Discussion of Heaton and Lucas (2009)
“Capital Structure, Hurdle Rates and Portfolio Choice – Interaction in an Entrepreneurial Firm”

Paul Willen
Federal Reserve Bank of Boston

Bank of Spain Conference, October 15, 2009
Memory Lane

- When I saw the original program for this conference, it took me back to the early part of this decade.
Memory Lane

- When I saw the original program for this conference, it took me back to the early part of this decade.
- I had just become a father.
Memory Lane

- When I saw the original program for this conference, it took me back to the early part of this decade.
 - I had just become a father.
Memory Lane

- When I saw the original program for this conference, it took me back to the early part of this decade.
 - I had just become a father.

- John and Debbie Lucas were working on a paper called, “Capital Structure, Hurdle Rates and Portfolio Choice – Interaction in an Entrepreneurial Firm”.
Memory Lane

- When I saw the original program for this conference, it took me back to the early part of this decade.
 - I had just become a father.

- John and Debbie Lucas were working on a paper called, “Capital Structure, Hurdle Rates and Portfolio Choice – Interaction in an Entrepreneurial Firm”.
- Steve Davis and I were working on a paper called, “Occupation-Level Income Shocks and Asset Returns: Covariance Structure and Portfolio Choice Implications”.

Image: A child sitting in a stroller.
Since then, my son has learned to:
Since then, my son has learned to:

- Talk
Since then, my son has learned to:

- Talk
- Walk
Since then, my son has learned to:

- Talk
- Walk
- Read
Since then, my son has learned to:

- Talk
- Walk
- Read
- Write
Since then, my son has learned to:

- Talk
- Walk
- Read
- Write
- and play baseball
John and Debbie are still working on a paper called, “Capital Structure, Hurdle Rates and Portfolio Choice – Interaction in an Entrepreneurial Firm”.
John and Debbie are still working on a paper called, “Capital Structure, Hurdle Rates and Portfolio Choice – Interaction in an Entrepreneurial Firm”.

Steve Davis and I are still working on a paper called, “Occupation-Level Income Shocks and Asset Returns: Covariance Structure and Portfolio Choice Implications”.
Disclaimer
I am speaking today as a researcher and as a concerned citizen.
I am speaking today as a researcher and as a concerned citizen not as a representative of:
I am speaking today as a researcher and as a concerned citizen not as a representative of:

- The Boston Fed
Disclaimer

- I am speaking today as a researcher and as a concerned citizen
- not as a representative of:
 - The Boston Fed
 - or the Federal Reserve System
I am speaking today as a researcher and as a concerned citizen not as a representative of:
- The Boston Fed
- or the Federal Reserve System
I am speaking today as a researcher and as a concerned citizen not as a representative of:

- The Boston Fed
- or the Federal Reserve System

When I say “we”, I don’t mean Ben and me.
Everything I’m about to say could be wrong:
Everything I’m about to say could be wrong:

No one who cannot rejoice in the discovery of his own mistakes deserves to be called a scholar.

–Donald Foster
Motivation: Heaton and Lucas (2000) showed that entrepreneurs hold a disproportionate amount of stock and play a disproportionate role in asset pricing.
Motivation: Heaton and Lucas (2000) showed that entrepreneurs hold a disproportionate amount of stock and play a disproportionate role in asset pricing.

Basic idea of this paper: To analyze their entrepreneurial investments in the context of a portfolio choice model.
Motivation: Heaton and Lucas (2000) showed that entrepreneurs hold a disproportionate amount of stock and play a disproportionate role in asset pricing.

Basic idea of this paper: To analyze their entrepreneurial investments in the context of a portfolio choice model.

Holistic approach. Don’t view entrepreneurial investment in isolation.
Motivation: Heaton and Lucas (2000) showed that entrepreneurs hold a disproportionate amount of stock and play a disproportionate role in asset pricing.

Basic idea of this paper: To analyze their entrepreneurial investments in the context of a portfolio choice model.

- Holistic approach. Don’t view entrepreneurial investment in isolation.
- We did something similar in analyzing the mortgage default decision.
Motivation: Heaton and Lucas (2000) showed that entrepreneurs hold a disproportionate amount of stock and play a disproportionate role in asset pricing.

Basic idea of this paper: To analyze their entrepreneurial investments in the context of a portfolio choice model.

- Holistic approach. Don’t view entrepreneurial investment in isolation.
- We did something similar in analyzing the mortgage default decision.

Findings:
Motivation: Heaton and Lucas (2000) showed that entrepreneurs hold a disproportionate amount of stock and play a disproportionate role in asset pricing.

Basic idea of this paper: To analyze their entrepreneurial investments in the context of a portfolio choice model.

- Holistic approach. Don’t view entrepreneurial investment in isolation.
- We did something similar in analyzing the mortgage default decision.

