Choose I to max. disposable wealth:

$$P(t, H_t) = \sup_{l \ge 0} \mathsf{E}_t \left[\int_t^\infty \xi_{t,s} (Y(s, H_s) - a - I_s) ds \right] \text{ s.t. (1)}$$
(11)

2 Replace $N_t \equiv N(t, W_t, H_t) = W_t + P(t, H_t)$. Choose c, π to max. util. s.t. process for dN.

variable		λ_0	Н	W
N(t, W, H)	=W+B(t)H+C(t)		(+)	(+)
<i>I</i> ₀ ^s	$=W^{-1}H(\alpha B(t))^{rac{1}{1-lpha}}$		(+)	(-)
data			(-)	(-)
V_0	$= ho(A/ ho)^{rac{1}{1-arepsilon}}N(t,W,H)$	(-)	(+)	(+)
π_0	$=rac{ heta}{\gamma\sigma W} N(t,W,H)$		(+)	$(+)^{*}$
data			(+)	(+)
<i>c</i> ₀	= a + AN(t, W, H)	$(-)^{\dagger}$	(+)	(+)
C(t)	$\equiv \int_t^\infty e^{-r(s-t)} (Y(s,0) - a) ds$			
Α	$\equiv \varepsilon \rho + (1 - \varepsilon) \left(r - \lambda_0 + \frac{1}{2\gamma} \theta^2 \right)$	$(-)^{\dagger}$		

*: if
$$B(t)H + C(t) < 0$$
, †: if $\varepsilon < 1$

HJB equation:

$$\lambda(H)V = \max_{(\pi,c,l)} \left\{ L^{\pi,c}V + f(c,V) - \frac{\gamma(\pi\sigma WV_W)^2}{2V} \right\}$$
(12)

where,

$$L^{\pi,c} = \partial_t + (H^{1-\alpha}I^{\alpha} - \delta H)\partial_H + ((r + \pi\sigma\theta)W + Y - c - I)\partial_W + \frac{1}{2}(\pi\sigma W)\partial_{WW}$$
 (13)

- Main problem: No closed-form solutions when $\lambda_1 \neq 0$
- Solution: $n^{th}-$ order expansion around exo. mortality benchmark solution $\lambda_1=0$

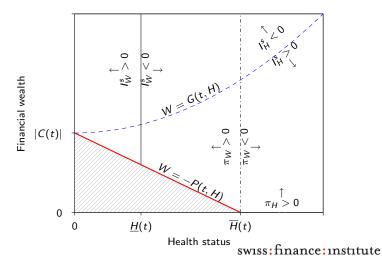
$$V \approx V_0 + \lambda_1 V_1 + \dots + \frac{1}{m!} \lambda_1^m V_m + \dots \frac{1}{n!} \lambda_1^n V_n,$$

$$V_m \equiv V_m(t, W, H) = \frac{\partial^m}{\partial \lambda_1^m} V(t, W, H) \Big|_{\lambda_1 = 0}$$

Once V solved, substitute in FOC, expand again $X = X_0 + \lambda_1 X_1, \ldots$ to get closed-form solutions.

variable		effect of λ_1
$\lambda(t,H)$	$=\lambda_0+\lambda_1H^{-\xi}$	$> \lambda_0$
N(t, W, H)	=W+B(t)H+C(t)	
V	$=V_0-rac{\lambda_1}{H^{\xi}}\Delta(t)V_0$	$< V_0$
π_1	$=\pi_0$	
c_1	$=c_0-rac{\lambda_1}{H^{\xi}}\Delta(t)(1-arepsilon)AN(t,W,H)$	$< c_0^\dagger$
<i>I</i> ₁	$=I_0(t,H)+\tfrac{\lambda_1}{H^{\xi}}\Delta(t)(\alpha B(t))^{\frac{\alpha}{1-\alpha}}\eta N(t,W,H)$	$> I_0$
C(t)	$\equiv \int_t^\infty e^{-r(s-t)} (Y(s,0)-a) ds$	
Α	$\equiv \varepsilon \rho + (1 - \varepsilon) \left(r - \lambda_0 + \frac{1}{2\gamma} \theta^2 \right)$	

