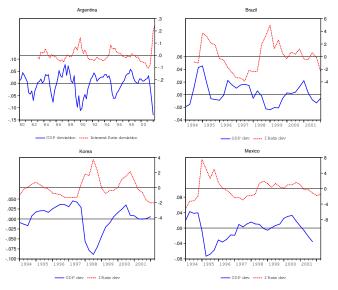
Country Risk, Exchange Rates and Economic Fluctuations in Emerging Economies

Luis Felipe Céspedes

Roberto Chang

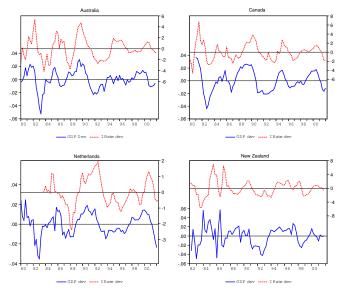
CENTRAL BANK OF CHILE

RUTGERS UNIVERSITY & NBER


September 2009

Introduction: Interest Rates and Macroeconomic Fluctuations

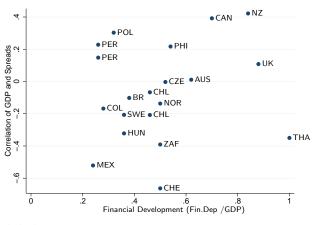
- In emerging economies, output and the cost of foreign borrowing move in opposite directions (Neumeyer-Perri, 2004)
- In contrast, in advanced economies the real interest rate is acyclical or mildly procyclical


Thus, for emerging economies, foreign credit becomes more expensive when they need it the most

Output and Interest Rates in Emerging Economies

Source: Based on Neumeyer and Perri (2004)

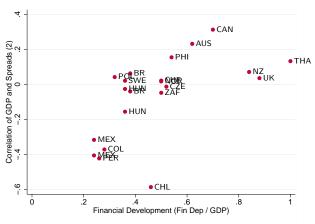
Output and Interest Rates in Developed Economies



Source: Based on Neumeyer and Perri (2004)

The Role of Risk Premia

- Much of the action in interest rates is due to movements in country spreads (Neumeyer & Perri, 2004; Uribe & Yue, 2004)
- And indeed, higher spreads are associated with lower output


The Role of Risk Premia

Source: Authors' computations.

Note. Spreads are the difference of 90d corporate lending rates minus deposit rates (IFS, local central banks)

The Role of Risk Premia

Source: Authors' computations.

Note. Spreads for emerging and developed economies are EMBI (C-EMBI) and OECD-MEI (90D corporate)-Lending(local CB), respectively-

Australia versus Chile: Nice Case Studies

- Interest rates are procyclical in Australia & countercyclical in Chile
- High interest rates are associated with real exchange rate appreciation in Australia & depreciation in Chile

Our Conjecture in a nutshell

 Net worth effects and the currency composition of debts may imply that aggregate demand responds very differently to exchange rate fluctuations in advanced economies vis a vis developing ones

Our Strategy

- We develop a model of the joint determination of
 - Interest rates
 - SpreadsExchange Rates
 - Business cycle fluctuations

which is consistent with the facts just discussed

- Leading examples are Céspedes, Chang & Velasco (2004);
 Gertler, Gilchrist & Natalucci(2003) and Devereux, Lane & Xu(2004)
- With respect to CCV, we extend the model to confront some these data quantitatively so that it is useful for actual policy analysis

The Model

- A version of CCV (2004)
- Small open economy populated by workers and entrepreneurs
- Final (consumption and investment) goods are aggregates of home produce and imports
- No nominal rigidities
- capitalists borrow in the world market subject to agency problem

Domestic Production

$$Y_t = AK_t^{\alpha}L_t^{1-\alpha}$$

$$W_tL_t = (1-\alpha)P_tY_t$$

$$R_tK_t = \alpha P_tY_t$$

Capital Production

• Production function for new capital

$$K_{t+1} = \Gamma(K_t, I_t)$$

so the price of installed capital is given by

$$Q_t^I = Q_t^K \Gamma_2(K_t, I_t)$$

Financial Frictions

- As BGG (2000) foreign borrowing is subject to a costly state verification problem
- The typical entrepreneurs' flow budget constraint is

$$P_t N_t + S_t D_t = Q_t^K K_{t+1}$$

• The return to investment is equal to the cost of funds, inclusive of risk premium

$$\frac{E_{t}\left[K_{t+1}\left(R_{t+1}+P_{t+1}^{K}\right)/S_{t+1}\right]}{Q_{t}^{K}K_{t+1}/S_{t}}=\left(1+\rho_{t+1}\right)\left(1+\eta_{t+1}\right)$$