Findings:

- Investors will use “risky debt” to finance entrepreneurial projects to the fullest extent, conditional on investing in such a project.
This paper

- Motivation: Heaton and Lucas (2000) showed that entrepreneurs hold a disproportionate amount of stock and play a disproportionate role in asset pricing.

- Basic idea of this paper: To analyze their entrepreneurial investments in the context of a portfolio choice model.
 - Holistic approach. Don’t view entrepreneurial investment in isolation.
 - We did something similar in analyzing the mortgage default decision.

- Findings:
 - Investors will use “risky debt” to finance entrepreneurial projects to the fullest extent, conditional on investing in such a project.
 - But the “hurdle” rate to get them to do the project may be quite high and is well above their apparent cost of funds.
A framework
Choose a candidate portfolio choice vector.
A framework

- Choose a candidate portfolio choice vector.
- Let Q be a probability measure constructed using household marginal utility.
A framework

- Choose a candidate portfolio choice vector.
- Let Q be a probability measure constructed using household marginal utility.

$$\mathbb{E}_Q[\tilde{R}_i] = 1 + r = \frac{u'(c_t)}{\mathbb{E}(u'(c_{t+1}))}$$

risk adjusted return

Shadow riskless rate
A framework

- Choose a candidate portfolio choice vector.
- Let Q be a probability measure constructed using household marginal utility.

$$E_Q[\tilde{R}_i] \quad \Leftrightarrow \quad 1 + r = \frac{u'(c_t)}{E(u'(c_{t+1}))}$$

- Simple Rule:
A framework

- Choose a candidate portfolio choice vector.
- Let Q be a probability measure constructed using household marginal utility.

$$E_Q[\tilde{R}_i] \iff 1 + r = \frac{u'(c_t)}{E(u'(c_{t+1}))}$$

risk adjusted return

Shadow riskless rate

Simple Rule:
- If \ldots, sell i
A framework

- Choose a candidate portfolio choice vector.
- Let Q be a probability measure constructed using household marginal utility.

$$
\underbrace{E_Q[\tilde{R}_i]}_\text{risk adjusted return} = \underbrace{1 + r}_\text{Shadow riskless rate} = \frac{u'(c_t)}{E(u'(c_{t+1}))}
$$

- Simple Rule:
 - If $<$, sell i
 - If $>$, buy i
A framework

- Choose a candidate portfolio choice vector.
- Let Q be a probability measure constructed using household marginal utility.

\[
E_Q[\tilde{R}_i] = 1 + r = \frac{u'(c_t)}{E(u'(c_{t+1}))}
\]

- risk adjusted return
- Shadow riskless rate

Simple Rule:
- If $<$, sell i
- If $>$, buy i
- If $=$, do nothing.
A framework

- Choose a candidate portfolio choice vector.
- Let Q be a probability measure constructed using household marginal utility.

$$
\begin{align*}
\mathbb{E}_Q[\tilde{R}_i] & \quad \quad = \quad 1 + r \\
\text{risk adjusted return} & \quad \quad \text{Shadow riskless rate} \\
\end{align*}
$$

- Simple Rule:
 - If $<$, sell i
 - If $>$, buy i
 - If $=$, do nothing.

- It's easy to understand classical portfolio choice.
- Borrowing constraints, short sale, etc. wreak havoc.
“Risky Debt”
“Risky Debt”

- Risky debt is basically non-recourse debt.
“Risky Debt”

- Risky debt is basically non-recourse debt.
 - Just as an aside, in most states, lenders have full recourse to a borrower’s other assets in a residential foreclosure.
“Risky Debt”

- Risky debt is basically non-recourse debt.
 - Just as an aside, in most states, lenders have full recourse to a borrower’s other assets in a residential foreclosure.
 - You may have heard differently from some distinguished American economists.
“Risky Debt”

- Risky debt is basically non-recourse debt.
 - Just as an aside, in most states, lenders have full recourse to a borrower’s other assets in a residential foreclosure.
 - You may have heard differently from some distinguished American economists.
 - But they are wrong.
“Risky Debt”

- Risky debt is basically non-recourse debt.
 - Just as an aside, in most states, lenders have full recourse to a borrower’s other assets in a residential foreclosure.
 - You may have heard differently from some distinguished American economists.
 - But they are wrong.
- If investment project has a bad outcome, lender takes the loss.
“Risky Debt”

- Risky debt is basically non-recourse debt.
 - Just as an aside, in most states, lenders have full recourse to a borrower’s other assets in a residential foreclosure.
 - You may have heard differently from some distinguished American economists.
 - But they are wrong.
- If investment project has a bad outcome, lender takes the loss.
- Mix of debt and equity.
In base case in this paper, this debt is actuarially fairly priced.
In base case in this paper, this debt is actuarially fairly priced.