 \dagger : if $\varepsilon < 1$


Two effects of $\lambda_1 > 0$:

- **1** Higher mortality risk $\lambda(H_t) = \lambda_0 + \lambda_1 H_t^{-\xi}$, but, ...,
- $2 \ldots$ can partially offset through higher I_t

Impact on optimal rules:

- $V < V_0$, (because $\lambda(H_t) \uparrow$)
- $I_1 > I_0$, (because $\lambda(H_t) \uparrow$)
- \blacksquare π unchanged,
- $c_1 < c_0 \text{ if } \varepsilon > 1.$

Figure: Comparative statics of the first order rules

Econometric model

Structural estimation of optimal rules:

$$\pi_{j}W_{j} = \theta_{\pi,0}(t_{j})W_{j} + \theta_{\pi,1}(t_{j})H_{j} + \theta_{\pi,2}(t_{j}) + \epsilon_{\pi,j},$$

$$I_{j} = \theta_{I,1}(t_{j})H_{j} + \theta_{I,2}(t_{j})H_{j}^{-\xi}W_{j} + \theta_{I,3}(t_{j})H_{j}^{1-\xi} + \theta_{I,4}(t_{j})H_{j}^{-\xi} + \epsilon_{I,j},$$

$$(15)$$

$$[\epsilon_{\pi,i}, \epsilon_{I,i}] \sim \mathcal{N}(\mathbf{0}, \mathbf{\Sigma})$$

Problems:

- lacktriangle Pre-retire. is heavy computation. \rightarrow use post-retire. only.
- lacktriangle Censored dependent variable ightarrow use Tobit.
- Very non-linear in parameters + s.t. non-linear constraints →
 2-step proc.

Econometric model

Back-out structural parameters:

$$\theta_{\pi,0} = \frac{\theta}{\gamma \sigma}, \qquad \theta_{I,1} = (\delta + J)^{\frac{1}{\alpha}},
\theta_{\pi,1} = \theta_{\pi,0}B, \qquad \theta_{I,2} = \frac{\alpha \lambda_1 \xi(J + \delta)}{(1 - \alpha)(\xi J + A)},
\theta_{\pi,2} = \theta_{\pi,0}C, \qquad \theta_{I,3} = \theta_{I,2}B,
\theta_{I,4} = \theta_{I,2}C,$$
(16)

where $C \equiv C(T) = (y^{r} - a)/r$, and (J, B) solves

$$J = (\alpha B)^{\frac{\alpha}{1-\alpha}} - \delta, \tag{17}$$

$$B = \frac{\beta^{\mathsf{r}}}{r + \alpha \delta - (1 - \alpha)J}.\tag{18}$$

Econometric model

Table: Summary of calibrated and estimated parameters

Item	Symbol	Calibrated	Estimated
Income dynamics (Eq.(5))			
Constant	y^{r}		✓
Health sensitivity	β^{r}		✓
Financial markets (Eqs.(8),(9))			
Interest rate	r	0.048	
Std. error risky return	σ	0.200	
Mean risky return	μ	0.108	
Health dynamics (Eq.(1))			
Convexity	α		✓
Depreciation	δ		✓
Death intensity (Eq.(2))			
Convexity	ξ	\in [3.8, 4.7]	
Exogenous	λ_0		✓
Health sensitivity	λ_1		✓
Preferences (Eqs.(6),(7))			
Discount rate	ρ	0.025	
Risk aversion	γ		✓
Subsistence cons.	a		✓
EIS	ε		✓