• The risk premium is increasing on the ratio of total investment to net worth

$$(1+\eta_{t+1}) = \Psi\left(rac{Q_t^K K_{t+1}}{P_t N_t}
ight)$$

 And (aggregate) net worth is given by the return to past investment minus debt service (inclusive of bankruptcy costs)

$$P_t N_t = \nu \left[(1 - \phi_t)(R_t + P_t^K)K_t - (1 + \rho_t)S_t D_t \right]$$

Workers

- They can borrow and lend at the prevailing world interest rate
- Endogenous Time Preference as in Mendoza (1991)

Parametrization

- We calibrate the model to data from Chile and Australia Differences (main)
 - A key difference is μ : elasticity of risk premium w.r.t. the $\frac{Investment}{NetWorth}$ ratio (0.12 for Chile & 0.06 for Australia)
 - Share of imported goods in the production of investment goods (50% in Chile and 25% in Australia)

Figure: Chile: Adjustment path to interest rate shock 0.02 0 -0.02 -0.04 -0.06 -0.08 -0.1 -0.12 -0.14 World r Output Investment -0.16 10 15 20 25 30 35 40

Figure: Chile: Adjustment path to interest rate shock

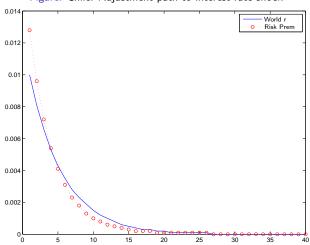


Figure: Chile: Adjustment path to interest rate shock 0.02 -0.02-0.04-0.06 -0.08 -0.1 -0.12 -0.14 World r Output Investment -0.16 10 15 20 25 30 35 40

Figure: Chile: Adjustment path to interest rate shock

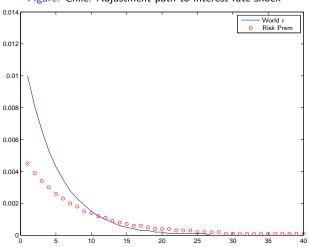


Figure: Adjustment Path to Foreign Demand Shock: Chile

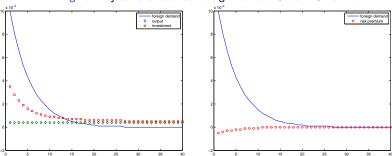
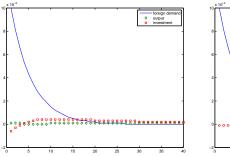
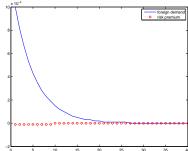
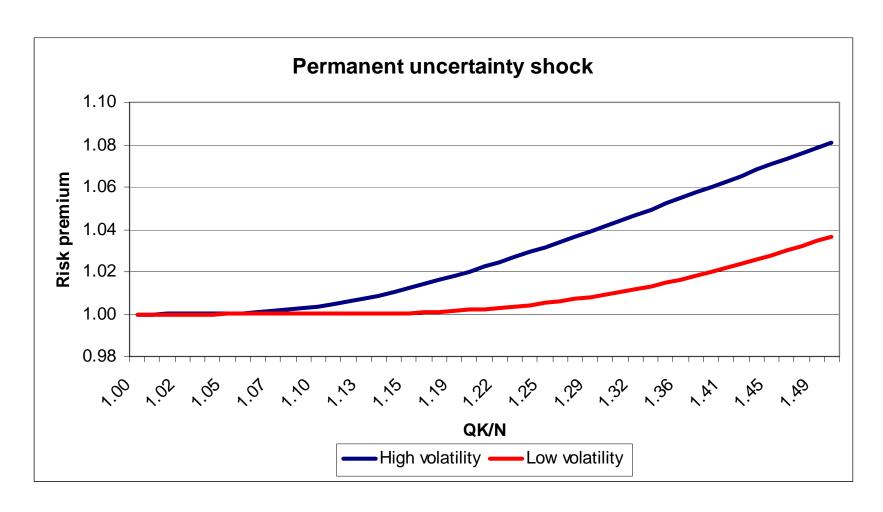