Key point here is that this makes it very attractive to investor:
In base case in this paper, this debt is actuarially fairly priced. Key point here is that this makes it very attractive to investor:

- Payoff on debt is positively correlated with investment income
In base case in this paper, this debt is actuarially fairly priced. Key point here is that this makes it very attractive to investor:

- Payoff on debt is positively correlated with investment income
- And thus with consumption
• In base case in this paper, this debt is actuarially fairly priced.
• Key point here is that this makes it very attractive to investor:
 • Payoff on debt is positively correlated with investment income
 • And thus with consumption
 • So risk adjusted return falls short of riskless rate:

\[E_Q(r_d) < E(r_d) = r_b \]
In base case in this paper, this debt is actuarially fairly priced. Key point here is that this makes it very attractive to investor:

- Payoff on debt is positively correlated with investment income
- And thus with consumption
- So risk adjusted return falls short of riskless rate:

$$E_Q(r_d) < E(r_d) = r_b$$

- Because investor can buy and sell unlimited amounts of the riskless shadow riskless rate = r_b
In base case in this paper, this debt is actuarially fairly priced. Key point here is that this makes it very attractive to investor:

- Payoff on debt is positively correlated with investment income
- And thus with consumption
- So risk adjusted return falls short of riskless rate:

\[E_Q(r_d) < E(r_d) = r_b \]

- Because investor can buy and sell unlimited amounts of the riskless shadow riskless rate = \(r_b \)
- So investor wants to short as much as possible of risky debt
High Hurdle Rates

- Key here is that the entrepreneurial project is indivisible.
High Hurdle Rates

- Key here is that the entrepreneurial project is indivisible.
- By previous slide, we know investor is fully leveraged:
Key here is that the entrepreneurial project is indivisible. By previous slide, we know investor is fully leveraged:

- Let r_i be the fully leveraged return on the project.
Key here is that the entrepreneurial project is indivisible.

By previous slide, we know investor is fully leveraged:

Let r_i be the fully leveraged return on the project.

If one could invest ε in entrepreneurial project, it would be sufficient for the fully-leveraged return on the project to exceed the riskless rate.
Key here is that the entrepreneurial project is indivisible.

By previous slide, we know investor is fully leveraged:
- Let r_i be the fully leveraged return on the project.

If one could invest ε in entrepreneurial project, it would be sufficient for the fully-leveraged return on the project to exceed the riskless rate.
- If no investment, then correlation of consumption with r_i is zero.
Key here is that the entrepreneurial project is indivisible.

By previous slide, we know investor is fully leveraged:
- Let r_i be the fully leveraged return on the project.
- If one could invest ε in entrepreneurial project, it would be sufficient for the fully-leveraged return on the project to exceed the riskless rate.
 - If no investment, then correlation of consumption with r_i is zero
 - Risk adjusted return = expected return.

$$E(r_i) > r_b \Rightarrow E_Q(r_i) > r_b$$
With indivisible project, consumption is correlated with investment outcome

$$E_Q(r_i) < E(r_i)$$
With indivisible project, consumption is correlated with investment outcome

\[E_Q(r_i) < E(r_i) \]

Thus:

\[E(r_i) > r_b \implies E_Q(r_i) > r_b \]
With indivisible project, consumption is correlated with investment outcome

\[E_Q(r_i) < E(r_i) \]

Thus:

\[E(r_i) > r_b \iff E_Q(r_i) > r_b \]

Sufficient condition

\[E(r_i) > r_b + [E(r_i) - E_Q(r_i)] \]

Hurdle Rate
With indivisible project, consumption is correlated with investment outcome

\[E_Q(r_i) < E(r_i) \]

Thus:

\[E(r_i) > r_b \iff E_Q(r_i) > r_b \]

Sufficient condition

\[E(r_i) > r_b + [E(r_i) - E_Q(r_i)] \]

Hurdle rate depends on...
With indivisible project, consumption is correlated with investment outcome

\[E_Q(r_i) < E(r_i) \]

Thus:

\[E(r_i) > r_b \Rightarrow E_Q(r_i) > r_b \]

Sufficient condition

\[E(r_i) > r_b + [E(r_i) - E_Q(r_i)] \]

Hurdle rate depends on

- Ability to get leverage – Affects \(r_i \)
With indivisible project, consumption is correlated with investment outcome

\[E_Q(r_i) < E(r_i) \]

Thus:

\[E(r_i) > r_b \iff E_Q(r_i) > r_b \]

Sufficient condition

\[E(r_i) > r_b + [E(r_i) - E_Q(r_i)] \]

Hurdle rate depends on

- Ability to get leverage – Affects \(r_i \)
- Wealth – lower wealth means that consumption more highly correlated with investment outcome for given size of investment – risk-adjusted return lower.
The slide you’ve all been waiting for...
The slide you’ve all been waiting for...

The end.