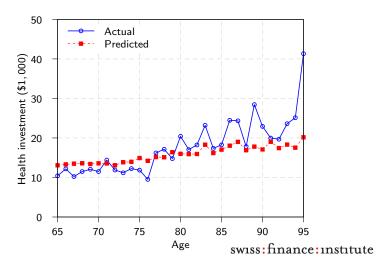

SRF Results

Table: SRF parameter estimates

exp	ected sign	$\xi = 3.8$	$\xi = 4.2$	$\xi = 4.7$
		A. L	abor income (Eq	.(5))
y ^r	(+)	0.0091***	0.0091***	0.0091***
		(0.0013)	(0.0013)	(0.0013)
β^{r}	(+)	0.0065***	0.0065***	0.0065
		(0.0004)	(0.0004)	(0.0004)
		. B. Risk	y asset levéls (E	q.(14))
$\theta_{\pi,0}$	(+)	0.8514***	0.8514***	0.8514***
		(0.0060)	(0.0060)	(0.0060)
$\theta_{\pi,1}$	(+)	0.0222***	0.0222***	0.0222***
,		(0.0022)	(0.0022)	(0.0022)
$\theta_{\pi,2}$	(-)	-0.2751***	-0.2751***	-0.2751***
,_	` '	(0.0081)	(0.0081)	(0.0081)
		C. Héalth	expenditure level	s (Eq.(15))
$\theta_{I,1}$	(+)	0.0012***	0.0014***	0.0017***
		(0.0002)	(0.0002)	(0.0002)
$\theta_{1,2}$	(+)	0.0003	0.0002	0.0002
- ,=		(0.0011)	(0.0010)	(0.0009)
$\theta_{I,3}$	(+)	0.0642***	0.0779***	0.0995***
7,5	` '	(0.0039)	(0.0046)	(0.0057)
$\theta_{1,4}$	(-)	-0.0545***	-0.0692***	_0.0918***
.,.		(0.0039)	(0.0046)	(0.0057)
		,	SV	viss finar

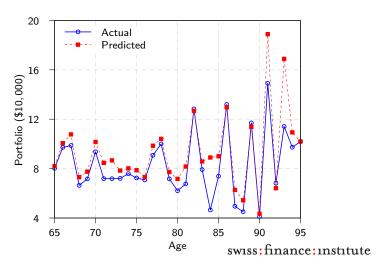

SRF Results: Health investments

Figure: Actual vs predicted health investment levels

SRF Results: Portfolios

Figure: Actual vs predicted portfolio levels

Structural parameters

Table: Structural parameter estimates

	$\xi = 3.8$	$\xi = 4.2$	$\xi = 4.7$					
	A. Preferences (Eqs.(6),(7))							
γ	1.7663***	1.7689***	1.7665***					
	(0.0125)	(0.0125)	(0.0125)					
a	0.0247***	0.0248***	0.0248***					
	(0.0005)	(0.0005)	(0.0005)					
ε	0.2807***	0.1748***	0.2968***					
	(0.0000)	(0.0000)	(0.0000)					
	B. Hea	alth dynamics (E	Eq.(1))					
α	0.2255***	0.2147***	0.2275***					
	(0.0580)	(0.0620)	(0.0565)					
δ	0.2817***	0.2994***	0.2789***					
	(0.0128)	(0.0191)	(0.0149)					
	C. De	ath intensity (E	q.(2))					
λ_0	0.0832***	0.0787***	0.0840***					
	(0.0000)	(0.0002)	(0.0001)					
λ_1	0.0037***	0.0059***	0.0057***					
	(0.0009)	(0.0023)	(0.0010)					

Structural parameters

Interpretation structural parameters:

Robustness: All parameters reasonably robust to calibrated ξ .

$$\gamma \approx$$
 1.76: Realistic \in [0, 10].

a>0: significant (quasi-homothetic prefs.), large (\$24,800/yr.) $\rightarrow C < 0 \rightarrow \pi_w > 0$

$$\varepsilon \approx 0.28 < 1$$
: Agents substitute poorly across time; $\lambda_0 > 0 \rightarrow c_0 \searrow$; $\lambda_1 > 0 \rightarrow c_1 < c_0$.

 $arepsilon
eq 1/\gamma$: Reject separable VNM preferences in absence of mortality risk.

Structural parameters

```
Interpretation structural parameters (cont'd):
```

```
\alpha \approx 0.23: Significant convexities health adjustment costs.
```

 $\delta pprox$ 0.28: Very rapid depreciation health stock absent I

 $\lambda_0 \approx 0.08$: Significant (exo. mortality), large.

 $\lambda_1 \approx$ 0.004: Small (perturbation correct), significant (endo. mortality).