Figure: Adjustment Path to Foreign Demand Shock: Australia

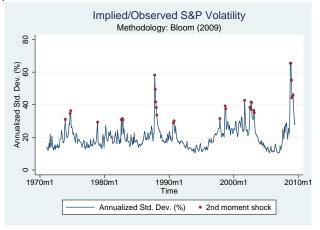
Results


	Australia		Chile		Canada	Mexico
	Model	Data	Model	Data	Data	Data
Consumption	1.05	0.65	0.91	0.85	0.55	0.85
Investment	9.22	2.96	12.18	2.11	2.41	2.10
Ex. Rate	6.54	3.57	7.51	2.30	2.63	2.24
Risk Prem	0.45	0.28	0.98	0.47	0.18	0.83
Risk Prem*		0.31		1.14	0.19	0.80

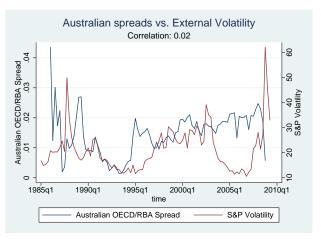
	Australia		Chile		Canada	Mexico
	Model	Data	Model	Data	Data	Data
Consumption	0.56	0.67	0.79	0.92	0.59	0.33
Investment	0.25	0.73	0.53	0.81	0.70	0.44
Ex. Rate	0.09	0.46	0.43	0.61	0.24	-0.02
Risk Prem	-0.21	0.01	-0.51	-0.21	0.39	-0.52
Risk Prem*		0.23		-0.59	0.31	-0.32

Uncertainty shocks

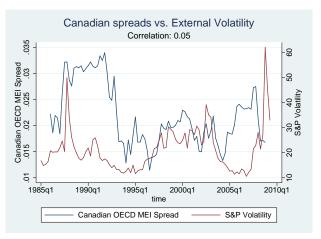
- Uncertainty plays a key role in recent financial turmoil.
- But most in general, uncertainty affects risk premium in a business cycle frequency
- Considering role of uncertainty is important to understand role of financial frictions (Christiano et al)
- We use Bernanke, Gertler, Gilchrist (1999) to introduce uncertainty in a financial accelerator model.


Permanent uncertainty shock

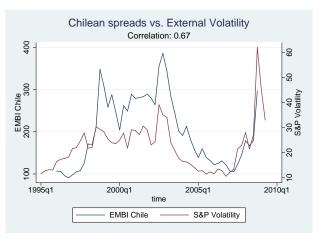
Extension to the Model

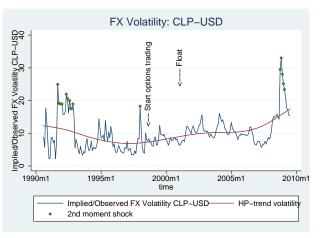

We aim at modelling the dynamics derived of a fully exogenous shock: Bloom's Index

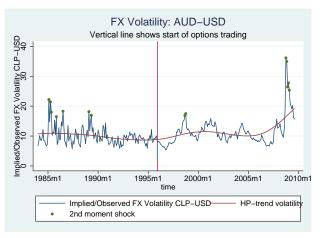
- 9/11
- Subprime


Source: Authors' computations

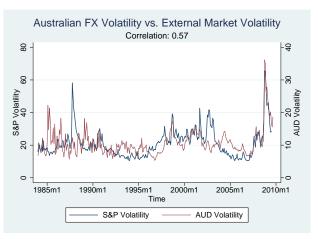
Links to Uncertainty: Spreads and Volatility

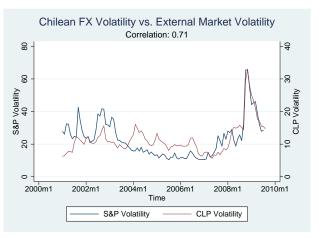

Source: Authors' computations

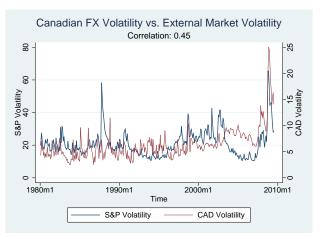

Links to Uncertainty: Spreads and Volatility

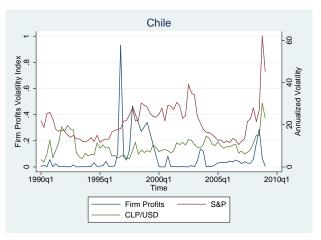

Source: Authors' computations

Links to Uncertainty: Spreads and Volatility




Source: Authors' computations


Source: Authors' computations


Source: Authors' computations

Source: Authors' computations

Source: Authors' computations