Implied variables

Can compute expected lifetime at optimum:

$$\ell(H) = \frac{1}{\lambda_0} \left(1 - \frac{\lambda_1}{H^{\xi}} \Phi \right), \tag{19}$$

where,

$$\Phi^{-1} = \lambda_0 + \xi \left((\alpha B(T))^{\frac{\alpha}{1-\alpha}} - \delta \right) > 0$$
 (20)

- Independent of wealth, age
- can compare with estimates from US life tables[Lubitz et al., 2003]

Implied variables

Table: Implied variables

	Data	$\xi = 3.8$	$\xi = 4.2$	$\xi = 4.7$
		A. Life	expectancy	
$\ell(1)$	9.17	11.57	11.94	11.21
$\ell(2)$	11.26	11.98	12.66	11.88
$\ell(3)$	12.64	12.01	12.69	11.90
$\ell(4)$	13.38	12.01	12.70	11.90
ℓ (5)	13.79	12.01	12.70	11.90
	E	3. Threshol	ds in Figur	e 1
<u>H</u> H		1.36	1.42	1.48
\overline{H}		5.40	5.44	5.48
P(<u>H</u>)		-0.24	-0.24	-0.24
G(<u>H</u>)		0.33	0.32	0.31
$G(\overline{H})$		47.44	60.86	90.79

Conclusion

Close feedbacks H_t , $W_t \rightarrow \pi_t$, $I_t \rightarrow H_{t+s}$, W_{t+s} :

- Need to be studied jointly.
- No joint model.

This model: at interface between Health and Fin. Econ.

- Consumption/portfolio/health investment in presence of mortality + financial risks.
- Health has 2 effects:
 - Endogenous mortality;
 - Human capital (labor income).
- Convex health and mortality adjust. costs
- Preferences:
 - ▶ Non-expected utility → life always valuable
 - ► Quasi-homothetic swiss:finance:institute

Conclusion

Main theoretical findings:

- Exogenous mortality: Incomplete success
 - ► Can reproduce co-movements of portfolios if subsistence consumption sufficiently high
 - ▶ Cannot reproduce co-movements of health investments.
- Endogenous mortality: Potential success
 - Exists regions of state space where can reproduce all co-movements.
 - Potential for poverty traps.

Conclusion

Empirical evaluation:

- Structural estimation of dynamic model in cross-section.
- Realistic parameters.
- Main empirical findings in line with theoretical results.

Duffie, D. and Epstein, L. G. (1992).

Asset pricing with stochastic differential utility.

Review of Financial Studies, 5(3):411-436.

Edwards, R. D. (2008).

Health risk and portfolio choice.

Journal of Business and Economic Statistics, 26(4):472–485.

Ehrlich, I. (2000).

Uncertain lifetime, life protection and the value of life saving. *Journal of Health Economics*, 19(3):341–367.

Ehrlich, I. and Chuma, H. (1990).

A model of the demand for longevity and the value of life extension.

Journal of Political Economy, 98(4):761-782.

Ehrlich, I. and Yin, Y. (2005).

Explaining diversities in age-specific life expectancies and values of life saving: A numerical analysis. *Journal of Risk and Uncertainty*, 31(2):129–162.

Grossman, M. (1972).

On the concept of health capital and the demand for health.

Journal of Political Economy, 80(2):223–255.

Hall, R. E. and Jones, C. I. (2007).

The value of life and the rise in health spending.

Quarterly Journal of Economics, 122(1):39–72.

Lubitz, J., Cai, L., Kramarow, E., and Lentzner, H. (2003). Health, life expectancy, and health care spending among the elderly.

New England Journal of Medicine, 349(11):1048-1055.

Merton, R. C. (1971).

Optimum consumption and portfolio rules in a continuous-time model.

Journal of Economic Theory, 3(4):373–413.

Schroder, M. and Skiadas, C. (1999).

Optimal consumption and portfolio selection with stochastic differential utility.

Journal of Economic Theory, 89(1):68–126.

Yogo, M. (2008).

Portfolio choices in retirement: Health risk and the demand for annuities, housing and risky assets.

manuscript, Finance Department, The Wharton School, University of Pennsylvania.